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1. INTRODUCTION

In recent years, there has been a renewed interest amongst economists in

the business cycle. However, compared with the economic fluctuations of the

nineteenth century, the business cycle in modern western economies has been

a tenuous affair. For many years, minor fluctuations have been carried on the

backs of strongly rising trends in national income. Their amplitudes have been

so small in relative terms that they have rarely resulted in absolute reductions in

the levels of aggregate income. Usually, they have succeeded only in slowing its

upward progress.

Faced with this tenuous phenomenon, modern analysts have also had diffi-

culties in reaching a consensus on how to define the business cycle and in agree-

ing on which methods should be used to extract it from macroeconomic data

sequences. Thus, the difficulties have been both methodological and technical.

This paper will deal with both of these aspects, albeit that the emphasis will be

on technical matters.

It seems that many of the methodological difficulties are rooted in the

tendency of economists to objectify the business cycle. If there is no doubt

concerning the objective reality of a phenomenon, then it seems that it must be

capable of a precise and an unequivocal definition.

However, the opinion that is offered in this paper is that it is fruitless to seek

a definitive definition of the business cycle. The definition needs to be adapted

to the purposes of the analysis in question; and it is arguable that it should also

be influenced by the behaviour of the economy in the era that is studied.

It is also argued that a clear understanding of the business cycle can be

achieved only in the light of its spectral analysis. However, the spectral ap-

proach entails considerable technical difficulties. The classical theory of statistical

Fourier analysis deals with stationary stochastic sequences of unlimited duration.

This accords well with the nature of the trigonometrical functions on which spec-

tral analysis is based. In business cycle analysis, one is faced, by contrast, with

macroeconomic sequences that are of strictly limited durations and that are liable

to be strongly trended.

In order to apply the methods of spectral analysis to the macroeconomic

data, two problems must be addressed. First, the data must be reduced to sta-

tionarity by an appropriate method of detrending. There are various ways of

proceeding; and a judicious choice must be made. Then, there is the short du-

ration of the data, which poses the problem acutely of how one should treat the

ends of the sample.
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One way of dealing with the end-of-sample problem is to create a circular

sequence from the detrended data. By travelling around the circle indefinitely,

the infinite periodic extension of the data sequence is generated, which is the

essential object of an analysis that employs the discrete Fourier transform.

Such an analysis is liable to be undermined whenever there are radical dis-

junctions in the periodic extension at the points where the end of one replication

joins the beginning of the next. Therefore, a successful Fourier analysis depends

upon a careful detrending of the data. It seems that it was the neglect of this fact

that led one renowned analyst to declare that spectral analysis was inappropriate

to economic data. (See Granger 1966.)

2. INTERACTION OF TREND AND BUSINESS CYCLE

The business cycle has no fixed duration. In a Fourier analysis, it can be

represented as a composite of sinusoidal motions of various frequencies that fall

within some bandwidth. We shall consider one modern convention that defines

the exact extent of this bandwidth; but it seems more appropriate that it should

be determined in the light of the data.

If they are not allowed to overlap, it may be crucial to know where the low

frequency range of the trend is deemed to end and where the higher range of the

business cycle should begin. However, in this section, we shall avoid the issue by

assuming that the business cycle is of a fixed frequency and that the trend is a

simple exponential function.

In that case, the trend can be described by the function T (t) = exp{rt},

where r > 0 is constant rate of growth. The business cycle, which serves to

modulate the trend, is described by an exponentiated cosine function C(t) =

exp{γ cos(ωt)}. The product of the two functions, which can regarded as a

model of the trajectory of aggregate income, is

(2.1) Y (t) = β exp
{

rt+ γ cos(ωt)
}

.

The resulting business cycles, which are depicted in Figure 1, have an asymmetric

appearance. Their contractions are of lesser duration than their expansions; and

they become shorter as the growth rate r increases.

Eventually, when the rate exceeds a certain value, the periods of contraction

will disappear and, in place of the local minima, there will be only points of

inflection. In fact, the condition for the existence of local minima is that ωγ > r,

which is to say that the product of the amplitude of the cycles and their angular

velocity must exceed the growth rate of the trend.
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Figure 1: The function Y (t) = β exp{rt+ γ cos(ωt)} as a model of the business cycle.
Observe that, when r > 0, the duration of an expansion exceeds the duration
of a contraction.

Next, we take logarithms of the data to obtain a model, represented in

Figure 2, that has additive trend and cyclical components. This gives

(2.2) ln
{

Y (t)
}

= y(t) = µ+ rt+ γ cos(ωt) ,

where µ = ln{β}. Since logs effect a monotonic transformation, there is no dis-

placement of the local maxima and minima. However, the amplitude of the

fluctuations around the trend, which has become linear in the logs, is now con-

stant.
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Figure 2: The function ln{Y (t)} = ln{β}+rt+γ cos(ωt) representing the logarithmic
business cycle data. The duration of the expansions and the contractions
are not affected by the transformation.

The final step is to create a stationary function by eliminating the trend.

There are two equivalent ways of doing this in the context of the schematic model.

On the one hand, the linear trend ξ(t) = µ+ rt can be subtracted from y(t)

to create the pure business cycle γ cos(ωt).
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Figure 3: The function µ + γ cos(ωt) representing the detrended business cycle.
The duration of the expansions and the contractions are equal.

Alternatively, the function y(t) can be differentiated to give dy(t)/dt=

r− γ ω sin(ωt). When the latter is adjusted by subtracting the growth rate r, by

dividing by ω and by displacing its phase by −π/2 radians — which entails replac-

ing the argument t by t−π/2 — we obtain the function γ cos(ωt) again. Through

the process of detrending, the phases of expansion and contraction acquire equal

duration, and the asymmetry of the business cycle vanishes.

There is an enduring division of opinion, in the literature of economics, on

whether we should be looking at the turning points and phase durations of the

original data or at those of the detrended data. The task of finding the turning

points is often a concern of analysts who wish to make international comparisons

of the timing of the business cycle.

However, since the business cycle is a low-frequency component of the data,

it is difficult to find the turning points with great accuracy. In fact, the pinnacles

and pits that are declared to be the turning points often seem to be the products

of whatever high-frequency components happen to remain in the data after they

have been subjected to a process of seasonal adjustment.

If the objective is to compare the turning points of the cycles, then the

trends should be eliminated from the data. The countries that might be compared

are liable to be growing at differing rates. From the trended data, it will appear

that those with higher rates of growth have shorter recessions with delayed onsets,

and this can be misleading.

The various indices of an expanding economy will also grow at diverse

rates. Unless they are reduced to a common basis by eliminating their trends,

their fluctuations cannot be compared easily. Amongst such indices will be the

percentage rate of unemployment, which constitutes a trend-stationary sequence.

It would be difficult to collate the turning points in this index with those within a

rapidly growing series of aggregate income, which might not exhibit any absolute

reductions in its level. A trenchant opinion to the contrary, which opposes the

practice of detrending the data for the purposes of describing the business cycle,

has been offered by Harding and Pagan (2003).



Filters for Short Nonstationary Sequences 93

3. BANDPASS DEFINITION OF THE BUSINESS CYCLE

The modern definition of the business cycle that has been alluded to in the

previous section is that of a quasi cyclical motion comprising sinusoidal elements

that have durations of no less than one-and-a-half years and not exceeding eight

years.

This definition has been proposed by Baxter and King (1999) who have

declared that it was the definition adopted by Burns and Mitchell (1947) in their

study of the economic fluctuations in the U.S. in the late nineteenth century

and in the early twentieth century. However, it is doubtful whether Burns and

Mitchell were so firm in their definition of what constitutes the business cycle.

It seems, instead, that they were merely speaking of what they had discerned in

their data.

The definition in question suggests that the data should be filtered in order

to extract the components that fall within the stated range, which is described

as the pass band. Given a doubly infinite data sequence, this objective would

be fulfilled, in theory, by an ideal bandpass filter comprising a doubly infinite

sequence of coefficients.

The ideal bandpass filter that transmits all elements within the frequency

range [α, β] and blocks all others has the following frequency response:

(3.1) ψ(ω) =

{

1, if |ω| ∈ (α, β) ,

0, otherwise .

The coefficients of the corresponding time-domain filter are obtained by applying

an inverse Fourier transform to this response to give

(3.2) ψk =

∫ β

α
eikω dω =

1

πk

{

sin(βk)− sin(αk)
}

.

In practice, all data sequences are finite, and it is impossible to apply a

filter that has an infinite number of coefficients. However, a practical filter may

be obtained by selecting a limited number of the central coefficients of an ideal

infinite-sample filter. In the case of a truncated filter based on 2q + 1 central

coefficients, the elements of the filtered sequence are given by

xt = ψq yt−q + ψq−1 yt−q+1 + · · ·+ ψ1yt−1 + ψ0 yt + ψ1yt+1(3.3)

+ · · ·+ ψq−1yt+q−1 + ψq yt+q .

Given a sample y0, y1, ..., yT−1 of T data points, only T − 2q processed values

xq, xq+1..., xT−q−1 are available, since the filter cannot reach the ends of the

sample, unless it is extrapolated.
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If the coefficients of the truncated bandpass or highpass filter are adjusted

so that they sum to zero, then the z-transform polynomial ψ(z) of the coefficient

sequence will contain two roots of unit value. The adjustments may be made

by subtracting
∑

k ψk/(2q + 1) from each coefficient. The sum of the adjusted

coefficients is ψ(1) = 0, from which it follows that 1− z is a factor of ψ(z).

The condition of symmetry, which is that ψ(z) = ψ(z−1), implies that 1− z−1 is

also a factor. Thus the polynomial contains the factor

(3.4) (1− z) (1− z−1) = −z−1 (1− z)2 ,

within which ∇2(z) = (1− z)2 corresponds to a twofold differencing operator.

Since it incorporates the factor ∇2(z), the effect of applying the filter to a

data sequence with a linear trend will be to produce an untrended sequence with

a zero mean. The effect of applying it to a sequence with a quadratic trend will

be to produce an untrended sequence with a nonzero mean.

The usual effect of the truncation will be to cause a considerable spectral

leakage. Thus, if the filter is applied to trended data, then it is liable to trans-

mit some powerful low-frequency elements that will give rise to cycles of high

amplitudes within the filtered output. The divergence of the frequency response

function from the ideal specification of (3.1) is illustrated in Figure 4.
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Figure 4: The frequency response of the truncated bandpass filter of 25 coefficients
superimposed upon the ideal frequency response. The lower cut-off point
is at π/15 radians (11.25◦), corresponding to a period of 6 quarters, and
the upper cut-off point is at π/3 radians (60◦), corresponding to a period
of the 32 quarters.

An indication of the effect of the truncated filter is provided by its appli-

cation to a quarterly sequence of the logarithms of consumption in the U.K. that

is illustrated in Figure 5. The filtered sequence is in Figure 6, where the loss of

the data from the ends is indicated by the vertical lines.
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Figure 5: The quarterly sequence of the logarithms of consumption in the U.K.,
for the years 1955 to 1994, together with a linear trend interpolated
by least-squares regression.
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Figure 6: The sequence derived by applying the truncated bandpass filter of
25 coefficients to the quarterly logarithmic data on U.K. Consumption.

An alternative filter that is designed to reach the ends of the sample has

been proposed by Christiano and Fitzgerald, (2003). The filter is described by

the equation

xt = Ay0 + ψt y0 + · · ·+ ψ1yt−1 + ψ0 yt + ψ1yt+1(3.5)

+ · · ·+ ψT−1−t yT−1 + ByT−1 .

This equation comprises the entire data sequence y0, ..., yT−1; and the value of t

determines which of the coefficients of the infinite-sample filter are entailed in

producing the current output. Thus, the value of x0 is generated by looking

forwards to the end of the sample, whereas the value of xT−1 is generated by

looking backwards to the beginning of the sample.

If the process generating the data is stationary and of zero mean, then it is

appropriate to set A = B = 0, which is tantamount to approximating the extra-

sample elements by zeros. In the case of a data sequence that appears to follow

a first-order random walk, it has been proposed to set A and B to the values of

the sums of the coefficients that lie beyond the span of the data on either side.
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Since the filter coefficients must sum to zero, it follows that

(3.6) A = −

(

1

2
ψ0 +ψ1+ · · ·+ψt

)

and B = −

(

1

2
ψ0 +ψ1+ · · ·+ψT−t−1

)

.

The effect is tantamount to extending the sample at either end by constant se-

quences comprising the first and the last sample values respectively.

For data that have the appearance of having been generated by a first-

order random walk with a constant drift, it is appropriate to extract a linear

trend before filtering the residual sequence. In fact, this has proved to be the

usual practice in most circumstances.

It has been proposed to subtract from the data a linear function f(t)=

α+βt interpolated through the first and the final data points, such that α= y0

and β = (yT−1− y0)/T . In that case, there should be A=B = 0. This procedure

is appropriate to seasonally adjusted data. For data that manifest strong seasonal

fluctuations, such as the U.K. consumption data, a line can be fitted by least

squares through the data points of the first and the final years. Figure 7, shows

the effect of the application of the filter to the U.K. data adjusted in this manner.
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Figure 7: The sequence derived by applying the bandpass filter of Christiano and
Fitzgerald to the quarterly logarithmic data on U.K. Consumption.

The filtered sequence of Figure 7 has much the same profile in its middle

section as does the sequence of Figure 6, which is derived by applying truncated

bandpass filter. (The difference in the scale of the two diagrams tends to conceal

this similarity.) However, in comparing filtered sequence to the adjusted data, it

seems fair to say that it fails adequately to represent the prominent low-frequency

fluctuations. It is also beset by some noisy high-frequency fluctuations that would

not normally be regarded as part of the business cycle.
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4. POLYNOMIAL DETRENDING

The problems besetting the filtered sequence can be highlighted with ref-

erence to the periodogram of the residuals that are obtained by interpolating a

polynomial trend line thorough the logarithmic data. Therefore, it is appropriate,

at this juncture, to derive a formula for polynomial regression.

Therefore, let LT = [e1, e2, ..., eT−1, 0] be the matrix version of the lag oper-

ator, which is formed from the identity matrix IT = [e0, e1, e2, ..., eT−1] of order T

by deleting the leading column and by appending a column of zeros to the end

of the array. The matrix that takes the p-th difference of a vector of order T is

(4.1) ∇p
T = (I − LT )p .

We may partition this matrix so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows. If y

is a vector of T elements, then

(4.2) ∇p
T y =

[

Q′
∗

Q′

]

y =

[

g∗

g

]

;

and g∗ is liable to be discarded, whereas g will be regarded as the vector of the

p-th differences of the data.

The inverse matrix, which corresponds to the summation operator, is par-

titioned conformably to give ∇−p
T = [S∗, S]. It follows that

(4.3)
[

S∗ S
]

[

Q′
∗

Q′

]

= S∗Q
′
∗ + SQ′ = IT ,

and that

(4.4)

[

Q′
∗

Q′

]

[

S∗ S
]

=

[

Q′
∗S∗ Q′

∗S

Q′S∗ Q′S

]

=

[

Ip 0

0 IT−p

]

.

If g∗ is available, then y can be recovered from g via y = S∗g∗ + Sg.

The lower-triangular Toeplitz matrix ∇−p
T = [S∗, S] is completely charac-

terised by its leading column. The elements of that column are the ordinates

of a polynomial of degree p− 1, of which the argument is the row index t =

0, 1, ..., T−1. Moreover, the leading p columns of the matrix ∇−p
T , which consti-

tute the submatrix S∗, provide a basis for all polynomials of degree p−1 that are

defined on the integer points t = 0, 1, ..., T−1.

A polynomial of degree p−1, represented by its ordinates in the vector f ,

can be interpolated through the data by minimising the criterion

(4.5) (y − f)′ (y − f) = (y − S∗f∗)
′ (y − S∗f∗)
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with respect to f∗. The resulting values are

(4.6) f∗ = (S′
∗S∗)

−1S′
∗ y and f = S∗(S

′
∗S∗)

−1S′
∗ y .

An alternative representation of the estimated polynomial is available, which

is provided by the identity

(4.7) S∗ (S′
∗S∗)

−1S′
∗ = I −Q(Q′Q)−1Q′ .

It follows that the polynomial fitted to the data by least-squares regression can

be written as

(4.8) f = y −Q(Q′Q)−1Q′y .

A more general method of curve fitting, which embeds polynomial regres-

sion as a special case, is one that involves the minimisation of a combination of

two sums of squares. Let f denote the vector of fitted values. Then, the criterion

for finding the vector is to minimise

(4.9) L = (y − f)′ (y − f) + f ′QΛQ′f .

The first term penalises departures of the resulting curve from the data, whereas

the second term imposes a penalty for a lack of smoothness in the curve. The

second term comprises d=Q′f , which is the vector of p-th-order differences of f.

The matrix Λ serves to generalise the overall measure of the curvature of the

function that has the elements of f as its sampled ordinates, and it serves to

regulate the penalty for roughness, which may vary over the sample.

Differentiating L with respect to f and setting the result to zero, in accor-

dance with the first-order conditions for a minimum, gives

(4.10) y − f = QΛQ′f = QΛ d .

Multiplying the equation by Q′ gives Q′(y − f) = Q′y − d = Q′QΛ d, whence

Λ d = (Λ−1 +Q′Q)−1Q′y. Putting this into the equation f = y −QΛ d gives

(4.11) f = y −Q(Λ−1 +Q′Q)−1Q′y .

If Λ−1 = 0 in (4.11), and if Q′ is the matrix version of the twofold difference

operator, then the least-squares interpolator of a linear function is derived in the

form equation (4.8). The sequence of regression residuals will be given by the

vector r = Q(Q′Q)−1Q′y; and it is notable that these residuals contain exactly

the same information as the vector g = Q′y of the twofold differences of the

data. However, whereas the low-frequency structure would be barely visible in

the periodogram of the differenced data, it will be fully evident in the periodogram

of the residuals of a polynomial regression.
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The periodogram of the residual sequence obtained from a linear detrending

of the logarithmic consumption data is presented in Figure 8. Superimposed

upon the figure is a highlighted band that spans the interval [π/16, π/3], which

corresponds to the nominal pass band of the filters applied in the previous section.
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Figure 8: The periodogram of the residual sequence obtained from
the linear detrending of the logarithmic consumption data.
A band, with a lower bound of π/16 radians and an upper
bound of π/3 radians, is masking the periodogram.

Within this periodogram, the spectral structure extending from zero fre-

quency up to π/8 belongs to the business cycle. The prominent spikes located

at the frequency π/2 and at the limiting Nyquist frequency of π are property

of the seasonal fluctuations. Elsewhere in the periodogram, there are wide dead

spaces, which are punctuated by the spectral traces of minor elements of noise.

The highlighted pass band omits much of the information that might be used in

synthesising the business cycle.

5. SYNTHESIS OF THE BUSINESS CYCLE

To many economists, it seems implausible that the trend of a macroeco-

nomic index, which is the product of events within the social realm, should be

modelled by polynomial, which may be described as a deterministic function.

A contrary opinion is represented in this paper. We deny the objective reality of

the trend. Instead, we consider it to be the product of our subjective perception

of the data. From this point of view, a polynomial function can often serve as a

firm benchmark against which to measure the fluctuations of the index. Thus, the

linear trend that we have interpolated through the logarithms of the consumption

data provides the benchmark of constant exponential growth.

It is from the residuals of a log-linear detrending of the consumption data

that we wish to extract the business cycle. The appropriate method is to extract
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the Fourier components of the residual sequence that lie within the relevant fre-

quency band. Reference to Figure 8 suggests that this band should stretch from

zero up to the frequency of π/8 radians per quarter, which corresponds to a cycle

with a duration of 4 years. In Figure 9, the sequence that is synthesised from

these Fourier ordinates has been superimposed upon the sequence of the residuals

of the linear detrending.
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Figure 9: The residual sequence from fitting a quadratic trend to
the logarithmic consumption data. The interpolated line,
which represents the business cycle, has been synthesised
from the Fourier ordinates in the frequency interval [0, π/8].

To provide a symbolic representation of the method, we may denote the

matrix of the discrete Fourier transform and its inverse by

U = T−1/2
[

exp{−i 2πtj/T}; t, j = 0, ..., T−1
]

,
(5.1)

Ū = T−1/2
[

exp{i 2πtj/T}; t, j = 0, ..., T−1
]

.

Then, the residual vector r = Q(Q′Q)−1Q′y and its Fourier transform ρ are

represented by

(5.2) r = T 1/2 Ūρ ←→ ρ = T−1/2 U r .

Let J be a matrix of which the elements are zeros apart from a string of

units on the diagonal, which serve to select from ρ the requisite Fourier ordinates

within the band [0, π/8]. Then, the filtered vector that represents the business

cycle is given by

(5.3) x = T 1/2 ŪJρ = {ŪJ U} r = Ψ r .

Here, ŪJ U = Ψ =
[

ψ◦
|i−j|; i, j = 0, ..., T−1

]

is a circulant matrix of the filter

coefficients that would result from wrapping the infinite sequence of the ideal

bandpass coefficients around a circle of circumference T and adding the overlying

elements. Thus

(5.4) ψ◦
k =

∞
∑

q=−∞

ψqT+k .
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Applying the wrapped filter to the finite data sequence via a circular convolution

is equivalent to applying the original filter to an infinite periodic extension of the

data sequence. In practice, the wrapped coefficients would be obtained from the

Fourier transform of the vector of the diagonal elements of the matrix J .

The Fourier method can also be exploited to create a sequence that repre-

sents a combination of the trend and the business cycle. There are various ways

of proceeding. One of them is to add the vector x to that of the linear or polyno-

mial trend that has generated the sequence of residuals. An alternative method

is to obtain the trend/cycle component by subtracting its complement from the

data vector.

The complement of the trend/cycle component is a stationary component.

Since a Fourier method can be applied only to a stationary vector, we are con-

strained to work with the vector g = Q′y, obtained by taking the twofold differ-

ences of the data.

Since the twofold differencing entails the loss of two points, the vector g may

be supplemented by a point at the beginning and a point at the end. The resulting

vector may be denoted by q. The relevant Fourier ordinates are extracted by

applying the selection matrix I−J to the transformed vector γ = Uq. Thereafter,

they need to be reinflated to compensate for the differencing operation.

The frequency response of the twofold difference operator, which is obtained

be setting z = exp{−iω} in equation (3.4), is

(5.5) f(ω) = 2− 2 cos(ω) ,

and that of the anti-differencing operation is the inverse 1/f(ω). The Fourier

ordinates of a differenced vector will be reinflated by pre-multiplying their vec-

tor by the diagonal matrix V = diag{v0, v1, ..., vT−1}, which comprises the values

vj = 1/f(ωj); j = 0, ..., T−1, where ωj = 2πj/T .

The matrix that is to be applied to the Fourier ordinates of the differenced

data is therefore H = V (I− J). The resulting vector is transformed back to the

time domain via the matrix Ū to produce the vector that is to be subtracted from

the data vector y. The resulting estimate of the trend/cycle component is

(5.6) z = y − ŪHUq .

This is represented in Figure 10.
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Figure 10: The trend/cycle component of U.K. Consumption determined
by the Fourier method, superimposed on the logarithmic data.

6. MORE FLEXIBLE METHODS OF DETRENDING

Methods of detrending may be required that are more flexible than the

polynomial interpolations that we have we considered so far. For a start, there

is a need to minimise the disjunctions that occur in the periodic extension of the

data sequence where the end of one replication joins the beginning of the next.

This purpose can be served by a weighted version of a least-squares polynomial

regression. If extra weight is given to the data points at the beginning and the

end of the sample, then the interpolated line can be constrained pass through

their midst; and, thereby, a major disjunction can be avoided.

The more general method of trend estimation that is represented by equa-

tion (4.11) can also be deployed. By setting Λ−1 = λ−1I, a familiar filtering device

is obtained that has been attributed by economists to Hodrick and Prescott (1980,

1997). In fact, an earlier exposition this filter was provided by Leser (1961), and

its essential details can be found in a paper of Whittaker (1923).

The effect of the Hodrick–Prescott (H–P) filter depends upon the value of

the smoothing parameter λ. As the value of the parameter increases, the vector f

converges upon that of a linear trend. As the value of λ tends to zero, f converges

to the data vector y. The effect of using the more flexible H–P trend in place of a

linear trend is to generate estimates of the business cycle fluctuations that have

lesser amplitudes and a greater regularity.

The enhanced regularity of the fluctuations is a consequence of the removal

from the residual sequence of a substantial proportion of the fluctuations of lowest

frequency, which can cause wide deviations from the line. This enhancement

might be regarded as a spurious. However, it can be argued that such low-

frequency fluctuations are liable to escape the attention of many economic agents,

which is a reason for excluding them from a representation of the business cycle.
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Whereas the H–P filter employs a globally constant value for the λ, it is

possible to vary this parameter over the course of the sample. This will allow

the trend to absorb the structural breaks or disturbances that might occasionally

interrupt the steady progress of the economy. If it can be made to absorb the

structural breaks, then the trend will not be thrown off course for long; and,

therefore, it should serve as a benchmark against which to measure the cyclical

variations when the economy resumes its normal progress. At best, the resid-

ual sequence will serve to indicate how the economy might have behaved in the

absence of the break.

Figure 11 shows a trend function that has been fitted, using a variable

smoothing parameter, to the logarithms of a sequence of annual data on real

U.K. gross domestic product that runs from 1873 to 2001. Only the breaks after

the ends of the first and second world wars have been accommodated, leaving the

disruptions of the 1929 recession to be expressed in the residual sequence. The

effect has been achieved by attributing a greatly reduced value to the smoothing

parameter in the vicinity of the post-war breaks. In the regions that are marked by

shaded bands, the smoothing parameter has been given a value of 5. Elsewhere,

it has been given a high value of 100,000, which results in trend segments that

are virtually linear.

10

11

12

13

1875 1900 1925 1950 1975 2000

Figure 11: The logarithms of annual U.K. real GDP from 1873 to 2001
with an interpolated trend. The trend is estimated via a filter
with a variable smoothing parameter.

This example serves to illustrate the contention that the trend and the

accompanying business cycle are best regarded as subjective concepts. The in-

tention of the example is to remove from the residual sequence — and, therefore,

from the representation of business cycle — the effects of two major economic

disruptions. For the purpose of emphasising the extent of these disruptions, the

contrary approach of fitting a stiff polynomial trend line through the data should

be followed.
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