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1. INTRODUCTION

Recently, it has been recognized the potential of optimal alarm systems

in detecting and warning the occurrence of catastrophes or some other related

events; see for example Monteiro et al. ([24]) and the references therein. Concep-

tually, the simplest way of constructing an alarm system is to predict Xt+h by

a predictor say, X̂t+h,t, which is usually chosen so that the mean square error is

minimized, providing

X̂t+h,t = E
[
Xt+h|Xs, −∞ < s ≤ t

]
.

An alarm is given every time the predictor exceeds some critical level. This alarm

system, however, does not have a good performance on the ability to detect the

events, locate them accurately in time and give as few false alarms as possible.

Lindgren ([18],[19],[20],[21]) and de Maré ([8]) set the principles for the construc-

tion of optimal alarm systems and obtain some basic results regarding the optimal

prediction of level crossings. Svensson et al. ([27]) applied these principles in the

prediction of level crossings in the sea levels of the Baltic sea. It is worth to

mention that the alarm system introduced by Lindgren and de Maré, ignores the

sampling variation of the model parameters. Giving heed to this issue, Ama-

ral Turkman and Turkman ([1]) suggested a Bayesian approach and particular

calculations were carried out for an autoregressive model of order one. Further

extensions and generalizations were proposed by Antunes et al. ([2]) and more

recently by Monteiro et al. ([24]).

The spectrum of applications of optimal alarm systems is wide and yet to

be explored. One major area of applications is environmental economics. Atmos-

pheric concentrations of air pollutants like ozone, carbon monoxide or sulfur

dioxide constitute time series that can be analyzed under the perspective of the

upcrossings of some critical levels, usually related with public health (e.g. Smith

et al., [26]; Koop and Tale, [17]; Tobias and Scotto, [30]). Another area of po-

tential application of optimal alarm systems is econometrics and in particular

in risk management. The implementation of probabilistic models for the assess-

ment of market risks or credit risks is mandatory. Examples can be found in the

forecasting of financial risk of lending to costumers (Thomas, [29]), the arrivals

forecast of guests at hotels (Weatherford and Kimes, [32]) and in forecasting

daily stock volatility, which has direct implications in option pricing, asset al-

location or value-at-risk (Fuentes et al., [14]). All the above referred references,

however, are not directly applicable to calculate in advance the probability of

future up/downcrossings. It is in this context that the implementation of an

alarm system reveals to be useful. A related interesting problem, which has not

been addressed yet, is to develop optimal alarm systems for financial time series.

This article aims to give a contribution towards this direction.
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The analysis of financial time series like log-return series of foreign exchange

rates, stock indices or share prices, has revealed some common features: sample

means not significantly different from zero, sample variances of the order 10−4 or

smaller and sample distributions roughly symmetric in its center, sharply peaked

around zero but with a tendency to negative asymmetry. In particular, it has

usually been found that the conditional volatility of stocks responds asymmetri-

cally to positive versus negative shocks: volatility tends to rise higher in response

to negative shocks as opposed to positive shocks, which is known as the leverage

effect. Another common feature of series of log-returns is that the sample au-

tocorrelation function is negligible at all lags, (except perhaps for the first) but

the sample autocorrelation functions for the absolute values or the squares of the

log-returns are different from zero for a large number of lags and stay almost

constant and positive for large lags. This last feature is known, in this context,

as long memory or long range dependency. Several models have been proposed in

order to describe these stylized facts about log-return series. We mention here the

ARCH models, introduced by Engle ([11]) and some of the subsequent general-

izations: GARCH, (Bollerslev, [4]), EGARCH (Dellaportas et al., [9]), APARCH

(Ding et al., [10]), FIGARCH (Baillie et al., [3]) and FIAPARCH (Tse, [31]).

For a survey of ARCH-type models see Teräsvirta ([28]).

The rest of the paper is organized as follows: in Section 2, basic theo-

retical concepts related to optimal alarm systems are presented. Furthermore,

an optimal alarm system for FIAPARCH processes is implemented. Expressions

for some alarm characteristics of the alarm system are given. Estimation of the

model FIAPARCH(1, d, 1) by classical and Bayesian methodology is covered in

Section 3. In Section 4, the results are illustrated through a simulation study.

A real-data example is given in Section 5.

2. OPTIMAL ALARM SYSTEMS AND THEIR APPLICATION

TO FIAPARCH PROCESSES

Let {Xt, t ∈ N} be a discrete time stochastic process. The time sequel

{1, 2, ..., t−1, t, t +1, ...} is divided into three sections, namely the data or

informative experience, Dt = {X1, ..., Xt−r}, the present experiment, X2 =

{Xt−r+1, ..., Xt} and the future experiment, X3 = {Xt+1, ...}. Any event of

interest, say Ct,j , in the σ-field generated by X3 is defined as a catastrophe.

Throughout this work a catastrophe will be considered as the upcrossing event

Ct,j =
{

Xt+j−1 ≤ u < Xt+j

}
,

for some j ∈ N. Moreover, any event At,j in the σ-field generated by X2, predictor

of Ct,j , will be an alarm region. It is said that an alarm is given at time t, for

the catastrophe Ct,j , if the observed value of X2 belongs to the alarm region.
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In addition, the alarm is said to be correct if the event At,j is followed by the

event Ct,j , so, the probability of correct alarm is defined as the probability of

catastrophe conditional on the alarm being given. Conversely, a false alarm is

defined as the occurrence of At,j without Ct,j . If an alarm is given when the

catastrophe occurs, it is said that the catastrophe is detected and the probability

of detection is defined as the probability of an alarm being given conditional on

the occurrence of the catastrophe. Furthermore, the alarm region At,j is said to

have size αt,j if αt,j = P
(
At,j |Dt

)
. The alarm region At,j is optimal of size αt,j if

(2.1) P
(
At,j |Ct,j , Dt

)
= sup

B∈σX2

P
(
B|Ct,j , Dt

)

with P
(
B|Dt

)
= αt,j .

Definition 2.1. An optimal alarm system of size {αt,j} is a family of

alarm regions {At,j} in time, satisfying (2.1).

Lemma 2.1. The alarm system {At,j} with alarm region given by

At,j =
{

x2 ∈ R
r : P

(
Ct,j |x2, Dt

)
≥ kt,j P

(
Ct,j |Dt

)}
,

for a fixed kt,j : P
(
X2 ∈ At,j |Dt

)
= αt,j , is optimal of size αt,j .

This lemma ensures that the alarm region defined above renders the high-

est detection probability. Moreover to enhance the fact that the optimal alarm

system depends on the choice of kt,j , it is important to stress that in view of the

fact that P
(
Ct,j |Dt

)
does not depend on x2, the alarm region can be rewritten

in the form

(2.2) At,j =
{

x2 ∈ R
r : P

(
Ct,j |x2, Dt

)
≥ k

}
,

where k = kt,j P
(
Ct,j |Dt

)
is chosen in some optimal way to accommodate condi-

tions over the following operating characteristics of the alarm system:

• P
(
At,j |Dt

)
– Alarm size,

• P
(
Ct,j |At,j , Dt

)
– Probability of correct alarm,

• P
(
At,j |Ct,j , Dt

)
– Probability of detecting the event.

Most models for financial time series used in practice are given in the multiplica-

tive form

Xt = σtZt ,(2.3)

where {Zt} forms an i.i.d. sequence with zero mean and unit variance, {σt} is a

stochastic process such that σt and Zt are independent for fixed t. Moreover,

it is also assumed that Zt is independent of the past values of the process
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(Xt−1, Xt−2, ...). In general, conditions ensuring the strict stationarity of the

process {Xt} are known. Motivation for considering this particular choice of

simple multiplicative model comes from the fact that

(a) in practice, the direction of price changes is well modeled by the sign of

Zt, whereas σt provides a good description of the order of magnitude

of this change;

(b) the volatility σ2
t represents the conditional variance of Xt given σt.

This representation expresses the belief that the direction of price changes can

not be modeled, only their magnitude (e.g. Mikosch, [23]).

The FIAPARCH(p, d, q) model of Tse ([31]) is a special case of (2.3) with

σδ
t =

ω

1− β(B)
+ λ(B) g(Xt) ,(2.4)

where g(Xt) = (|Xt| − γXt)
δ with |γ| < 1 and δ ≥ 0, and

λ(B) = 1 −
(
1− β(B)

)−1
φ(B)(1−B)d =

∞∑

i=1

λiB
i , λ(1) = 1 ,(2.5)

for every 0 < d < 1, with λi ≥ 0, for i ∈ N, and ω > 0 for the conditional variance

to be well defined, so that it is positive almost surely for all t. Furthermore, in

order to allow for long memory the fractional differencing parameter d is con-

strained to lie in the interval 0 < d < 1/2. Moreover, the polynomials 1− β(B)

and φ(B) are assumed to have all their roots lying outside the unit circle. The

fractional differencing operator (1−B)d is most conveniently expressed as

(1 − B)d =
∞∑

k=0

(
d
k

)
(−1)kBk .

The FIAPARCH model nests two major classes of ARCH-type models: the

APARCH and the FIGARCH models of Ding et al. ([10]) and Baillie et al. ([3]),

respectively. When d = 0 the process reduces to the APARCH(p, q) model,

whereas for γ = 0 and δ = 2 the process reduces to the FIGARCH(p, d, q) model.

The FIGARCH representation includes the GARCH (when d = 0) and the

IGARCH (Engle and Bollerslev, [12]) when d = 1 with the implications in terms

of impact of a shock on the forecasts of future conditional variances. Considering

all the features involved in this specification, Conrad et al. ([7]) point out some

advantages of the FIAPARCH(p, d, q) class of models, namely

(a) it allows for an asymmetric response of volatility to positive and nega-

tive shocks, so being able to traduce the leverage effect. If γ > 0, neg-

ative shocks have stronger impact on volatility than positive shocks,

as would be expected in the analysis of financial time series. If γ < 0,

the reverse happens;
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(b) in this particular class of models it is the data that determines the

power of returns for which the predictable structure in the volatility

pattern is the strongest;

(c) the models are able to accommodate long memory in volatility, depend-

ing on the differencing parameter d.

It is important to mention here that necessary and sufficient condition for

the existence of a stationary solution of the APARCH(p, q) model can be easily

obtained from the results derived by Liu ([22]). This author introduced a family

of GARCH processes, which can be regarded as a class of non-parametric GARCH

processes, which includes as a special case the APARCH(p, q) model. Liu ([22])

obtained necessary and sufficient condition for the existence of a stationary solu-

tion of this new family of GARCH processes. Furthermore, Liu ([22]) also derived

an explicit expression for the stationary solution. In contrast, however, the sta-

tistical properties of the general FIGARCH(p, d, q) process remain unestablished.

Namely, stationarity is not a certainty as well as the source of long memory on

volatility or even its existence are nowadays controversial. For the FIAPARCH

process, Tse ([31]) also leaves these issues as open questions.

The simplest version of the FIAPARCH(p, d, q) model, which appears to be

particularly useful in practice, is the FIAPARCH(1, d,1) for which the volatility σt

takes the form as in (2.4) with λ(B) as in (2.5) with β(B) = βB and φ(B) = φB

with |β|< 1. Necessary and sufficient conditions for the non-negativity of the

conditional variance for the FIAPARCH(1, d, 1) resemble the ones obtained by

Conrad and Haag ([6]) for the FIGARCH(1, d, 1), namely

• Case I: 0 < β < 1, either λ1 ≥ 0 and φ ≤ h2 or for i > 2 with hi−1 <

φ ≤ hi it holds that λi−1 ≥ 0,

• Case II: −1 < β < 0, either λ1 ≥ 0, λ2 ≥ 0 and φ ≤ h2(β+h3)/(β+h2)

or λi−1 ≥ 0, λi−2 ≥ 0 and hi−2(β+hi−1)/(β+hi−2) < φ ≤ hi−1(β+hi)/

(β + hi−1) with i > 3,

where hi = (i−1−d)/i, for i = 2, 3, .... Furthermore, the infinite series coefficients

can be obtained recursively as

λi =

{
φ − β + d , i = 1 ,

βλi−1 + [hi −φ]δi−1 , i ≥ 2 ,

with δ1 = d and δi = δi−1hi for i ≥ 2.

The application of the alarm system to the FIAPARCH(1, d, 1) model will

be done for the particular case r = 1 and j = 2 in Lemma 2.1. The event of

interest (i.e. the catastrophe) is defined as the upcrossing of some fixed level u

two steps ahead, that is

(2.6) Ct,2 =
{

Xt+1 ≤ u < Xt+2

}
.
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The alarm region of optimal size αt,2 is given by

At,2 =

{
xt ∈ R :

P
(
Ct,2|xt, Dt

)

P
(
Ct,2|Dt

) ≥ kt,2

}

(2.7)
=

{
xt ∈ R : P

(
Ct,2|xt, Dt

)
≥ k

}
,

where k = kt,2P
(
Ct,2|Dt

)
.

The first step in the construction of the alarm system consists on the calcu-

lation of the probability of catastrophe conditional on Dt and xt, i.e. P
(
Ct,2|xt,Dt,θ)

and P
(
Ct,2|Dt, θ

)
with θ = (ω, β, φ, γ, δ, d). In doing so, note that

P
(
Ct,2|xt, Dt, θ

)
= P

(
Xt+1≤ u < Xt+2 |x1, ..., xt, θ

)

=

∫

Ct,2

fXt+1,Xt+2|x1,...,xt, θ(xt+1, xt+2) dxt+1 dxt+2

with the integration region, Ct,2, being the catastrophe region as in (2.6). If

Zt ∼N(0,1) then

(2.8) P
(
Ct,2|xt, Dt, θ

)
=

∫ +∞

u

∫ u

−∞

2∏

k=1

1√
2π σ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt+1dxt+2 .

Moreover

P
(
Ct,2|Dt, θ

)
= P

(
Xt+1≤ u < Xt+2 |x1, ..., xt−1, θ

)

=

∫

Ct,2

∫
fXt,Xt+1,Xt+2|x1,...,xt−1, θ(xt, xt+1, xt+2) dxt dxt+1 dxt+2 .

Again, by assuming Zt ∼ N(0,1) it follows that

P
(
Ct,2|Dt, θ

)
=

∫ +∞

u

∫ u

−∞

∫ +∞

−∞

2∏

k=0

1√
2πσ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt dxt+1 dxt+2 .

(2.9)

Having calculated these probabilities it is then possible to determine the alarm

region and calculate the alarm characteristics of the alarm system.

1. Alarm size

αt,2 = P
(
At,2|Dt

)

=

∫

At,2

1√
2πσ2

t

exp

{
− x2

t

2σ2
t

}
dxt

with At,2 being the alarm region which depends on the value of kt,2

chosen.

2. Probability of correct alarm

P
(
Ct,2|At,2, Dt

)
=

P
(
Ct,2 ∩ At,2|Dt

)

P
(
At,2|Dt

) ,
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where

P
(
Ct,2 ∩ At,2|Dt

)
=

= P
(
Xt+1≤ u < Xt+2 ∩ Xt ∈ At,2|Dt

)

=

∫ +∞

u

∫ u

−∞

∫

At,2

2∏

k=0

1√
2πσ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt dxt+1 dxt+2 .

Thus

P
(
Ct,2|At,2, Dt

)
=

=

∫ +∞

u

∫ u

−∞

∫

At,2

2∏

k=0

1√
2πσ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt dxt+1 dxt+2

∫

At,2

1√
2πσ2

t

exp

{
− x2

t

2σ2
t

}
dxt

.

3. Probability of detecting the event

P
(
At,2|Ct,2, Dt

)
=

=
P

(
At,2 ∩ Ct,2|Dt

)

P
(
Ct,2|Dt

)

=

∫ +∞

u

∫ u

−∞

∫

At,2

2∏

k=0

1√
2πσ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt dxt+1 dxt+2

∫ +∞

u

∫ u

−∞

∫ +∞

−∞

2∏

k=0

1√
2πσ2

t+k

exp

{
−

x2
t+k

2σ2
t+k

}
dxt dxt+1 dxt+2

.

3. ESTIMATION PROCEDURES

In this section we consider the estimation of the operating characteristics

of the alarm system. From the classical framework the method considered is the

well-known Quasi-Maximum Likelihood Estimation procedure (QMLE) assuming

conditional normality. The QMLE estimates are obtained maximizing the condi-

tional log-likelihood function with respect to θ = (ω, β, φ, γ, δ, d), recurring to a

routine available within the OxMetrics5 program. The robust standard errors by

Bollerslev and Wooldrige ([5]) were also calculated. According to these authors

this estimator is generally consistent, has a normal limiting distribution and pro-

vides asymptotic standard errors that are valid under non-normality. Neverthe-

less, the authors state that the QMLE estimator is not asymptotically efficient

under non-normality and care should be taken, since as Engle and Gonzalez-

Rivera ([13]) proved, GARCH estimates are consistent but asymptotically ineffi-

cient with the degree of inefficiency increasing with the degree of departure from
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normality. The impact of violations in conditional normality, however, remains

unknown for the FIGARCH and FIAPARCH case. Baillie et al. ([3]) suggested

that the FIGARCH estimates obtained via QMLE are consistent and asymptoti-

cally normal1. Furthermore, they also demonstrated the suitability of the QMLE

procedure in the estimation of samples with sizes of 1 500 and 3 000.

From the Bayesian perspective we need to start with a prior distribution for

the vector of parameters θ. Assuming independence between all the parameters

involved the prior distribution of θ, say h(θ), will be proportional to

h(θ) ∝ I{ω>0} I{−1<β<1} I{φ>0} I{−1<γ<1} I{δ>0} I{0<d<1/2} .

The posterior distribution h
(
θ|Dt

)
is given by

h
(
θ|Dt

)
∝ L

(
Dt|θ

)
h
(
θ
)

∝
t−1∏

n=2

1√
2π σn

exp

{
− x2

n

2σ2
n

}

× I{ω>0} I{−1<β<1} I{φ>0} I{−1<γ<1} I{δ>0} I{0<d<1/2} .

Hence, the probability of catastrophe conditional on Dt and x2 = {xt}, takes the

form

(3.1) P
(
Ct,2|xt, Dt

)
=

∫

Θ

P
(
Ct,2|xt, Dt, θ

)
h
(
θ|Dt

)
dθ

with Θ being the parameter space. On the other hand, the probability of catas-

trophe conditional on Dt, will be given by

(3.2) P
(
Ct,2|Dt

)
=

∫

Θ

P
(
Ct,2|Dt, θ

)
h
(
θ|Dt

)
dθ ,

where P
(
Ct,2|xt, Dt, θ

)
and P

(
Ct,2|Dt, θ

)
are calculated through (2.8) and (2.9),

respectively. However, due to the complexity of expressions (2.8) and (2.9) ana-

lytical calculations are not possible. Nonetheless, since by (3.1) and (3.2)

P
(
Ct,2|xt, Dt

)
= Eθ|Dt

[
P

(
Ct,2|xt, Dt, θ

)]
and P

(
Ct,2|Dt

)
= Eθ|Dt

[
P

(
Ct,2|Dt, θ

)]
,

their respective Monte Carlo approximations can be used, that is

P̂
(
Ct,2|xt, Dt

)
=

1

m

m∑

i=1

P
(
Ct,2|xt, Dt, θi

)
and P̂

(
Ct,2|Dt

)
=

1

m

m∑

i=1

P
(
Ct,2|Dt, θi

)
,

where the observations θi = (ωi, βi, φi, γi, δi, di) with i = 1, 2, ..., m constitute a

sample of the posterior distribution h
(
θ|Dt

)
. A similar procedure is applied to

approximate the operating characteristics.

1In fact, the consistency and asymptotic normality of the QMLE estimator had been formally
established for the IGARCH(1,1) process. Baillie et al. ([3]) followed a dominance-type argument
to extend this result to the FIGARCH(1, d, 0) case and refer the need for a formal proof of
consistency and asymptotic normality for the general IGARCH(p, q) and FIAGARCH(p, d, q)
cases.
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4. SIMULATION RESULTS

In this section we present a simulation study to illustrate the performance of

the alarm system constructed for the FIAPARCH(1, d, 1) model. In particular we

consider the set of parameters θ = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30). The choice

of the parameters is very similar to those appearing in the real-data example

presented in Section 5. Figure 1 below shows a simulated sample path for this

specific FIAPARCH model.

Figure 1: Simulated sample path of a FIAPARCH(1, d, 1) process
with θ = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30).

Parameter estimates, θ̂, and their corresponding standard errors were ob-

tained for this sample, following the QMLE procedure of Bollerslev and Wooldrige

([5]). Robust standard errors are estimated from the product A(θ̂)−1B(θ̂)A(θ̂)−1,

where A(θ̂) and B(θ̂) denote the Hessian and the outer product of the gradients

evaluated at θ̂, respectively.

Moreover, Bayesian estimates of θ were also obtained for this single sample.

Since the standard Gibbs methodology is difficult to implement to FIAPARCH

models partially due to the non-standard forms of the full conditional densities,

the Metropolis-Hastings algorithm was implemented in the software Matlab. In

addition, a multivariate t-distribution was used as the proponent one. The sam-

pler algorithm ran 100 000 iterations including a burn-in period of 40 000 observa-

tions which are discarded for the posterior analysis, as suggested by Dellaportas

et al. ([9]). Furthermore, only every twentieth iteration is stored in order to

obtain an, approximately, independent and identically distributed sample. The

estimates were taken as the means of the posterior distribution. The convergence

of the Markov chain was analyzed through the R criterium of Gelman and Rubin

([15]), the Z-score test of Geweke ([18]) and by graphical methods.
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The analysis of the alarm system is carried out at t = 2000, i.e., x2 =

{x2000}. The event of interest is the two step ahead catastrophe defined by the

upcrossing of the fixed level u, at time t + 2:

C2000,2 =
{

(x2001, x2002) ∈ R
2 : x2001 ≤ u < x2002

}
.

In a first stage, two values of u were chosen, accordingly to the sample quantiles,

namely the 90th percentile (Q0.90), and the 95th percentile (Q0.95). The choice of

these values is justified by the fact that we are interested in relatively rare events.

For both fixed levels of u, the probabilities P
(
Ct,2|xt, Dt, θ

)
and P

(
Ct,2|Dt, θ

)

were numerically approximated as described in the previous section. In order

to compute the optimal alarm region for each case, one has to obtain the re-

gion for several values of k, accordingly to expression (2.7) and then, for each

value of k, compute the operating characteristics of the alarm system, i.e., the

size of the region, αt,2, the probability of correct alarm, P
(
Ct,2|At,2, Dt

)
and

the probability of detection, P
(
At,2|Ct,2, Dt

)
. For every fixed value of k the

region has to be obtained through a systematic search in a three dimensional

region for (xt, xt+1, xt+2). We considered a thin grid of values of xt in [−100, 100]

and determined, for each value of xt, whether P
(
Ct,2|xt, Dt

)
exceeds k. This

procedure is repeated for k ranging from P
(
Ct,2|Dt

)
to P

(
Ct,2|Dt

)
+ n×0.005,

with n ∈ R
+. This procedure is repeated for both the classical (using the true

values of the parameters and their QMLE estimates) and the Bayesian approach.

The results are shown in Table 1 below.

Considering the true values of the parameters, the probability of the alarm

being correct, does not exceed 5.6% in the u = Q0.95 case, or 9.7% in the u = Q0.90

case. The probability of detection for this sample, ranges from 2.4% to 49.0% for

u = Q0.95, or from 1.7% to 53.4% for u = Q0.90. The results obtained with the

QMLE estimates do not differ considerably, in particular in what concerns the

probability of correct alarm. Regarding the probability of detecting the event, we

can say the alarm system behaves better in this case since the detection proba-

bility reaches 54.5% for u = Q0.95 and 60.6% for u = Q0.90. Considering now the

Bayesian approach, the probability of detection is the lowest obtained. It does

not even reach 22%. On the other hand, the estimation procedure involved in

the Bayesian approach seems to be able to produce higher probabilities of cor-

rect alarm, depending on an accurate choice of k. The probability of correct

alarm ranges from lower values than in the classical approach to more than the

double of these values, with increasing k, reaching 24.7% in the u = Q0.90 case.

Furthermore, note that as the probability of correct alarm increases, the probabil-

ity of detecting the event decreases, as expected. This can be justified by the fact

that as k increases, the size of the alarm region decreases, which implies that the

number of alarms should decrease, so as the probability of detection, P
(
At,2|Ct,2

)
.

However, as the number of alarms decreases, the probability of false alarms also

decreases and therefore the probability of the alarm being correct, P
(
Ct,2|At,2

)
,

increases.
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As already discussed, it is not possible, in general, to maximize both prob-

abilities, P
(
Ct,2|At,2

)
and P

(
At,2|Ct,2

)
, simultaneously. Hence, a compromise

should be reached by the proper choice of k. In doing so, several criteria have

been already proposed. Svensson et al. ([27]), for example, suggested that k should

be chosen so that the probability of correct alarm and the probability of detect-

ing the event are approximately equal, P
(
Ct,2|At,2

)
≃ P

(
At,2|Ct,2

)
. On the other

hand, Antunes et al. ([2]) suggested that k should be chosen so that the alarm

size is about twice the probability of having a catastrophe given the past values of

the process, P
(
Ct,2|Dt

)
≃ 1

2
P

(
At,2|Dt

)
, stating that in this situation the system

will be spending twice the time in the alarm state than in the catastrophe region.

We analyzed both criteria in this work and from hereafter, the former criterion

will be designated by Criterion 2 and the last by Criterion 1.

In order to test the alarm system, three extra values of the series were simu-

lated: (x2, x3) = (xt, xt+1, xt+2). This procedure was repeated 10 000 times with

the same informative experience, Dt. With the alarm regions calculated before

for u = Q0.90 = 2.293 and for the two criteria already mentioned, we observed,

for each of the 10 000 samples, whether an alarm was given or not and whether

a catastrophe occurred or not. Results are given in Table 2.

Table 2: Results at time point t = 2000. Percentages in parenthesis.

Approach Criterion
Alarms Catastrophes

False Total Detected Total

True Parameters
1 1112 (0.8330) 1335 223 (0.2059) 1083
2 651 (0.8314) 783 132 (0.1273) 1037

QMLE Approach
1 1163 (0.8526) 1364 201 (0.1963) 1024
2 380 (0.8260) 460 80 (0.0771) 1037

Bayesian Approach
1 1161 (0.8401) 1382 221 (0.2103) 1051
2 668 (0.8477) 788 120 (0.1204) 997

Finally, we illustrate how the online prediction performs in practice. The

event to predict is

Ct,2 =
{

(xt+1, xt+2) ∈ R
2 : xt+1 ≤ u < xt+2

}
,

for t = 2000, ...,2010, again with u = Q0.90 = 2.293. Alarm regions and respective

operating characteristics are presented in Table 3 for Criterion 1 and in Table 4

for Criterion 2.

Overall, Criterion 1 provides better estimates for the operating character-

istics. The probability of detection, for instance, reaches values around 0.22 in

some cases for the classical approach whereas with Criterion 2 this probability is

nearly only half the former.
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Table 3: Operating characteristics at different time points with Criterion 1.

Approach t P
�
Ct,2|Dt

�
k Alarm Region α2 P

�
Ct,2|At,2

�
P
�
At,2|Ct,2

�
2000 0.0827 0.1100 [−∞, −2.0] ∪ [9.0, +∞] 0.1377 0.0852 0.1420
2001 0.1047 0.1047 [−∞, −1.5] ∪ [5.5, +∞] 0.1848 0.1093 0.1929
2002 0.0936 0.0936 [−∞, −2.0] ∪ [9.5, +∞] 0.1209 0.0980 0.1265
2003 0.0923 0.1073 [−∞, −1.5] ∪ [7.5, +∞] 0.2167 0.0947 0.2224
2004 0.0897 0.0977 [−∞, −1.5] ∪ [8.0, +∞] 0.2076 0.0914 0.2116

True 2005 0.0879 0.0979 [−∞, −1.5] ∪ [7.5, +∞] 0.2036 0.0893 0.2069
Parameters 2006 0.0803 0.0953 [−∞, −2.0] ∪ [9.0, +∞] 0.1311 0.0831 0.1356

2007 0.0687 0.0887 [−∞, −2.0] ∪ [8.5, +∞] 0.1286 0.0716 0.1340
2008 0.0573 0.0873 [−∞, −2.0] ∪ [9.5, +∞] 0.1194 0.0614 0.1279
2009 0.0508 0.0758 [−∞, −2.0] ∪ [8.5, +∞] 0.1045 0.0522 0.1075
2010 0.0545 0.0845 [−∞, −2.0] ∪ [8.5, +∞] 0.0924 0.0566 0.0960

2000 0.0844 0.1200 [−∞, −2.0] ∪ [10.5, +∞] 0.1413 0.0864 0.1446
2001 0.1097 0.1047 [−∞, −1.5] ∪ [6.0, +∞] 0.1867 0.1123 0.2002
2002 0.0969 0.0969 [−∞, −2.0] ∪ [9.5, +∞] 0.1230 0.1005 0.1276
2003 0.0946 0.1096 [−∞, −1.5] ∪ [7.5, +∞] 0.2202 0.0972 0.2262
2004 0.0919 0.1019 [−∞, −1.5] ∪ [7.5, +∞] 0.2110 0.0943 0.2165

QMLE 2005 0.0900 0.1000 [−∞, −1.5] ∪ [7.5, +∞] 0.2066 0.0917 0.2104
2006 0.0821 0.0971 [−∞, −2.0] ∪ [8.5, +∞] 0.1340 0.0843 0.1376
2007 0.0697 0.0897 [−∞, −2.0] ∪ [8.5, +∞] 0.1314 0.0723 0.1363
2008 0.0594 0.0894 [−∞, −2.0] ∪ [9.0, +∞] 0.1217 0.0619 0.1269
2009 0.0506 0.0756 [−∞, −2.0] ∪ [8.0, +∞] 0.1059 0.0528 0.1104
2010 0.0544 0.0844 [−∞, −2.0] ∪ [8.5, +∞] 0.0930 0.0566 0.0966

2000 0.0693 0.0950 [−∞, −2.0] ∪ [8.5, +∞] 0.1211 0.0717 0.1252
2001 0.0911 0.0911 [−∞, −1.5] ∪ [6.0, +∞] 0.1685 0.0939 0.1736
2002 0.0820 0.0820 [−∞, −2.0] ∪ [9.5, +∞] 0.1047 0.0845 0.1078
2003 0.0794 0.0994 [−∞, −2.0] ∪ [9.0, +∞] 0.1297 0.0820 0.1340
2004 0.0764 0.0914 [−∞, −2.0] ∪ [9.0, +∞] 0.1218 0.0797 0.1271

Bayesian 2005 0.0715 0.0915 [−∞, −2.0] ∪ [9.0, +∞] 0.1176 0.0779 0.1282
2006 0.0680 0.0830 [−∞, −2.0] ∪ [9.0, +∞] 0.1144 0.0711 0.1196
2007 0.0576 0.0776 [−∞, −2.0] ∪ [9.0, +∞] 0.1121 0.0598 0.1165
2008 0.0498 0.0748 [−∞, −2.0] ∪ [9.0, +∞] 0.1038 0.0513 0.1068
2009 0.0419 0.0669 [−∞, −2.0] ∪ [9.0, +∞] 0.0902 0.0441 0.0948
2010 0.0447 0.0747 [−∞, −2.0] ∪ [9.5, +∞] 0.0790 0.0467 0.0825

Table 4: Operating characteristics at different time points with Criterion 2.

Approach t P
�
Ct,2|Dt

�
k Alarm Region α2 P

�
Ct,2|At,2

�
P
�
At,2|Ct,2

�
2000 0.0827 0.1200 [−∞, −2.5] ∪ [11.5, +∞] 0.0864 0.0862 0.0901
2001 0.1047 0.1247 [−∞, −2.0] ∪ [10.5, +∞] 0.1153 0.1088 0.1198
2002 0.0936 0.1036 [−∞, −2.5] ∪ [12.0, +∞] 0.0717 0.1001 0.0767
2003 0.0923 0.1223 [−∞, −2.5] ∪ [12.0, +∞] 0.0958 0.0949 0.0985
2004 0.0897 0.1147 [−∞, −2.5] ∪ [12.0, +∞] 0.0872 0.0924 0.0899

True 2005 0.0879 0.1129 [−∞, −2.5] ∪ [11.5, +∞] 0.0835 0.0906 0.0862
Parameters 2006 0.0803 0.1053 [−∞, −2.5] ∪ [11.5, +∞] 0.0805 0.0831 0.0832

2007 0.0687 0.0987 [−∞, −2.5] ∪ [11.5, +∞] 0.0783 0.0726 0.0827
2008 0.0573 0.1023 [−∞, −2.5] ∪ [13.0, +∞] 0.0705 0.0630 0.0774
2009 0.0508 0.0908 [−∞, −2.5] ∪ [12.0, +∞] 0.0582 0.0531 0.0608
2010 0.0545 0.0945 [−∞, −2.5] ∪ [11.0, +∞] 0.0487 0.0593 0.0530

2000 0.0844 0.1300 [−∞, −3.0] ∪ [13.5, +∞] 0.0535 0.0905 0.0573
2001 0.1047 0.1297 [−∞, −2.0] ∪ [10.5, +∞] 0.1174 0.1104 0.1238
2002 0.0969 0.1069 [−∞, −2.5] ∪ [12.0, +∞] 0.0735 0.1027 0.0780
2003 0.0946 0.1246 [−∞, −2.5] ∪ [11.5, +∞] 0.0992 0.0974 0.1021
2004 0.0919 0.1169 [−∞, −2.5] ∪ [11.5, +∞] 0.0904 0.0947 0.0932

QMLE 2005 0.0900 0.1150 [−∞, −2.5] ∪ [11.0, +∞] 0.0863 0.0929 0.0891
2006 0.0821 0.1121 [−∞, −2.5] ∪ [12.5, +∞] 0.0831 0.0850 0.0860
2007 0.0697 0.0997 [−∞, −2.5] ∪ [11.0, +∞] 0.0808 0.0731 0.0847
2008 0.0594 0.0994 [−∞, −2.5] ∪ [11.5, +∞] 0.0723 0.0637 0.0776
2009 0.0506 0.0956 [−∞, −2.5] ∪ [13.0, +∞] 0.0593 0.0529 0.0619
2010 0.0544 0.0994 [−∞, −2.5] ∪ [11.5, +∞] 0.0491 0.0590 0.0533

2000 0.0693 0.1100 [−∞, −2.5] ∪ [12.5, +∞] 0.0718 0.0730 0.0757
2001 0.0911 0.1011 [−∞, −2.0] ∪ [8.5, +∞] 0.1002 0.0943 0.1037
2002 0.0820 0.0820 [−∞, −2.0] ∪ [9.5, +∞] 0.1047 0.0845 0.1078
2003 0.0794 0.1094 [−∞, −2.5] ∪ [12.0, +∞] 0.0793 0.0835 0.0835
2004 0.0764 0.1014 [−∞, −2.5] ∪ [12.0, +∞] 0.0724 0.0813 0.0771

Bayesian 2005 0.0715 0.1065 [−∞, −2.5] ∪ [13.5, +∞] 0.0689 0.0794 0.0766
2006 0.0680 0.0930 [−∞, −2.5] ∪ [11.5, +∞] 0.0663 0.0726 0.0707
2007 0.0576 0.0876 [−∞, −2.5] ∪ [11.5, +∞] 0.0643 0.0619 0.0692
2008 0.0498 0.0848 [−∞, −2.5] ∪ [12.0, +∞] 0.0576 0.0536 0.0619
2009 0.0419 0.0769 [−∞, −2.5] ∪ [11.5, +∞] 0.0470 0.0461 0.0517
2010 0.0447 0.0847 [−∞, −2.5] ∪ [11.5, +∞] 0.0388 0.0476 0.0413



52 Conceição Costa, Manuel Scotto and Isabel Pereira

5. EXPLORING THE IBOVESPA RETURNS DATA SET

In this section, we model the data set IBOVESPA which contains daily re-

turns of the S. Paulo Stock Market during the period 04/07/1994 to 02/10/2008

(www.ipeadata.gov.br). Data consists on the closing rates of stocks, It, being the

log-returns calculated as yt = ln(It/It−1), t =1, ..., n. The results obtained from

this procedure were then multiplied by 100 just to ensure the stability of poste-

rior calculations. Sáfadi and Pereira ([25]) proved that the FIAPARCH(1, d, 1)

provides a good fit for this kind of data sets. To fit a FIAPARCH(1, d, 1) model

for the log-returns we proceeded as follows: first, the AR(10) model yt = 0.0689 +

0.0645 yt−10 + xt, is fitted, using the least squares method, in order to eliminate

serial dependence. The time series plot of both the IBOVESPA daily returns and

the residuals (xt), hereafter designated by x-returns, are exhibited in Figure 2

below. This is, indeed, the set of data reported to show the common features

of financial time series mentioned in Section 1, that is weak dependence without

any evident pattern on the series level and significative dependence on squared

and absolute returns.

Figure 2: Plot of the IBOVESPA daily returns (left) and the x-returns (right)
from 04/07/1994 to 02/10/2008.

The FIAPARCH(1, d, 1) model was fitted to the series of x-returns by

means of the QMLE procedure and the Bayesian approach described in Section 3.

In both cases the adequacy of the fit was checked through the analysis of the stan-

dardized residuals. Table 5 presents the estimates obtained for both procedures.

Table 5: Parameter estimates. Standard deviations in parenthesis.

QMLE Bayesian Estimates

ω 0.3903 (0.1092) 0.4227 (0.0576)
φ 0.0957 (0.1334) 0.1289 (0.0397)
γ 0.6782 (0.1363) 0.7813 (0.1108)
β 0.2794 (0.1693) 0.3246 (0.0568)
δ 1.2744 (0.1274) 1.2218 (0.1008)
d 0.2952 (0.0642) 0.3020 (0.0258)
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Since the IBOVESPA x-returns are related to the daily changes of the stock

indexes of S. Paulo Stock Market, we considered that the event of interest is

given by

Ct,2 =
{

(xt+1, xt+2) ∈ R
2 : xt+1 ≥ u > xt+2

}
,

with t = 3450, ..., 3516, corresponding to July, August and September of 2008,

and u = Q0.25 = −1.219. Note that, the downcrossing event Ct,2 can be view as

related with a stock market crash. Moreover, the choice of k was done according

only to Criterion 1: P
(
Ct,2|Dt

)
≃ 1

2
P

(
At,2|Dt

)
. Two reasons justify this choice.

First, Criterion 2 is difficult to implement since P
(
Ct,2|At,2, Dt

)
may never get so

close to P
(
At,2|Ct,2, Dt

)
or when it does, some operating characteristics may show

not so good results (at least as compared with those obtained with Criterion 1).

Secondly, Criterion 1 results in better estimates of the operating characteristics.

For the time period considered, the total number of alarms, the total number

of catastrophes, the number of false alarms and the number of detected events

was counted. Results are presented in Table 6. A closer look to Table 6 reveals

that the estimate of the probability of the alarm being correct is 50% in July

and August and raises to 100% in September. In addition, the estimate of the

probability of detecting a catastrophe remains around 20% during the time period

considered. We noticed that this online prediction system exhibits an adaptive

behavior, that is, as long as the available information is integrated within the

informative experience, the system adapts itself in order to produce the minimum

number of false alarms. This fact explains on one hand the high estimate of the

probabilities of the alarm given being correct and on the other hand that the

system produces few alarms, so the probability of detection can not be very high.

Table 6: Results of the alarm system with u = −1.219.
Percentages in parenthesis.

Month
Alarms Catastrophes

False Total Detected Total

July 1 (0.50) 2 1 (0.16) 6
August 1 (0.50) 2 1 (0.20) 5
September 0 (0.00) 3 3 (0.27) 11

Trimester 2 (0.28) 7 5 (0.22) 22
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