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Abstract:

• In order to estimate extreme quantiles from independent and identically distributed
random variables, we propose and study a novel folding procedure that improves
quantile estimates obtained from the classical Peaks-Over-Threshold method (POT)
used in Extreme Value Theory. The idea behind the folding approach is to connect
the part of a distribution above a given threshold with the one below it. A simplified
version of this approach was studied by You et al. (2010). In this paper, an exten-
sion based on two thresholds is proposed to better combine the folding scheme with
the POT approach. Simulations indicate that this new strategy leads to improved
extreme quantiles estimates for finite samples. Asymptotic normality of the folded
POT estimators is also derived.
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1. MOTIVATION

The study of extremes has grown steadily since the pioneering work of

Fisher & Tippett (1928). One of the most famous approaches in Extreme Value

Theory is the Peaks-Over-Threshold (POT) method which can be described as

follows. Let ℵ := {X1, ..., Xn} be a sample of independent random variables from

an unknown distribution function F and consider the Nun exceedances above

a fixed threshold un, that is Y1, ..., YNun
where Yj := Xij − un, when Xij > un.

According to Pickands (1975), for a large class of underlying distributions F ,

as the threshold un increases, the distribution of the exceedances Fun given

by Fun(t) := P
(
X− un ≤ t |X > un

)
asymptotically converges to a Generalized

Pareto Distribution (GPD) defined as

Gγ,σn(x) =

{
1 −

(
1 + γ x/σn

)
−1/γ

if γ 6= 0 ,

1 − exp
(
−x/σn

)
if γ = 0 ,

where σn = σ(un) > 0 and x ≥ 0 if γ ≥ 0 and 0 ≤ x <−σn/γ if γ < 0. This result

leads to the so-called POT estimator of a high quantile xp := F←(1− p) with

F← the inverse function of F

(1.1) x̂p(un) = un +
σ̂

γ̂

{(
p

1−Fn(un)

)
−bγ
− 1

}
,

where (̂γ,σ̂) are some estimators of the parameters (γ,σn) and Fn(x) := 1
n

n∑
i=1

1l{Xi≤x}
denotes the empirical distribution function.

Recently, You et al. (2010) proposed a so-called folding procedure to im-

prove the estimation of xp. This approach is inspired by perfect sampling tech-

niques used in simulation studies (Corcoran & Schneider, 2003) and the idea is

to connect the lower and upper parts of a distribution. More precisely the ex-

plicit formulation of this folding transformation and its fundamental property are

encapsulated in their Proposition 1 which is recalled below.

Proposition 1.1. Let X be a random variable with an absolutely con-

tinuous distribution function F , u a real number such that u < τF where τF =

sup
{
x ∈ R : F (x) < 1

}
is the right endpoint of F and H another absolutely con-

tinuous distribution function with the same support as F and such that H(u) ≥
F (u). Define the following random variable

(1.2) X(H,F )(u) :=





H←
(

F (u)

F (u)
F (X) + F (u)

)
if X < u ,

X if X≥ u ,

where F := 1−F and H← is the inverse function of H. Then

(1.3) P
(
X(H,F )(u) > x

)
= P

(
X > x|X > u

)
+

F (u)

F (u)

(
H(x)−F (x)

)
, x > u .
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A very important special case occurs when H is chosen to be equal to F in

(1.2). In this context, the random variable X(F,F )(u) has the same probability dis-

tribution as the conditional variable
[
X|X > u

]
, the latter being the variable of in-

terest for the aforementioned POT method. We call X(F,F )(u) the folded transfor-

mation of X and we denote it as X(F )(u) := X(F,F )(u). In practice, F is unknown

and the folding transformation cannot be applied directly. One must substitute

the unknown F by suitable proxies. The choice of a proxy is especially sensitive

for the inverse function F←. This explains the introduction of H in the definition

of X(H,F )(u). To study the effect of choosing the proxy H instead of F in the

folding procedure, we introduce the difference ∆
(H,F )
u (x) :=

∣∣P
(
X(H,F )(u) ≤ x

)
−

P
(
X(F,F )(u)≤ x

)∣∣ for x > u. According to Proposition 1.1, we can write

∆(H,F )
u (x) =

F (u)

F (u)

∣∣H(x)−F (x)
∣∣ .

Second-order extreme value theory (e.g. de Haan & Ferreira, 2006) provides the

necessary tools to characterize the behavior of ∆
(H,F )
u (x) for a specific H.

Proposition 1.2. Assume that F satisfies the following second-order con-

dition. There exists some positive function a(·) and some positive or negative

function A(·) with lim
t→∞

A(t) = 0 such that

(1.4) lim
t→∞

1

A(t)

(
U(tx) − U(t)

a(t)
− Dγ(x)

)
= B(x) , x > 0 ,

where U := (1/F )←, Dγ(x) := xγ
−1
γ if γ 6= 0 and log x if γ = 0, and B is some

function that is not a multiple of Dγ . If the tail distribution H(x) := 1−H(x)

is chosen to behave as a GPD tail such that

(1.5) H(x) = F (u) Gγ,σ(u)(x − u) ,

with x > u and σ(u) = a
(
1/F (u)

)
, then for all y satisfying 1 + γy > 0, we have

lim
u→τF

1

|α(u)| ∆(H,F )
u

(
u + σ(u) y

)
= lim

u→τF

∣∣∣∣
1

α(u)

(
F
(
u + σ(u) y

)

F (u)
− Gγ(y)

)∣∣∣∣
(1.6)

=
(
Gγ(y)

)1+γ ∣∣Bγ,ρ

(
1/Gγ(y)

)∣∣

where Gγ := Gγ,1, α(u) := A
(
1/F (u)

)
and

Bγ,ρ(x) :=





1

ρ

(
xγ+ρ−1

γ + ρ
− xγ −1

γ

)
if γ 6= 0, ρ 6= 0 ,

1

γ

(
xγ log x − xγ −1

γ

)
if ρ = 0 6= γ ,

1

ρ

(
xρ−1

ρ
− log x

)
if ρ 6= 0 = γ ,

1

2
(lnx)2 if ρ = γ = 0 .
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The first equality in (1.6) tells us that choosing H as a GPD approximation,

see (1.5), implies that the rate of convergence of ∆
(H,F )
u towards zero is identical

to the one obtained by working with exceedances. The second equality in (1.6)

simply restates the result derived by de Haan & Ferreira (2006, p. 48) about

the relationship between the rate of convergence and the second-order auxiliary

function A(·). The main consequence of Proposition 1.2 is that a GPD can

be viewed as the appropriate choice for the distribution function H. In real

applications, we do not know the parameters of such a GPD and a first estimation

has to be given before implementing our folding procedure. This also means that

any reasonable GPD estimation procedure can be used to initialize our algorithm,

the better the estimation of σ(u) and γ, the better the efficiency of the folding

procedure. Still, our main goal in this paper is not to compare all existing GPD

estimation methods (e.g., Smith, 1987; Greenwood et al., 1979) and to find the

best one (if one could do that). Instead, our aim is to study our folding approach

with a specific estimation method for which we have experience with (Diebolt et

al., 2004, 2007).

At this stage, our approach can be viewed as the mixing of two elements,

the folding procedure described by Proposition 1.1 and the POT method. Each

element is associated with a particular threshold choice. For the sake of sim-

plicity, You et al. (2010) considered that both thresholds were equal. This is

not necessary. One threshold could be chosen for computing the preliminary

GPD parameters estimates and another one for the folding transformation itself.

In this paper, we follow this path. We propose and study a novel folding approach

based on two thresholds un and u′n such that un = o(u′n). Compared to a conven-

tional approach and to our past folding procedure, simulations clearly indicate

that this new double-threshold folding approach significantly reduces the mean

squared error of extreme quantile estimates, particularly for small and moderate

sample sizes (see Section 4). Asymptotic properties of our GPD parameters es-

timators are derived (see Section 3). The proof of our results are postponed to

the appendix. Results presented in Sections 3 and 4 solely focus on heavy tailed

distributions because our previous study (You et al., 2010) indicated that the

folding gain is the strongest for this type of tails.

2. A NEW FOLDING PROCEDURE WITH TWO THRESHOLDS

Suppose that the variable
[
X− un|X > un

]
approximatively follows a

GPD(γ, σn) for some large threshold un. The thresholding stability property

of the GPD basically means that
[
X− u′n|X > u′n] can also be approximated

by a GPD
(
γ , σn + γ(u′n− un)

)
for any u′n > un. In other words, the tail

F (t) = F u′n(t−u′n)F (u′n) can be approximated by Gγ,σn+γ(u′n−un)(t−u′n)F (u′n).

In terms of inverse distributions, this approximation can be expressed as F
←

(t)≃
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G
←

γ,σn+γ(u′n−un)

(
t

F (u′n)

)
+ u′n. According to Proposition 1.1, the folded variable

X(F )(u′n) can be rewritten as

X(F )(u′n) = F
←

(
F (u′n)

[
1− F (X)

F (u′n)

])
, if X < u′n .

By plugging the approximation for F
←

in the expression of X(F )(u′n), it is natural

to define the following folded variables

(2.1) X̂
(F )
i (u′n) =





G
←bγ,bbσ′(1− Fn(Xi)

Fn(u′n)

)
+ u′n , if Fn(Xi) < Fn(u′n) ,

Xi , if Fn(Xi) ≥ Fn(u′n) ,

where ̂̂σ
′

:= σ̂ + γ̂(u′n− un) and (γ̂, σ̂) are estimated from the exceedances

(Y1, ..., YNun
). Note that the folding transformation given by (2.1) does not de-

pend on the numerical values of the observations Xi when Xi < u′n but only on

their ranks because nFn(Xi) is equal to the rank of the observation Xi.

Equation (2.1) allows us to describe our new folding procedure as follows:

Step 1. Select one threshold un and estimate (γ̂, σ̂) of the GPD param-

eters (γ, σn) from the exceedances above un. Select a second

threshold u′n > un and calculate ̂̂σ
′

:= σ̂ + γ̂(u′n− un).

Step 2. Build the folded version ℵ(F ) :=
{

X̂
(F )
1 (u′n), ..., X̂

(F )
n (u′n)

}
using

transformation (2.1).

Step 3. Estimate the GPD parameters
(
γ̂(F ), σ̂(F )

)
from the folded sam-

ple ℵ(F ).

Step 4. Compute the POT extreme quantile estimator x̂
(F )
p (u′n) (accord-

ing to (1.1)) with the estimates
(
γ̂(F ), σ̂(F )

)
.

In steps 1 and 3, any reasonable GPD estimator of (γ, σn) could be used.

Here we implement the generalized probability-weighted moments (GPWM)

(Diebolt et al., 2004, 2007). This is an extension of the classical probability-

weighted moments method (Greenwood et al., 1979) and it can be described as

follows. Let ω be a continuous function, null at zero, and which admits a right

derivative at zero. The GPWM is defined as νω = E
[
Zω
(
Gγ,σ(Z)

)]
where Z fol-

lows a GPD(γ, σ) with γ < 2. If we denote by W the primitive of ω null at zero,

then an integration by parts allows us to write νω as νω =
∫
∞

0 W
(
Gγ,σ(x)

)
dx.

Diebolt et al. (2004, 2007) proposed and studied ν̂ω,n =
∫
∞

0 W
(
Fn,un(x)

)
dx as an

estimator of νω, where Fn,un corresponds to the exceedances empirical survival

function defined by Fn,un(x) = 1
Nun

∑Nun

i=1 1l
{
Xi − un > x

}
. To estimate (γ, σn)

by implementing a method-of-moments approach, two GPWMs are needed.

In this work, the two functions ω1 and ω2 are equal to ω1(x) = x and ω2(x) = x3/2

(see Diebolt et al., 2004, for a justification of these choices).
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3. ASYMPTOTIC NORMALITY

Before stating our main result, we need to prove the asymptotic normality

of the pair (γ̂, ̂̂σ
′

/σ′n).

Lemma 3.1. Let F be three times differentiable such that its inverse

F← exists. Let V and M be two functions defined as V (t) = F
←

(e−t) and M(t) =
V ′′(ln t)
V ′(ln t) − γ. Suppose the following conditions hold

(3.1) M is of constant sign at ∞
and

∃ ρ < 0 : |M | ∈ RVρ with a normalized slowly varying function

(see Bingham et al., 1987) .
(3.2)

Then, for γ ∈ (0, 3/2) and for all C1-functions ω1 and ω2, null at 0, conditionally on

{Nun= kn} and {Nu′n = k′n} with un = o(u′n), and for all intermediate sequences

kn > k′n → ∞ such that
√

kn an → λ ∈ R, we have that

√
kn

(
γ̂ − γbbσ′
σ′n

− 1

)
d−→ N

(
λ

(
1
1
γ

)
B1 ,

(
1
1
γ

)
Σ1,1

(
1
1
γ

)′)
,

where




an := M
(
eV ←(un)

)
, σ′n := V ′

(
V ←(u′n)

)
,

B :=

(
B1

B2

)
= AC where A := DT(ω1,ω2)(ν

1
ω1

, ν1
ω2

) ,

C :=

(
C1

C2

)
=




φ1(γ+ρ)−φ1(γ)
ρ

φ2(γ+ρ)−φ2(γ)
ρ


 where φj(γ) :=

∫ 1

0
Wj(u)u−γ−1du, j ∈ {1,2} ,

Σ :=

(
Σ1,1 Σ1,2

Σ1,2 Σ2,2

)
= A ΓAT ,

and Γ is the variance-covariance matrix of the pair (Yω1
, Yω2

) defined as

Yω1
=

∫ 1

0
t−γ−1ω1(t) B(t) dt and Yω2

=

∫ 1

0
t−γ−1ω2(t) B(t) dt

with B a Brownian bridge on [0, 1].

The case ρ = 0 is excluded from Lemma3.1. This corresponds to M(t)=ℓ(t),

a slowly varying function, since in that case the limiting distribution depends

explicitely on ℓ(·), and the two sequences un and u′n. Also this restriction is not

really a problem since most of the classical distributions in the Fréchet domain

of attraction have a second order parameter ρ < 0 (except the loggamma).
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Now, we can establish our main asymptotic result which shows that, in

the case where γ ∈ (0, 3/2), the estimators based on the double-threshold folding

approach have a similar asymptotic normality as the one derived in You et al.

(2010) in case of one threshold.

Theorem 3.1. Under the same assumptions stated in Lemma 3.1, we have

√
kn




ν̂
(F )
ω1,n

σ′n
− ν1

ω1

ν̂
(F )
ω2,n

σ′n
− ν1

ω2




d−→ N
(
λB1F, F Σ1,1F

′
)

where

F :=




− 1

λ

∫ 1

0
u−γ lnu ω1(u) du

− 1

λ

∫ 1

0
u−γ lnu ω2(u) du




and

ν1
ωj

=

∫
∞

0
Wj

(
Gγ,1(x)

)
dx for j = 1, 2 .

Note that this convergence in distribution does not hold in case γ ≤ 0.

4. A SIMULATION STUDY

The aim of this section is to illustrate the superiority of the double-threshold

folding over the conventional (Diebolt et al., 2007) and the simple folding ap-

proaches (You et al., 2010), in particular in terms of the mean squared er-

ror for small and moderate sample sizes. Simulations were performed for four

sample sizes n = 100, 500, 1 000 and 5 000 from a Burr (1, 2, 0.5) distribution de-

fined by F (x) = (1 + x2)−1/2 and from a standard Fréchet distribution defined

by F (x) = 1− e−1/x, respectively. For these two distributions, γ = 1 and ρ < 0.

For each value of n, 5 000 samples were generated and kn was chosen such that

the condition
√

kn an → λ was satisfied, which corresponds to kn ≃ c1n4/5 for the

Burr distribution and to kn ≃ c2 n2/3 for the Fréchet distribution. The thresh-

old un was chosen from un = F←
(
1− kn

n

)
. Three return levels for three return

periods, t = 100, 200 and 1 000, were computed. Concerning the choice of the sec-

ond threshold for our double-threshold folding method, we selected k′n = c3 n3/5

for the Burr distribution and k′n = c4 n1/2 for the Fréchet distribution such that

un = o(u′n). Tables 1–3 and 4–6 display the bias and the root mean squared error

(RMSE) of the quantile xp for the Burr and Fréchet distributions, respectively.
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Table 1: Burr(1, 2, 0.5) distribution — Bias (RMSE) of the return level estimates
corresponding to a return period t = 100.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 35.7 (240.4) 10.7 (183.0) 1.6 (103.8)

500 288 42 16.4 (195.4) 4.0 (106.2) 1.5 (46.7)

1 000 502 63 8.5 (78.8) 2.3 (54.1) 1.3 (35.3)

5 000 1 820 166 2.6 (21.1) 1.1 (16.8) 0.3 (16.9)

Table 2: Same as Table 1 but for the return period t = 200.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 117.0 (840.1) 45.6 (626.3) 11.2 (299.2)

500 288 42 54.2 (752.4) 15.9 (395.7) 6.9 (140.9)

1 000 502 63 27.1 (297.9) 8.1 (192.9) 5.1 (112.7)

5 000 1 820 166 6.7 (67.1) 2.1 (49.4) 0.8 (40.3)

Table 3: Same as Table 1 but for the return period t = 1000.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 1 877.5 (16 252.5) 998.0 (11 748.4) 346.5 (3 785.8)

500 288 42 955.4 (17 449.2) 385.8 (8 783.8) 167.4 (2 029.8)

1 000 502 63 468.8 (6 702.8) 199.6 (3 890.0) 119.1 (1 820.5)

5 000 1 820 166 73.9 (990.5) 22.2 (589.4) 19.1 (504.8)

Table 4: Standard Fréchet distribution — Bias (RMSE) of the return level estimates
corresponding to the return period t = 100.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 48.8 (173.2) 15.4 (112.1) 15.0 (93.9)

500 188 33 17.2 (70.9) 7.5 (50.6) 8.5 (47.1)

1 000 300 47 12.2 (48.5) 6.8 (38.0) 6.8 (36.2)

5 000 877 106 3.5 (17.3) 2.5 (15.7) 1.6 (13.9)
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Table 5: Same as Table 4 but for the return period t = 200.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 158.0 (581.7) 56.4 (353.3) 46.3 (286.3)

500 188 33 55.9 (242.7) 25.5 (156.0) 27.7 (140.8)

1 000 300 47 39.5 (163.3) 22.3 (117.2) 23.0 (111.0)

5 000 877 106 11.8 (57.6) 8.6 (49.6) 6.8 (42.0)

Table 6: Same as Table 4 but for the return period t = 1000.

n kn k
′

n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 2 304.7 (10 052.4) 935.6 (5 396.5) 638.6 (3 214.3)

500 188 33 785.8 (4 459.5) 367.6 (2 206.0) 370.6 (1 845.0)

1 000 300 47 536.3 (2 789.3) 298.5 (1 580.8) 309.6 (1 480.8)

5 000 877 106 151.0 (899.2) 110.1 (664.6) 99.4 (549.3)

These tables clearly show that the double-threshold folding improves con-

siderably the RMSE, compared to the single-threshold folding and the conven-

tional approach. This gain is emphasized for small and moderate sample sizes

and for large return periods.

APPENDIX: DETAILED PROOFS

Proof of Proposition 1.2: The proof is mainly a consequence of Theo-

rem 2.3.8 in de Haan & Ferreira (2006), which states that, if (1.4) holds, then

lim
u→τF

1

α(u)

(
F
(
u + σ(u) y

)

F (u)
− Gγ(y)

)
=
(
Gγ(y)

)1+γ
Bγ,ρ

(
1

Gγ(y)

)

for all y such that 1+ γ y > 0.

From (1.5), it follows that

lim
u→τF

∆
(H,F )
u

(
u + σ(u) y

)

|α(u)| = lim
u→τF

F (u) × lim
u→τF

∣∣∣∣∣
1

α(u)

(
Gγ(y)− F

(
u + σ(u) y

)

F (u)

)∣∣∣∣∣

=
(
Gγ(y)

)1+γ
∣∣∣∣Bγ,ρ

(
1

Gγ(y)

)∣∣∣∣ .
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Proof of Lemma 3.1: First, note that the assumption
√

kn an → λ ∈ R

can be rewritten as

√
kn M

(
1

F (un)

)
−→ λ ∈ R .(A.1)

Now, let σn = V ′
(
V ←(un)

)
. We have

√
kn

(
̂̂σ
′

σ′n
−1

)
=
√

kn

(
σ̂ + γ̂(u′n− un)

σ′n
− 1

)

=
√

kn

(
σ̂

σn
−1

)
σn

σ′n
+

[
γ

γ̂

√
kn

(
σn

γun
−1

)
−

√
kn

γ̂
(γ̂ − γ)

]
γ̂ un

σn

σn

σ′n

+
√

kn

(
γ u′n
σ′n

−1

)
γ̂

γ
+

1

γ

√
kn (γ̂ − γ)

=: Q1,n + Q2,n + Q3,n +
1

γ

√
kn (γ̂ − γ) .

We know that
√

kn

( bσ
σn

−1
)

is asymptotically normal (Diebolt et al., 2007) and

σn

σ′n
∼ γ un

γ u′n
−→ 0 .(A.2)

Therefore, it is clear that

Q1,n
P−→ 0 .(A.3)

Now, remark that

√
kn

(
σn

γ un
− 1

)
=
√

kn

(
V ′
(
− lnF (un)

)

γ V
(
− lnF (un)

) − 1

)

=
1

γ

√
kn M

(
1

F (un)

)



M
(

1
F (un)

)

V ′(− ln F (un))
V (− ln F (un))

− γ




−1

.

To conclude with this term, we have to use the following lemma.

Lemma A.1 (Worms, 2000, p. 19). Suppose that M(t)→ 0 and tM ′(t)
M(t) →ρ

as t →∞. Then

(i) if γ > 0, we have

lim
t→∞

M(et)
/[V ′(t)

V (t)
− γ

]
=

γ +ρ

γ

and

lim
t→∞

M(et)
/[ V (t)

V ′(t)
− 1

γ

]
= −γ(γ +ρ) ;
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(ii) if γ < 0, we have

lim
t→∞

[
V (∞) − V (t)

V ′(t)
+

1

γ

]/
M(et) =

1

γ(γ +ρ)

and

lim
t→∞

[
V ′(t)

V (∞) − V (t)
+ γ

]/
M(et) = − γ

γ +ρ
.

Indeed by (A.1), we deduce that

√
kn

(
σn

γ un
− 1

)
−→ λ

γ +ρ
.

Combining this convergence with (A.2) and the fact that
√

kn(γ̂ − γ) is asymp-

totically normal (Diebolt et al., 2007), we deduce that

Q2,n
P−→ 0 .(A.4)

Similarly

√
kn

(
γ u′n
σ′n

− 1

)
= γ

√
kn

(
V
(
− lnF (u′n)

)

V ′
(
− lnF (u′n)

) − 1

γ

)

= γ
√

kn M

(
1

F (un)

) M
(

1
F (u′n)

)

M
(

1
F (un)

)




M
(

1
F (u′n)

)

V (− ln F (u′n))
V ′(− ln F (u′n))

− 1
γ




−1

.

Now since γ > 0 and |M | ∈ RVρ with ρ < 0

M
(

1
F (u′n)

)

M
(

1
F (un)

) −→ 0 .(A.5)

Consequently, using again the abovementioned lemma in Worms (2000), we

deduce that

Q3,n
P−→ 0 .(A.6)

Finally, going back to (A.3), (A.4) and (A.6), we get

√
kn

(
̂̂σ
′

σ′n
−1

)
=

1

γ

√
kn (γ̂ − γ) + oP(1) .

Lemma 3.1 then follows from Diebolt et al. (2007).
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Proof of Theorem 3.1: It is a direct application of the proof of Theo-

rem1 in You et al. (2010) combining with our Lemma 3.1 and using the following

decomposition: conditionally on {Nun = kn} and {Nu′n = k′n}, we have

√
kn

(
ν̂

(F )
ω,n

σ′n
−
∫
∞

0
W
(
Gγ(x)

)
dx

)
=

=
√

kn

(
ν̂

(F )
ω,n

σ′n
− 1

σ′n

∫
∞

0
W

(
F̃

(F )

n,u′n
(x)

)
dx

)

+

(
1− k′n

n

)√
kn

∫
∞

0

(
Gbγ,

bbσ′
σ′n

(x) − Gγ(x)

)
ω
(
Gγ(x)

)
dx

+
k′n
n

√
kn

∫
∞

0

(
Fn,u′n(σ

′

nx) − Gγ(x)
)

ω
(
Gγ(x)

)
dx

+
√

kn

∫
∞

0

∫ 1

0
(1− t)

((
1− k′n

n

)(
Gbγ,

bbσ′
σ′n

(x)−Gγ(x)

)
+

k′n
n

(
Fn,u′n(σ

′

nx)−Gγ(x)
))2

× ω′


Gγ(x) +

((
1− k′n

n

)(
Gbγ,

bbσ′
σ′n

(x)−Gγ(x)

)
+

k′n
n

(
Fn,u′n(σ

′

nx)−Gγ(x)
))

t


dt dx ,

where F̃
(F )

n,u′n
(x) =

(
1− k′n

n

)
Gbγ,bbσ′(x) +

k′n
n

Fn,u′n(x).

All the details of the proof are given on the web page http://www-irma.u-

strasbg.fr/∼guillou/Proof_folding_thm3-1.pdf. Now, we will prove that our

theorem does not hold in case γ ≤ 0. Indeed if γ < 0, then

√
kn

(
̂̂σ
′

σ′n
−1

)
=

σn

σ′n

{
√

kn

(
σ̂

σn
−1

)
− 1

γ

√
kn (γ̂ − γ)

−γ
(
V (∞) − un

)

σn

+ γ
√

kn

(
V (∞) − un

σn
+

1

γ

)}

+
√

kn

(−γ̂
(
V (∞) − u′n

)

σ′n
−1

)

=:
σn

σ′n
T1,n + T2,n .

Clearly T1,n tends in distribution to a normal distribution, but

σn

σ′n
≃ V (∞) − un

V (∞) − u′n
= 1 +

u′n
(
1 + o(1)

)

V (∞) − u′n
→ ∞ .

Therefore σn

σ′n
T1,n tends to infinity, whereas T2,n can be rewritten as

T2,n =
√

kn(γ − γ̂)
V (∞) − u′n

σ′n
−

√
kn

γ + ρ
M
(
eV ←(un)

) M
(
eV ←(u′n)

)

M
(
eV ←(un)

)
(
1 + o(1)

)

by Lemma 1.2 (ii) in Worms (2000). This implies that T2,n tends to a normal

distribution, since it is the case for the first part of this term, whereas the second

one tends to 0.
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Now, in case γ = 0, we can easily find a counter-example of our Lemma 3.1.

First, note that

√
kn

(
̂̂σ
′

σ′n
−1

)
=
√

kn

(
σ̂ + γ̂(u′n− un)

σ′n
−1

)

=
√

kn

(
σ̂

σn
−1

)
σn

σ′n
+
√

kn (γ̂ − γ)
u′n− un

σ′n
+
√

kn
σn

σ′n
−
√

kn

=: Q̃1,n + Q̃2,n + Q̃3,n −
√

kn .

Now, if we consider an exponential random variable with parameter 1, then σ′n =

σn = 1 and u′n−un

σ′n
= u′n

(
1 + o(1)

)
by assumption. This implies that Q̃1,n is asymp-

totically normal, Q̃2,n
P−→ ∞ and Q̃3,n−

√
kn = 0. Therefore Lemma 3.1 is not

valid.
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