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Abstract:

• Support Vector Machine (SVM) is known in classification and regression modeling.
It has been receiving attention in the application of nonlinear functions. The aim
is to motivate the use of the SVM approach to analyze the time series models.
This is an effort to assess the performance of SVM in comparison with ARMA model.
The applicability of this approach for a unit root situation is also considered.
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1. INTRODUCTION

Time series analysis is the study of observations made sequentially in time.

It is a complicated field in statistics because of direct and indirect effects of time

on the variables in the model. The essential difference between the modeling via

time series and ordinary method is that data points taken over time may have an

internal relation that should be accounted for. It can be a correlation structure,

a trend, seasonality and so on.

Time series can be studied in the time domain and in the time frequency

domain. The time domain is more known among researchers in sciences whereas

the frequency domain has many applications in engineering. Time domain is

modeled by two main approaches. The traditional approach has been given in

Box and Jenkins (1970) in their influential book, includes a systematic class of

models called autoregressive integrated moving average (ARIMA) (see, for ex-

ample, Shumway and Stoffer (2000) and Pourahmadi (2001)). A defining feature

of these models is that they are multiplicative models, meaning that observed

data are assumed to result from the products of factors involving differential or

difference equation operators responding to a white noise input.

Other approaches use additive models or structural models. In this ap-

proach, it is assumed that the observations include sum of components, each of

which deals with a specified time series structure. None of them have inferential

tools such as the Box–Jenkins model, for example model selection, parameter

estimation and model validation. ARIMA model can therefore be considered as a

benchmark model in evaluating the performance of new method. Support Vector

Machine is one of the new methods in modeling that has good performance in

classification and regression analysis. A few papers have tried to use it for time

series, see Müller (1997) and Murkharejee (1997). They have considered dynamic

models e.g., the Mackey class equation was used to show the efficiency of SVM.

We are motivated to use SVM because of its ability in dealing with sta-

tionary as well as non-stationary series. Moreover, contrary to the traditional

methods of time series analysis (autoregressive or structural models that assume

normality and stationarity of the series), SVM makes no prior assumptions about

the data.

The paper contains five sections and is organized as follows. In Section 2,

the necessary theoretical background is provided and the SVM modeling is con-

cisely described. In Section 3, it is shown that the approach of time series model-

ing can be written as a SVM model. Section 4 includes the discussion of the data

and also present the results. Finally some conclusions are given in Section 5.
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2. SUPPORT VECTOR MACHINE

During the last decades many researchers have been working on SVM in a

variety of fields and it has in fact been a very active field. SVM has impacted on

improving the statistical learning method and has been used to solve problems

in classification. The SVM approach has improved the modeling, especially for

nonlinear models. The review of Burges (1998), Cristianini and Shaw-Taylor

(2000) and Bishop (2006) help to understand the concept of SVM. For more

details see Vapnik (1995) and Vapnik (1998). Let us briefly consider the SVM

regression approach.

In statistics, the aim of modeling is often to find a function f(x) which

predicts y in a model y = f(x) + error . It is not easy to find f(x). It can be in-

terpolated by using mathematical methods and approximated by using statistical

methods. Via some statistical criteria like sum of squares or maximum likelihood,

ML, the model can be exploited. To evaluate the procedure, one needs a criterion

or loss function. It is defined as “ignoring observation which error is less than ǫ”,

L(x, y, f) =
∣∣y − f(x)

∣∣
ǫ
= max

(
0,
∣∣y−f(x)

∣∣− ǫ
)
.

It is called “ǫ-insensitive error function”. Another loss function is Huber’s loss

function which is the squared distance between the observations and the function,

see Cristianini and Shaw-Taylor (2000) and Hasti et al. (2001). In Figure 1, the

points outside the tube around the function are called slack variables which is

shown by ξ1i and ξ2j for above and below the tube, respectively. The value of

the points inside the tube is zero and outside is nonzero. To find ξ1i and ξ2j , one

should estimate parameters by the error function as below,

minimize
N∑

i=1

(ξ1i + ξ2i) +
λ

2
‖W‖2 ,

subject to yi ≤ f + ǫ + ξ1i ,

yi ≥ f − ǫ − ξ2i ,

ξ1i, ξ2j ≥ 0 .

By using the Lagrange multiplier to find parameters and optimize by the Karush–

Kuhn–Tucker condition, f(x) can be shown to equal

(2.1) f(x) =
N∑

i=1

αi k(x, xi) ,

where αi are support vectors, i.e. those points that contribute in the prediction.

All points within the tube have αi = 0 and a few of αi are nonzero. In (2.1),

k(x, xi) is the kernel function, which is an inner product of variables, i.e.,

(2.2) k(x, xi) =
〈
φ(x), φ(xi)

〉
.
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Figure 1: SVM regression with insensitive tube,
slack variables ξ1, ξ2 and observations.

The following are some kernels:

Linear kernel k(x, x′) = 〈x, x′〉,
Polynomial kernel k(x, x′) =

(
a〈x, x′〉 + k

)d
,

Radial Basis Function kernel (RBF) k(x, x′) = exp
(
−σ‖x−x′‖2

)
,

Laplacian kernel k(x, x′) = 〈x, x′〉 exp
(
−σ‖x−x′‖

)
.

Other kernels are the hyberbolic tangent kernel, the spline kernel, the Bessel

and the ANOVA RBF kernel. The number of kernels is unlimited and new kernels

can be found by combining existing ones (for more information see Burges (1998),

Shaw-Taylor (2000) and Karatzoglou et al. (2007)). There are several advantages

and disadvantages; SVM is based on the kernel, hence the suitable kernel selection

is most important step. However, in practice one needs to study only a few kernel

functions (Burges (1998)). The key in SVM is the transformation of a nonlinear

problem to a higher dimensional linear space using the kernel function. SVM is

not based on any assumptions about the distribution.

3. TIME SERIES ANALYSIS

The Box–Jenkins approach involves identifying an appropriate ARMA pro-

cess by a mathematical model for forecasting. This model is a combination of

AR and MA models. AR(p) is defined as bellow,

(3.1) xt+1 =

p∑

j=1

φj xt+1−j + ǫt+1 .

If one considers the series to be deterministic as linear dynamic systems, a

method based on the linear measure such as ARMA model can be used for analysis

of the series. However, observed real data are rarely normally distributed and
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tend to have marginal distributions with heavier tails. It has been shown that

most of the financial time series are nonlinear (see, for example, Soofi and Cao

(2002)). Based on the second scenario, we should use the method which has

the capability to capture both the linearities and the nonlinearities of the series

(see, for example, Hassani et al. (2009a) and Hassani et al. (2009b)). Here the

nonlinear model can be written as

xt+1 =

p∑

j=1

φj hj(xt+1−j) + ǫt+1 , ǫt+1 ∼ N(0, σ2) ,(3.2)

xt+1 =
(
h1(xt), ..., hp(xt+1−p)

)



φ1
...

φp



 ,(3.3)

x = H φ ,(3.4)

where H =
(
h1(·), ..., hp(·)

)
and φ = (φ1, ..., φp)

T. If H is known, the parame-

ters can be estimated. To simplify assume xt = (xt, xt−1, ..., xt+1−p), p < t. The

parameters of the model can be estimated by the conditional ML:

L(φ, σ|xp) = f(xp+1|xp) f(xp+2|xp+1) · · · f(xt|xt−1)

=
t−1∏

i=p

f(xi+1|xi)

(3.5)

=
t−1∏

i=p

1√
2π σ

exp −
(
xi+1 −

∑p
j=1 φj h(xi+1−j)

)2

2 σ2

=

(
1

2πσ2

)(t−p)/2

exp −
t−1∑

i=p

(
xi+1 −

∑p
j=1 φj h(xi+1−j)

)2

2 σ2
.

Thus, one needs to minimize,

(3.6) SS =
t−1∑

i=p

(
xi+1 −

p∑

j=1

φj hj(xi+1−j)

)2

=
t−1∑

i=p

(xi+1− Hiφ)2 .

To improve the accuracy of the estimation procedure, one can use a penalty

function,

(3.7) SS2 =
t−1∑

i=p

(xi+1− Hiφ)2 + λ‖φ‖ = (x − Hφ)T (x − Hφ) + λ‖φ‖ ,

∂SS2

∂φ
= 0 =⇒ −HT(x − Hφ) + λ φ = 0 ,

which implies that

(3.8) Hφ = (HHT + λ I)−1HHTx ,
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where HHT is a matrix of inner product of the observations. It is quite straight-

forward to show that (3.8) can be written as an inner product. Therefore, the

nonlinear equation can be written as a kernel function,

(3.9) xt+1 = f(xt)+et+1 =

p∑

i=1

φi hi(xt+1−i)+et+1 =
t∑

i=1

αi k(xt, xi)+et+1 .

Another formula that can be considered is the use of time index, as inde-

pendent, in the model. This is a reasonable variable as the time series data are

collected during time,

(3.10) xt =
t∑

i=1

αi k(xt, i) .

Let us now consider the moving average model of order q, MA(q),

(3.11) xt =

q∑

j=0

θj wt−j , wt ∼ N(0, σ2) .

The previous procedure follows by using a nonlinear function,

xt =

q∑

j=0

θj h(wt−j) .

It is difficult to decide about the distribution of h(·) beforehand. With the as-

sumption h(wt−j) ∼ N(µn, σ2
n), there is no improvement for modeling. However,

if the model is invertible, we can write MA as AR and follow the previous model.

Hence, there are two problems: the distribution of h(·) and the invertibility of the

model which make the behavior of MA a bit unclear for using kernel. The similar

problem exists for ARMA(p, q). There are two viewpoints: first, ignorance of MA

in the model and considering ARMA(p, q) as AR, and second, if ARMA(p, q) is

invertible, then ARMA can be written as AR directly. At any rate, the procedure

of AR process can be used.

Let us now consider a unit root process:

(3.12) xt = µ+xt−1+wt = µ+µ+xt−2 +wt−1+wt = · · · = tµ+x0 +
t∑

i=0

wi .

This is a problem for the Box–Jenkins approach as it violates the stationarity

condition, and therefore one can not formulate the Box–Jenkins model (see, for

example, Brockwell and Davis (1991)). The modeling of the unit root has been

discussed extensively in the literature. There exist some statistical tests for di-

agnosis and also modeling in the special conditions. Equation (3.12) tells us that

the unit root has a regression form of time but because of dependency between
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observations, the common regression can not be used for it. In this case, one can

use SVM, using the previous discussion and rewriting it as kernel formula. It is

not based on the distribution and hence the dependency does not affect on it.

It should be noted that, if µ = 0 then this model has major drawback and behaves

randomly.

4. APPLICATIONS

In this section, the applicability of SVM for time series analysis is consid-

ered. In order to performs the comparison, two different criteria are used: sum of

squared residuals (SSR) and Akaike Information Criterion (AIC). AIC is calcu-

lated based on ln σ̂2
k + 2k

n , where σ̂2
k = SSR

n , k and n are the number of parameters

and observations, respectively. In the following, the SVM approach is used in the

modeling of AR(2), MA(1) and ARMA(2, 1) process.

4.1. AR

Here we use the series that has been used in Brockwell and Davis (1991),

Example 9.2.1. The series includes 200 observations. Table 1 shows SSR and

AIC of AR(2) and SVM with different kernels. SVM has been calculated using

equation (3.9). In the table, the results of a few kernels are presented as SSR

of other kernels were larger than AR(2). The results show the efficiency of the

Laplacian kernel in comparison with the Box–Jenkins modeling. It should be

noted that RBF with σ = 50 fitted fairly well.

Table 1: SSR and AIC of AR(2) and SVM with different kernels.

Model SSR AIC

AR(2) 176.99 −0.102
RBF1 171.73 −0.136
RBF2 144.33 −0.368
Bessel1 161.16 −0.176
Bessel2 194.46 0.009
Laplacian1 100.83 −0.664
Laplacian2 202.68 0.330
linear 177.75 −0.102
poly3 176.43 −0.085

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.
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The calculations in Table 2 are based on equation (3.10). This model uses

the time as an independent variable. The table shows how much fitting has been

improved. The Laplacian kernel and Bessel kernel have smaller SSR than AR,

but other kernels have greater SSR than AR. These values show the Bessel kernel

has been fitted well, but its variation is very large. The variation of Laplacian

kernel is small in comparison with the Bessel kernel, and hence it seems to be

more reliable to use. The Laplacian kernel, for this model, is better than the

previous models.

Table 2: Modeling directly based on time for AR(2) with different kernels.

Model SSR AIC

Laplacian1 56.60 −1.252
Laplacian2 21.55 −2.217
Bessel1 29.50 −1.830
Bessel2 980.17 1.619

1 Fitted by σ = 10.
2 Fitted by σ = 50.

Moreover, consider AR(2) with xt = xt−1 − 0.9 xt−2 + ωt. This model is

stationary and hence the Box–Jenkins model fits very well. To compare the Box–

Jenkins model with SVM, the simulation of this model is performed 1000 times

with 100 observations. The results for the Box–Jenkins model and different ker-

nels are shown in Table 3. The first two columns include the results of using (3.9)

Table 3: Percent and order of model in simulation of AR.

Model
model based on xt model based on t

percent order percent order

AR(2) 0.020 6.93 0.006 2.93
RBF1 0.283 3.67 0.00 9.18
RBF2 0.000 4.43 0.00 6.00
Bessel1 0.023 3.77 0.00 7.90
Bessel2 0.000 5.85 0.994 1.00
tangent1 0.000 12.51 0.000 12.63
tangent2 0.000 12.49 0.000 12.53
splinedot 0.000 14.51 0.000 14.42
spline1 0.000 14.48 0.000 14.36
Laplacian1 0.540 2.17 0.000 3.92
Laplacian2 0.003 6.27 0.000 2.14
linear 0.020 6.36 0.000 10.21
poly3 0.110 5.52 0.000 10.22
ANOVA1 0.000 10.98 0.000 7.52
ANOVA2 0.000 10.01 0.000 4.99

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.
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and the second two columns include the results of using (3.10). The order column

is the mean of orders of models in all of the simulations and the percent shows how

many times the model has the smallest SSR in the simulations. As it appears

from Table 3, the Laplacian kernel in 54% time has minimum SSR using xt,

but Bessel kernel has minimum SSR using time as explanatory variable. The

results of Table 3 is similar to those obtained in Table 1. Therefore, the Bessel

and Laplacian kernel are suitable for AR. Table 2 also shows that the fitted model

based on the time index as an explanatory variable has better performance than

a model based on xt.

4.2. MA

The Example 10.4.2 of Brockwell and Davis (1991) is a MA(1) process with

160 observations. Here we use the same series to examine the performance of the

SVM modeling. The results are presented in Table 4.

Table 4: SSR and AIC of MA(1) and SVM with different kernel.

Model SSR AIC

MA(1) 147 −0.072
Bessel1 227.373 0.388
Bessel2 198.415 0.252
Laplacian1 178.720 0.123
Laplacian2 79.282 −0.689

1 Fitted by σ = 10.
2 Fitted by σ = 50.

The results show that the Laplacian kernel with large σ has been fitted

very well to MA(1) and also SSR of using Bessel kernel is close to MA(1), but

other kernels have not good performance. As it is mentioned above, SVM has

a better performance for a AR(p) model than a MA model. For a AR model,

the Laplacian kernel with small σ has smallest SSR, but for MA, the Lapla-

cian kernel with larger σ has smallest SSR. For more clarification, see Table 5

which shows the result of the simulation yt = ωt + 0.5 ωt−1 with 100 observations.

This includes the order and the percent of different models in comparison

with the Box–Jenkins model. The results confirm the previous results that indi-

cate the Laplacian kernel with large σ has fitted better, almost 88%, than other

methods.
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Table 5: Percent and order of model in simulation of MA.

Model percent order

MA(1) 0.000 8.08
RBF1 0.000 8.54
RBF2 0.000 5.00
Bessel1 0.000 6.512
Bessel2 0.112 2.90
tangent1 0.000 12.59
tangent2 0.000 12.44
Spline1 0.000 14.50
Spline2 0.000 14.46
Laplacian1 0.000 3.00
Laplacian2 0.888 1.11
linear 0.000 10.68
poly3 0.000 13.68
ANOVA1 0.000 6.89
ANOVA2 0.000 4.00

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.

4.3. ARMA

Next we consider ARMA(2, 1) with 200 observations from Brockwell and

Davis (1991), Example 9.2.3. Table 6 shows SSR and AIC of ARMA(2, 1) and

different kernels. The first two columns include the results of using (3.9) and the

second two columns include the results of using (3.10). It admits the efficiency

of Laplacian kernel for the ARMA model. As it appears from the results, the

Laplacian kernel has the smallest SSR in both cases.

Table 6: SSR and AIC of ARMA and SVM with different kernels.

Model
model based on xt model based on t

SSR AIC SSR AIC

ARMA(2, 1) 197.16 0.0157
RBF1 244.16 0.209 1536.55 2.048
RBF2 176.26 −0.008 1216.10 1.815
Bessel1 201.50 0.037 1460.53 2.018
Bessel2 195.39 0.006 56.82 −1.228
Laplacian1 116.96 −0.526 350.00 0.569
Laplacian2 200.14 0.010 46.76 −1.443

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.
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To simulate ARMA(2, 1), consider xt = 0.4 xt−1 + 0.5 xt−2 + ωt + 0.2 ωt−1.

The simulation results are based on 1000 replications of 100 observations. The

results of ARMA(2, 1) using the Box–Jenkins and SVM, using different kernels,

were presented in Table 7. The results are similar to those obtained in Table 6,

which is based on a time series data. As it appears from the table, in both mod-

els, equation (3.9) and (3.10), the Laplacian kernel has better performance than

others. The Laplacian kernel, using xt and time as explanatory variables, with

σ = 10 has the smallest SSR in 92.3% and 66% of the simulations, respectively.

Table 7: Percent and order of model in simulation of ARMA(2, 1).

Model
model based on xt model based on t

percent order percent order

ARMA(2, 1) 0.000 8.80 0.000 9.00
RBF1 0.020 5.14 0.000 7.99
RBF2 0.000 3.33 0.000 4.93
Bessel1 0.000 4.23 0.000 6.47
Bessel2 0.002 3.86 0.044 2.33
tangent1 0.000 12.56 0.000 12.60
tangent2 0.000 12.46 0.000 12.39
Spline1 0.000 14.56 0.000 14.47
Spline2 0.000 14.40 0.000 14.52
Laplacian1 0.923 1.14 0.660 1.48
Laplacian2 0.045 3.81 0.296 2.39
Linear 0.000 9.51 0.000 10.87
Poly3 0.000 8.67 0.000 10.12
ANOVA1 0.000 9.64 0.000 6.48
ANOVA2 0.000 7.83 0.000 3.90

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.

4.4. Unit root

Let us now consider the application of SVM for a unit root process. The

model xt = xt−1 + ωt with 100 observations is simulated 1000 to study the SVM

performance. The results of SVM modeling for the simulated series are presented

in Table 8. For a better understanding of the SVM performance in modeling, the

order of the model is presented in comparison with the other competitive methods

and also the percent. In this case, modeling by ARMA model is impossible

because of the non stationarity property of the series. Nonstationarity can often
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be associated with different trends in the signal or heterogeneous segments with

different local statistical properties. Table 8 indicates that the Laplacian kernel

has been fitted very well to the series.

Table 8: Percent and order of the model in simulation of a unit root process.

Model percent order

RBF1 0.00 7.68
RBF2 0.019 4.08
Bessel1 0.000 6.23
Bessel2 0.036 2.77
tangent1 0.000 11.63
tangent2 0.000 11.36
spline1 0.000 13.57
spline2 0.000 13.42
Laplacian1 0.915 1.14
Laplacian2 0.002 5.68
linear 0.000 9.87
poly3 0.000 9.08
ANOVA1 0.002 5.75
ANOVA2 0.024 2.85

1 Fitted by σ = 10.
2 Fitted by σ = 50.
3 With 2 degrees.

5. CONCLUSION

Although the Box–Jenkins model is still one of the most applied model in

time series analysis, there are several major drawbacks; the Box–Jenkins models

are based on the stationarity, but this is often not sufficient, for example modeling

unit root process using ARMA approach is impossible.

The results of this study show that the ARMA models can be expressed as

SVM. The performance of the SVM modeling is studied in comparison with the

Box–Jenkins modeling. Particularly, the Laplacian kernel is superior to others.

It is therefore concluded that the use of SVM for the ARMA model is of great

interest and should be considered (see Section 3). Moreover, the use of time index,

as explanatory variable, in modeling will improve the accuracy of the results (see

Tables 3, 6 and 7). To clarify the performance of the SVM for time series analysis,

several examples and simulated series are used. The empirical results confirm our

theoretical results. Our findings also show that the SVM based on the Laplacian

kernel works very well for the unit root process.
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