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1. INTRODUCTION

Trend extraction is an important task in applied time series analysis, in

particular in economics and engineering. We present a new method of trend

extraction in the framework of the Singular Spectrum Analysis approach.

Trend is usually defined as a smooth additive component containing infor-

mation about time series global change. This definition is rather vague (which

type of smoothness is used? which kind of information is contained in the trend?).

It may sound strange, but there is no more precise definition of the trend accepted

by the majority of researchers and practitioners. Each approach to trend extrac-

tion defines trend with respect to the mathematical tools used (e.g. using Fourier

transformation or derivatives). Thus in the corresponding literature one can find

various specific definitions of the trend. For further discussion on trend issues we

refer to [2].

Singular Spectrum Analysis (SSA) is a general approach to time series anal-

ysis and forecast. Algorithm of SSA is similar to that of Principal Components

Analysis (PCA) of multivariate data. In contrast to PCA which is applied to

a matrix, SSA is applied to a time series and provides a representation of the

given time series in terms of eigenvalues and eigenvectors of a matrix made of

the time series. The basic idea of SSA has been proposed by [5] for dimension

calculation and reconstruction of attractors of dynamical systems, see historical

reviews in [10] and in [11]. In this paper we mostly follow the notations of [11].

SSA can be used for a wide range of tasks: trend or quasi-periodic com-

ponent detection and extraction, denoising, forecasting, change-point detection.

The present bibliography on SSA includes two monographs, several book chap-

ters, and over a hundred papers. For more details see references at the website

SSAwiki: http://www.math.uni-bremen.de/∼theodore/ssawiki.

The method presented in this paper has been first proposed in [3] and is

studied in detail in the author’s unpublished Ph.D. thesis [1] available only in

Russian at http://www.pdmi.ras.ru/∼theo/autossa.

The proposed method is easy to use (has only two parameters), does not

need specification of models of time series and trend, allows one to specify desired

trend scale, and extracts trend in the presence of noise and oscillations.

The outline of this paper is as follows. Section 2 introduces SSA, formu-

lates properties of trends in SSA and presents the already existing methods of

trend extraction in SSA. Section 3 proposes our method of trend extraction.

In Section 4 we discuss the frequency properties of additive components of a time

series and present our procedure for the choice of first parameter of the method,
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a low-frequency boundary. Section 5 starts with investigation of the role of the

second method parameter, the low-frequency contribution, based on a simulation

example. Then we propose a heuristic strategy for the choice of this parameter.

In Section 6, applications of the proposed method to a simulated time series with

a polynomial trend and oscillations and on the unemployment level in Alaska are

considered. Finally, Section 7 offers conclusions.

2. SINGULAR SPECTRUM ANALYSIS

Let us have a time series F = (f0, ..., fN−1), fn ∈ R, of length N , and we

are looking for some specific additive component of F (e.g. a trend). The central

idea of SSA is to embed F into high-dimensional euclidean space, then find a

subspace corresponding to the sought-for component and, finally, reconstruct a

time series component corresponding to this subspace. The choice of the subspace

is a crucial question in SSA. The basic SSA algorithm consists of decomposition

of a time series and reconstruction of a desired additive component. These two

steps are summarized below; for a detailed description, see page 16 of [11].

Decomposition. The decomposition takes a time series of length N and

comes up with an L×K matrix. This stage starts by defining a parameter L

(1 < L < N), called the window length, and constructing the so-called trajectory

matrix X ∈ R
L×K , K = N − L + 1, with stepwise taken portions of the original

time series F as columns:

(2.1) F = (f0, ..., fN−1) → X = [X1 : ... : XK ] , Xj = (fj−1, ..., fj+L−2)
T .

Note that X is a Hankel matrix and (2.1) defines one-to-one correspondence

between series of length N and Hankel matrices of size L×K. Then Singular

Value Decomposition (SVD) of X is applied, where j-th component of SVD is

specified by j-th eigenvalue λj and eigenvector Uj of XXT:

X =
d

∑

j=1

√

λj Uj Vj
T , Vj = XTUj

/

√

λj , d = max
{

j : λj > 0
}

.

Since the matrix XXT is positive-definite, their eigenvalues λj are positive.

The SVD components are numbered in the decreasing order of eigenvalues λj .

We define j-th Empirical Orthogonal Function (EOF) as the sequence of elements

of the j-th eigenvector Uj . The triple (
√

λj , Uj , Vj) is called j-th eigentriple,
√

λj

is called the j-th singular value, Uj is the j-th left singular vector and Vj is the

j-th right singular vector.
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Reconstruction. Reconstruction goes from an L×K matrix into a time

series of length N . This stage combines (i) selection of a subgroup J ⊂ {1, ..., L}
of SVD components; (ii) hankelization (averaging along entries with indices

i+ j = const.) of the L×K matrix from the selected J components of the SVD;

(iii) reconstruction of a time series component of length N from the Hankel ma-

trix by the mentioned one-to-one correspondence (like in (2.1) but in the reverse

direction, see below the exact formulae). The result of the reconstruction stage

is a time series additive component:

XJ =
∑

j∈J

√

λj UjVj
T → G = (g0, ..., gN−1) .

For the sake of brevity, let us describe the hankelization of the matrix XJ

and the subsequent reconstruction of a time series component G as being applied

to a matrix Y =
{

yij

}i=L,j=K

i,j=1
as it is introduced in [11]. First we introduce

L∗ = min{L, K}, K∗ = max{L, K} and define an L∗×K∗ matrix Y∗ as given by

Y∗ = Y if L 6 K and Y∗ = YT if L > K. Then the elements of the time series

G = (g0, ..., gN−1) formed from the matrix Y are calculated by averaging along

cross-diagonals of matrix Y∗ as

(2.2) gn =























































1

n+1

n+1
∑

m=1

y∗m,n−m+2 , 0 6 n < L∗−1 ,

1

L∗

L∗

∑

m=1

y∗m,n−m+2 , L∗−1 6 n < K∗ ,

1

N−n

N−K∗+1
∑

m=n−K∗+2

y∗m,n−m+2 , K∗ 6 n < N .

Changing the window length parameter and, what is more important, the

subgroup J of SVD components used for reconstruction, one can change the

output time series G. In the problem of trend extraction, we are looking for G

approximating a trend of a time series. Thus, the trend extraction problem in

SSA is reduced to (i) the choice of a window length L used for decomposition and

(ii) the selection of a subgroup J of SVD components used for reconstruction.

The first problem is thoroughly discussed in section 1.6 of [11]. In this paper,

we propose a solution for the second problem.

Note that for the reconstruction of a time series component, SSA considers

the whole time series, as its algorithm uses SVD of the trajectory matrix built

from all parts of the time series. Therefore, SSA is not a local method in contrast

to a linear filtering or wavelet methods. On the other hand, this property makes

SSA robust to outliers, see [11] for more details.
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An essential disadvantage of SSA is its computational complexity for the

calculation of SVD. This shortcoming can be reduced by using modern [9] and

parallel algorithms for SVD. Moreover, for trend revision in case of receiving new

data points, a computationally attractive algorithm of [12] for updating SVD can

be used.

It is worth to mention here that the similar ideas of using SVD of the

trajectory matrix have been proposed in other areas, e.g. in signal extraction

in oceanology [8] and estimation of parameters of damped complex exponential

signals [13].

2.1. Trend in SSA

SSA is a nonparametric approach which does not need a priori specification

of models of time series and trend, neither deterministic nor stochastic ones. The

classes of trends and residuals which can be successfully separated by SSA are

characterized as follows.

First, since we extract any trend by selecting a subgroup of all d SVD

components, this trend should generate less than d SVD components. For an

infinite time series, a class of such trends coincides with the class of time series

governed by finite difference equations [11]. This class can be described explicitly

as linear combinations of products of polynomials, exponentials and sines [6].

An element of this class suits well for representation of a smooth and slow varying

trend.

Second, a residual should belong to a class of time series which can be sep-

arated from a trend. The separability theory due to [14] helps us determine this

class. In [14] it was proved that (i) any deterministic function can be asymp-

totically separated from any ergodic stochastic noise as the time series length

and window length tend to infinity; (ii) under some conditions any trend can be

separated from any quasi-periodic component, see also [11]. These properties of

SSA make this approach feasible for trend extraction in the presence of noise and

quasi-periodic oscillating components.

Finally, as trend is a smooth and slow varying time series component, it gen-

erates SVD components with smooth and slow varying EOFs. Eigenvectors rep-

resent an orthonormal basis of a trajectory vector space spanned on the columns

of trajectory matrix. Thus each EOF is a linear combination of portions of the

corresponding time series and inherits its global smoothness properties. This idea

is considered in detail in [11] for the cases of polynomial and exponential trends.
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2.2. Existing methods of trend extraction in SSA

A naive approach to trend extraction in SSA is to reconstruct a trend from

several first SVD components. Despite its simplicity, this approach works in many

real-life cases for the following reason. An eigenvalue represents a contribution of

the corresponding SVD component into the form of the time series, see section

1.6 of [11]. Since a trend usually characterizes the shape of a time series, its

eigenvalues are larger than the other ones, that implies small order numbers of

the trend SVD components. However, the selection procedure fails when the

values of a trend are small enough as compared with a residual, or when a trend

has a complicated structure (e.g. a high-order polynomial) and is characterized

by many (not only by the first ones) SVD components.

A smarter way of selecting trend SVD components is to choose the compo-

nents with smooth and slow varying EOFs (we have explained this fact above).

At present, there exist only one parametric method of [15] which follows this

approach. In [15] it was proposed using the Kendall correlation coefficient for

testing for monotonic growth of an EOF. Unfortunately, this method is far from

perfect since it is not possible to establish which kinds of trend can be extracted

by its means. This method seems to be aimed at extraction of monotonic trends

because their EOFs are usually monotonic. However, even a monotonic trend can

produce non-monotonic EOF, especially in case of noisy observations. An exam-

ple could be a linear trend which generates a linear and a constant EOFs. If there

is a noise or another time series component added, then this component is often

mixed with trend components corrupting its EOFs. Then, even in case of very

small corruption, the constant EOF can be highly non monotonic. Naturally, the

method using the Kendall correlation coefficient does not suit for non monotonic

trends producing non monotonic EOFs. For example, a polynomial of low order

which is often used for trend modelling usually produces non monotonic EOFs,

for details see e.g. [11].

3. PROPOSED METHOD FOR TREND EXTRACTION

In this section, we present our method of trend extraction. First, follow-

ing [11], we introduce the periodogram of a time series.

Let us consider the Fourier representation of the elements of a time series

X of length N , X = (x0, ..., xN−1), see e.g. section 7.3 of [7]:

xn = c0 +
∑

16k6N−1

2

(

ck cos(2πnk/N) + sk sin(2πnk/N)
)

+ (−1)n cN/2 ,
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where k ∈ N, 0 6 n 6 N −1, and cN/2 = 0 if N is an odd number. Then the

periodogram of X at the frequencies ω ∈ {k/N}⌊N/2⌋
k=0 is defined as

(3.1) IN
X (k/N) =

N

2



















2c2
0 , k = 0 ,

c2
k + s2

k , 0 < k < N/2 ,

2c2
N/2 , if N an even number and k = N/2 .

Note that this periodogram is different from the periodogram usually used

in spectral analysis, see e.g. [4] or [7]. To show this difference, let us denote the

k-th element of the discrete Fourier transform of X as

Fk(X) =
N−1
∑

n=0

e−i2πnk/Nxn ,

then the periodogram IN
X (ω) at the frequencies ω ∈ {k/N}⌊N/2⌋

k=0 is calculated as

IN
X (k/N) =

1

N







2
∣

∣Fk(X)
∣

∣

2
, if 0 < k < N/2 ,

∣

∣Fk(X)
∣

∣

2
, if k = 0 or N is even and k = N/2 .

One can see that in addition to the normalization different from that in [4] and [7],

the values for frequencies in the interval (0, 0.5) are multiplied by two. This is

done to ensure the following property:

(3.2) ‖X‖2
2 =

N−1
∑

n=0

x2
n =

⌊N/2⌋
∑

k=0

IN
X (k/N) .

Let us introduce the cumulative contribution of the frequencies [0, ω] as

πN
X (ω) =

∑

k:0≤k/N≤ω IN
X (k/N), ω ∈ [0, 0.5]. Then, for a given ω0 ∈ (0, 0.5), we

define the contribution of low frequencies from the interval [0, ω0] to X ∈ R
N as

(3.3) C(X, ω0) = πN
X (ω0)/πN

X (0.5) .

Then, given parameters ω0 ∈ (0, 0.5) and C0 ∈ [0, 1], we propose to select those

SVD components whose eigenvectors satisfy the following criterion:

(3.4) C(Uj , ω0) > C0 ,

where Uj is the corresponding j-th eigenvector. One may interpret this method as

selection of SVD components with EOFs mostly characterized by low-frequency

fluctuations. It is worth noting here that when we apply C, π or I (defined above

for a time series) to a vector, they are simply applied to a series of elements of

the vector.

Having the trend SVD components selected using (3.4), one reconstructs the

trend according to Section 2. The question is how to select ω0 and how to define

the threshold C0. These issues are discussed in Sections 4 and 5, respectively.
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4. THE LOW-FREQUENCY BOUNDARY ω0

The low-frequency boundary ω0 manages the scale of the extracted trend:

the lower is ω0, the slower varies the extracted trend. Selection of ω0 can be done

a priori based on additional information about the data thus prespecifying the

desired scale of the trend.

For example, if we assume to have a quasi-periodic component with known

period T , then we should select ω0 < 1/T in order not to include this component

in the trend. For extraction of a trend of monthly data with possible seasonal

oscillations of period 12, we suggest to select ω0 < 1/12, e.g. ω0 = 0.075.

In this paper we also propose a method of selection of ω0 considering a time

series periodogram. Since a trend is a slow varying component, its periodogram

has large values close to zero frequency and small values for other frequencies.

The problem of selecting ω0 is the problem of finding such a low-frequency value

that the frequencies corresponding to the large trend periodogram values are

inside the interval [0, ω0]. At the same time, ω0 cannot be too large because

then an oscillating component with a frequency less than ω0 can be included in

the trend produced. Considering the periodogram of a trend, we could find the

proper value of ω0 but for a given time series its trend is unknown.

What we propose is to choose ω0 based on the periodogram of the original

time series. The following proposition substantiates this approach.

Proposition 4.1. Let us have two time series G = (g0, ..., gN−1) and

H = (h0, ..., hN−1) of length N , then for each k : 0 ≤ k ≤ ⌊N/2⌋ the following

inequality holds:

(4.1)
∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ 6 2
√

IN
G (k/N) IN

H (k/N) .

Proof of Proposition 4.1: Let us first consider the case when 0 <k < N/2.

We denote as ck,X and sk,X the coefficients of Fourier representation of a time

series X used in the periodogram definition (3.1). Then, by this definition,

IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N) =

=
N

2

(

c2
k,G+H + s2

k,G+H − c2
k,G − s2

k,G − c2
k,H − s2

k,H

)

.

Since ck,G+H = 2
N ℜFk(G+H) = ck,G + ck,H (where ℜz denotes a real part of

a complex number z) and, analogously, sk,G+H = sk,G + sk,H , we have

(4.2) IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N) = N

(

ck,Gck,H + sk,Hsk,H

)

.
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Let us consider the periodograms multiplication used in the right part of (4.1):

(4.3) IN
G (k/N) IN

H (k/N) =
N2

4

(

c2
k,G + s2

k,G

) (

c2
k,H + s2

k,H

)

.

Since for all real a, b, c and d it holds that (a2 + b2) (c2 + d2) = (|ac| + |bd|)2 +

(|ad| − |bc|)2, then

IN
G (k/N) IN

H(k/N) =(4.4)

=
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

+
(

|ck,G sk,H| − |ck,H sk,G|
)2

.

Finally, taking the square of (4.2), dividing it by four and taking into account (4.4),

we have

1

4

(

IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

)2
=

=
N2

4

(

ck,G ck,H + sk,G sk,H

)2

6
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

6
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

+
(

|ck,G sk,H| − |ck,H sk,G|
)2

= IN
G (k/N) IN

H (k/N)

and the inequality in (4.1) holds 0 < k < N/2.

Second, we consider the case when k = 0 or k = N/2. Again, by the defi-

nition of the periodogram

2
√

IN
G (k/N) IN

H (k/N) = 2
√

N2 c2
k,G c2

k,H = 2N |ck,G ck,H | .

At the same time,

∣

∣IN
G+H(k/N)− IN

G (k/N)− IN
H (k/N)

∣

∣ = N
∣

∣c2
k,G+H − c2

k,G − c2
k,H

∣

∣ = N
∣

∣2 ck,G ck,H

∣

∣

which leads for k = 0 or k = N/2 to

∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ = 2
√

IN
G (k/N) IN

H (k/N)

and the result in (4.1) holds with equality.

Corollary 4.1. Let us define for a time series F of length N the frequency

support of the periodogram IN
F as a subset of frequencies {k/N}⌊N/2⌋

k=0 such that

IN
F (k′/N) > 0 for k′/N from this subset. If the frequency supports of two time

series G and H are disjoint then IN
G+H(k/N) = IN

G (k/N) + IN
H (k/N).
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Let us demonstrate that when supports of periodograms of time series G

and H are nearly disjoint, the periodogram of the sum G+H is close to the sum

of their periodograms.

The fact that the periodograms of G and H are very different at k/N can

be expressed as

IN
G (k/N)

/

IN
H (k/N) = d ≫ 1 ,

since without loss of generality we can assume IN
G (k/N) > IN

H (k/N). Then using

Proposition 4.1 we have that

∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ 6

6 2
√

IN
G (k/N) IN

H (k/N) =
2√
d

IN
G (k/N) ≪ IN

G (k/N) ,

that means that the difference
∣

∣IN
G+H(k/N)−IN

G (k/N)−IN
H (k/N)

∣

∣ is significantly

smaller than the value of the largest periodogram (of IN
G , IN

H ) at the point k/N .

In many applications, the given time series can be modelled as made of

a trend with large periodogram values at low-frequency interval [0, ω0], oscilla-

tions with periods smaller than 1/ω0, and noise whose frequency contribution

spreads over all the frequencies [0, 0.5] but is relatively small. In this case the

periodogram supports of the trend and the residual can be considered as nearly

disjoint. Therefore, from Corollary 4.1, we conclude that the periodogram of the

time series is approximately equal to the sum of the periodograms of the trend,

oscillations and noise.

For a time series X of length N , we propose to select the value of the

parameter ω0 according to the following rule:

(4.5) ω0 = max
k/N, 06k6N/2

{

k/N : IN
X (0), ..., IN

X (k/N) < MN
X

}

,

where MN
X is the median of the values of periodogram of X. The modelling of

a time series as a sum of a trend, oscillations and a noise (let us suppose to

have a normal noise) motivates this rule as follows. Since the frequency supports

of the trend and oscillating components do not overlap, only the values of the

noise periodogram can mix with the values of the trend periodogram. First,

the values of the noise periodogram for neighboring ordinates are asymptotically

independent (see e.g. section 7.3.2 of [7]). Second, supposing a relatively long

time series and narrow frequency supports of trend and oscillating components,

the median of values of the time series periodogram gives an estimation of the

median of the values of the noise periodogram. Since a trend is supposed to have

large contribution to the shape of the time series (i.e. a large L2-norm) compared

to the noise and its frequency support is quite narrow compared to the whole

interval [0, 0.5], its periodogram values are relatively larger than the median of

the noise periodogram values due to (3.2). Therefore, the condition used in (4.5)
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is fulfilled only for such a frequency ω0 that the trend periodogram values is

close to zero (outside the trend frequency interval). Large noise periodogram

values in this frequency region can lead to selecting larger than necessary ω0.

But remember that we compare the periodogram values with their median and

the noise periodogram values are independent (asymptotically). Hence, with

probability approximately equal to 1− 0.5m (e.g. this value is equal to 0.9375 for

m = 4) we select the m-th point (of the grid {k/N}) located to the right side of

the trend frequency interval (where the trend peridogram values are larger then

the noised periodogram median).

Note that the lengths N of the time series and L of eigenvector are dif-

ferent (L < N) which causes different resolution of their periodograms. Having

estimated ω0 after consideration of the periodogram of the original time series,

one should select

(4.6) ω′
0 = ⌈L ω0⌉/L .

Dependence of ω0 on the time series resolution. Let us define the

resolution ρ of the original time series as ρ = (τn+1− τn)−1, where τn is the time

of n-th measurement. If one have estimated ω0 for the data with resolution ρ

and there comes the same data but measured with higher resolution ρ′= mρ

(m ∈ R) thus increasing the data length in m times, then in order to extract the

same trend, one should take the new threshold value ω′
0 = ω0/m. In a similar

manner, after decimation of the data reducing the resolution in m times, the

value ω′
0 = mω0 should be taken.

Example 4.1 (The choice of ω0 for a noised exponential trend). Let us

consider an example of selection of the threshold ω0 for an exponential trend and

a white Gaussian noise which also demonstrates Proposition 4.1. Let the time

series F = G + H be of length N = 120, where the components G and H are

defined as gn = Ae0.01n, hn = Bεn, εn∼ iidN(0, 1) and A, B are selected so that

‖G‖2 = ‖H‖2 =
∑N−1

n=0 gn =
∑N−1

n=0 hn = 1. The normalization is done to ensure

that
∑60

k=0 IN
G (k/N) =

∑60
k=0 IN

H (k/N) = 1. Figure 1 shows a) the simulated time

series F , b) its components, c) the periodograms of the components, d) the pe-

riodograms zoomed together with a line corresponding to the median of the noise

periodogram values equal to 0.0126, e) the periodogram IN
F of F and a kind of

“confidence”interval of its estimation IN
G +IN

H calculated according Proposition 4.1

and a line corresponding to the median M120
F of the time series periodogram values

(used for estimating ω0), and f) the discrepancy, the difference between IN
F and

IN
G +IN

H together with the values of this difference estimated in the right side

of (4.1). Note tha the median of the periodogram values of F is equal to 0.0141,

which is close to the median of the noise periodogram values equal to 0.0126. The

value of ω0 estimated according to the proposed rule (4.5) is equal to 6/120 = 0.05.
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e) Periodogram of
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Figure 1: The choice of ω0 for an exponential trend and Gaussian noise;

The value C(ω) used in the legends is equal to 2
√

IN
G(ω) IN

H(ω).

5. THE LOW-FREQUENCY CONTRIBUTION C0

Before suggesting a procedure for selection of the second parameter of the

proposed method, the low-frequency threshold C0, we investigate the effect of the

choice of C0 on the quality of the trend extracted. For this aim, we consider a time

series model with a trend that generates SVD components with known numbers.

Then, for a sufficient number of simulated time series, we compare our trend

extraction procedure with a SSA-based procedure which simply reconstructs the

trend using the known trend SVD components.

5.1. A simulation example: an exponential trend plus a Gaussian noise

The model considered is the same as in example above. Let the time series

F = (f0, ..., fN−1) consist of an exponential trend tn plus a Gaussian white noise

rn:

(5.1) fn = tn + rn , tn = eαn , rn = σeαnεn, εn ∼ iidN(0, 1) .
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According to [11], for such a time series with moderate noise the first SVD com-

ponent corresponds to the trend. We considered only the noise levels when this

is true (empirically checked). Note that the noise rn has a multiplicative model

as its standard deviation is proportional to the trend.

In the following, we consider the following properties. First, we calculate

the difference between the trend t̂n(C0) resulted from our method with C0 used

and the reconstruction t̃n of the first SVD component exploiting the weighted

mean square error (MSE) because this measure is more relevant for a model with

a multiplicative noise than a simple MSE:

(5.2) D
(

t̂n(C0), t̃n
)

=
1

N

N−1
∑

n=0

e−2αn
(

t̂n(C0) − t̃n
)2

.

This measure compares our trend and the ideal SSA trend. Second, we calcu-

late the weighted mean square errors between t̂n(C0), t̃n and the true trend tn
separately:

(5.3) D
(

t̂n(C0)
)

=
1

N

N−1
∑

n=0

e−2αn
(

tn− t̂n(C0)
)2

, D(t̃n) =
1

N

N−1
∑

n=0

e−2αn
(

tn− t̃n
)2

.

5.1.1. Scheme of estimation of the errors using simulation

The errors (5.2), (5.3) are estimated using the following scheme. We simu-

late S realizations of the time series F according to the model (5.1) and calculate

the mean of D
(

t̂n(C0), t̃n
)

for all values of C0 from the large grid 0:0.01:1:

(5.4) D
(

t̂n(C0), t̃n
)

=
1

S

S
∑

s=1

D
(

t̂(s)n (C0), t̃
(s)
n

)

,

where t̂
(s)
n (C0) and t̃

(s)
n denote trends of the s-th simulated time series. The mean

errors D
(

t̂n(C0)
)

, D(t̃n) between the true trend tn and the extracted trends t̂n(C0)

and t̃n, respectively, are calculated similarly. Let us also denote the minimal

values of the mean errors as

(5.5) Dmin
(t̂n, t̃n) = min

C0

D
(

t̂n(C0), t̃n
)

, Dmin
(t̂n) = min

C0

D
(

t̂n(C0)
)

and the value of C0 providing the minimal mean error between the extracted

trend and the ideal SSA trend as

Copt
0 = arg min

C0

D
(

t̂n(C0), t̃n
)

,

so that Dmin
(t̂n, t̃n) = D

(

t̂n(Copt
0 ), t̃n

)

.
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The simulated time series are of length N = 47. In order to achieve the

best separability [11] we have selected the SSA window length L = ⌈N/2⌉ = 24.

The estimates of the mean errors are calculated on S = 104 realizations of the

time series.

We consider different values of the model parameters α and σ. The values

of α are 0 (corresponding to a constant trend), 0.01 and 0.02 which correspond to

the increase of trend values (from t0 to tN−1) in 1, 1.6 and 2.5 times, respectively.

The levels of noise are 0.2 6 σ 6 1.6. It was empirically checked that for such

levels of noise the first SVD component corresponds to the trend.

Moreover, we estimated the probability of the type I error of not selecting

the first SVD component as the ratio of times when the first component is not

identified as a trend component by our procedure to the number of repetitions S.

Choice of ω0. In order to select the low-frequency threshold ω0, we consid-

ered several simulated time series with different α and the maximal noise σ = 1.6.

Two examples of their periodograms for α = 0 and α = 0.02 are depicted in

Figure 2. The median values for the periodograms depicted in Figure 2 are 2.936

and 2.924 which leads to ω0 = 0 for α = 0 and ω0 = ⌈1/N ·L⌉/L = 1/24 ≅ 0.042

for α = 0.02 estimated using (4.6). We decided to take the same ω0 = 0.042 (the

largest one) for all α considered.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

ω

Periodograms of the simulated time series

 

 

IF (ω), α = 0
IF (ω), α = 0.02

this line corresponds to 
the medians of the time series 
periodogram values, equal to 

2.936 for α=0 and 

2.924 for α=0.02

Figure 2: The periodograms of two time series of the model (5.1)
with σ = 1.6 and α = 0, 0.02.

5.1.2. Simulation results

Figure 3 shows the evolution of the square roots of the mean errors and Copt
0

as a function of σ. The values α = 0 and α = 0.02 are used. The square roots of

the mean errors (i.e. standard deviations) are taken for better comparison with σ

which is the standard deviation multiplier of the noise.
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The plots of the minimal mean error Dmin
(t̂n, t̃n) and the optimal Copt

0 for

α = 0.02 are depicted in Figure 3, where the values for α = 0 are also shown in

gray color. The estimates for α = 0.01 are not reported here.
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Figure 3: The square roots of the mean errors Dmin
(t̂n, t̃n) (top left)

Dmin
(t̂n) (bottom left) and D(t̃n) (bottom right) as well as the

optimal C0 value providing a minimal mean error Dmin
(t̂n, t̃n)

between the extracted trend and the ideal SSA trend (top right);
all for α = 0 and α = 0.02.

The interpretation of the produced results is as follows. First, the trend

extracted with the optimal C0 is very similar to the ideal SSA trend, reconstructed

by the first SVD component since Dmin
(t̂n, t̃n)≪ Dmin

(t̂n) (the error between our

trend and the ideal trend is much smaller than the error of the ideal trend itself),

especially when σ 6 0.8. Moreover, the estimated probability of the type I error

(i.e. the probability of not selecting the first SVD component) is less than 0.05 for

σ 6 1.4. All this allows us to conclude that in case of an exponential trend and

a white Gaussian noise the proposed method of trend extraction with an optimal

C0 with high probability selects the required first SVD component corresponding

to the trend.

The trend t̂n(Copt
0 ) extracted with an optimal C0 estimates the true trend

quite good when comparing the deviation

√

Dmin
(t̂n) with the noise standard



A Method of Trend Extraction Using SSA 17

deviation σ. For example, for σ = 1.6 the value of

√

Dmin
(t̂n) is approximately

equal to 0.5.

Note that for different α the mean errors Dmin
(t̂n) are very similar though

the used optimal values of C0 are quite different (Figure 3). This shows that the

method adapts to the change of the model parameter α.

Let us consider the dependence of inaccuracy of the proposed trend extrac-

tion method on the value of C0. As above, the inaccuracy is measured with the

minimal mean error Dmin
(t̂n, t̃n) between the extracted trend and the ideal SSA

trend. Figure 4 shows the graphs of this error as a function of C0 for different

exponentials α and noise levels σ.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

C0

D(t̂n(C0), t̃n)

 

 

α = 0, σ = 0.8

α = 0, σ = 1.4

α = 0.02, σ = 0.8

α = 0.02, σ = 1.4

Figure 4: The error D
(

t̂n(C0), t̃n
)

as a function of C0

for different combinations of α = 0, 0.02 and σ = 0.8, 1.4.

One can see that it is crucial not to select too large C0 since in this case the

trend component can be not included in the reconstruction (that is also confirmed

by the estimated probability of the type I error which is not reported here). At the

same time without significant loss of accuracy one can choose C0 smaller than Copt
0

(corresponding to the best accuracy). This is true due to the small contribution

of each of noise components which can be erroneously included for C0 < Copt
0 .

5.2. Heuristic procedure for the choice of C0

Based on the observations of Section 5.1, we propose the following heuristic

procedure for choosing the value of the method low-frequency threshold C0.

As discussed, trend EOFs vary slow. First we show that this property

is inherited by the trend elementary reconstructed components, the time series

components each reconstructed from one trend SVD component.



18 Theodore Alexandrov

Proposition 5.1. Let (
√

λ, U, V ) be an eigentriple of SSA decomposition

of a time series F , U = (u1, ..., uL)T, V = (v1, ..., vL)T, and G be a time series

reconstructed by this eigentriple. If it is true that

∃ δ1, δ2 ∈ R : ∀ k, 1 6 k 6 L−1 : |uk+1− uk| < δ1 , |vk+1− vk| < δ2 ,

then for the elements of G = (g0, ..., gN−1) the following holds:

∃ ǫ(δ1, δ2) : ∀n, L∗−1 6 n < K∗ : |gn+1− gn| < ǫ(δ1, δ2) ,

where L∗ = min{L, K}, K∗ = max{L, K}.

Proof of Proposition 5.1: One can easily prove this proposition taking

into account how the elementary reconstructed component G is constructed from

its eigentriple (
√

λ, U, V ), see Section 2. First, the matrix Y =
√

λ U V T is con-

structed. Second, the hankelization of Y is performed.

Let us show how to calculate ǫ using (2.2) for δ1, δ2 when L 6 K. For other

cases ǫ(δ1, δ2) is calculated similarly.

|gn+1 − gn| =

√
λ

L

∣

∣

∣

∣

∣

L
∑

m=1

(

um vn−m+3 − um vn−m+2

)

∣

∣

∣

∣

∣

<

√
λ

L

L
∑

m=1

|um| |vn−m+3 − vn−m+2|

<

√
λ

L
δ2

L
∑

m=1

|um| < δ2

√
λ

L

(

u1 + (L − 1) δ1

)

.

Let us have a time series F and denote its trend extracted with the method

with parameters ω0, C0 as T (ω0, C0). In order to propose the procedure selecting

C0, we first define the normalized contribution of low-frequency oscillations in the

residual F − T (ω0, C0) as:

RF,ω0
(C0) = C

(

F − T (ω0, C0), ω0

)

C(F, ω0)
−1 ,

where C is defined in equation (3.3).

Based on Proposition 5.1, we expect that the elementary reconstructed

components corresponding to a trend have large contribution of low frequencies.

Thus, the maximal values of C0 which lead to selection of trend-corresponding

SVD components should generate jumps of RF,ω0
(C0).

Exploiting this idea, we propose the following way of choosing C0:

(5.6) CR
0 = min

{

C0 ∈ [0, 1] : RF,ω0
(C0 +∆C) −RF,ω0

(C0) ≥ ∆R
}

,
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where ∆C is a search step and ∆R is the given threshold. On one hand, this

strategy is heuristic and requires selection of ∆R, but on the other hand, the

simulation results and application to different time series showed its ability to

choose reasonable C0 in many cases. Based on this empirical experience, we

suggest using 0.05 ≤ ∆R ≤ 0.1. The step ∆C is to be chosen as small as

possible to discriminate identifications occurring at different values of C0. To

reduce computational time, we commonly take ∆C ≥ 0.01 and suggest a default

value of ∆C = 0.01.

6. EXAMPLES

Simulated example with polynomial trend. The first example illus-

trates the choice of parameters ω0 and C0. We simulated a time series of length

N = 300, shown in Figure 5, containing a polynomial trend, an exponentially-

modulated sine wave, and a white Gaussian noise, whose n-th element is expressed

as fn = 10−11(n−10)(n−70)(n−160)2 (n−290)2+ exp(0.01n) sin(2πn/12)+ εn,

εn is iidN(0, 52). The period of the sine wave is assumed to be unknown.
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Figure 5: Simulated example with a polynomial trend: original time series (top left);
the original trend and an extracted one with L = 180, ∆C = 0.01, and
∆R= 0.05 (top right); zoomed time series periodogram inside ω ∈ [0, 0.25]
(bottom left); the values of RF,ω0

(C0+∆C)−RF,ω0
(C0) used for the choice

of C0 resulted in a value CR0 = 0.53 (bottom right).

We have chosen the window length L = N/2 = 150 for achieving better

separability of trend and residual. The value ω0 = 6/N = 0.02 was selected
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using (4.5), where the calculated median value is MN
X ≅ 37.06. The search for C0

using (5.6) has been done with step ∆C = 0.01 and ∆R = 0.05. As shown in

Figure 5, despite of the strong noise and oscillations, the extracted trend ap-

proximates the original one very well. The achieved mean square error is 0.79.

For example, the ideal low pass filter with the cutoff frequency 0.02 pro-

duced the error of 3.14. This superiority is achieved mostly due to better ap-

proximation at the first and last 50 points of the time series. All the calcula-

tions were performed using our Matlab-based software AutoSSA available at

http://www.pdmi.ras.ru/∼theo/autossa.

Trends of the unemployment level. Let us demonstrate extraction

of trends of different scale. We took the data of the unemployment level (unem-

ployed persons) in Alaska for the period 1976/01–2006/09 (monthly data, season-

ally adjusted), provided by the Bureau of Labor Statistics at http://www.bls.gov

under the identifier LASST02000004 (Figure 6). This time series is typical for

economical applications, where data contain relatively little noise and are subject

to abrupt changes. Economists are often interested in the “short” term trend

which includes cyclical fluctuations and is referred to as trend-cycle.
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Figure 6: Unemployment level in Alaska: original data (left-hand side panel),
zoomed periodogram (right-hand side panel).

The length of the data is N = 369. For achieving better separability of

trend and residual we selected L close to N/2 but divisible by the period T = 12

of probable seasonal oscillations: L = 12⌊N/24⌋= 180.

We extracted trends of different scales using the following values of ω0:

0.01, 0.02, 0.05, 0.075 and 0.095, see Figure 7 for the results. The value 0.095 ≅

⌈33/369 · 180⌉/180 was selected according to (4.6), where MN
X ≅ 5.19 · 105. The

value 0.075 is the default value for monthly data (Section 4). Other values (0.01,

0.02 and 0.05) were considered for better illustration of how the value of ω0

influences the scale of the extracted trend. The search for C0 was performed

as described in Section 5 in the interval [0.5, 1] with the step ∆C = 0.01 and

∆R = 0.05.
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Figure 7: Unemployment level in Alaska: extracted trends of different scales with
ω0 = 0.01, 0.02, 0.05, 0.075 and 0.095 (L=180, ∆C= 0.01 and ∆R= 0.05).

7. CONCLUSIONS

SSA is an attractive approach to trend extraction because it: (i) requires

no model specification of time series and trend, (ii) extracts trend of noisy time

series containing oscillations of unknown period. In this paper, we presented a

method which inherits these properties and is easy to use since it requires selection

of only two parameters.
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