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1. INTRODUCTION

We consider the problem of estimating, under squared error loss, the lo-

cation parameter θ of a p-variate spherically symmetric distribution under the

constraint ‖θ‖ ≤ m, with m > 0 known. With several authors having obtained

interesting results relative to this problem, and more generally for restricted pa-

rameter space problems (see Marchand and Strawderman, 2004; van Eeden, 2006

for useful reviews), we focus on the determination of benchmark estimators such

as the maximum likelihood estimator (MLE), the minimum risk equivariant es-

timator (MRE), and the linear minimax estimator (LMX). In this regard, Marc-

hand and Perron (2001) provide for the multivariate normal case improvements

on the (always) inadmissible MLE for all (m, p). These include Bayesian im-

provements, but conditions are then required on (m, p). Complementary findings

for the multivariate normal and parallel findings for other spherically symmet-

ric distributions, including in particular multivariate student distributions, were

obtained respectively by Fourdrinier and Marchand (2010) and Marchand and

Perron (2005); but again conditions for the studied priors π (typically boundary

uniform, uniform on spheres, and fully uniform) of the form m ≤ cπ(p) for the

Bayes estimator δπ to dominate the MLE are necessitated. Hence, the prob-

lem of finding a Bayesian or an admissible improvement for any (m, p), for any

given spherically symmetric distribution remains unsolved (even for p = 1 or the

multivariate normal distribution).

Alternatively, for the objective of passing the minimum test of improving

upon the minimum risk equivariant estimator, positive findings for the univariate

case (p = 1) were obtained by Marchand and Strawderman (2005), as well as

by Kubokawa (2005). The former establish a general dominance result for the

fully uniform prior Bayes estimator, which actually applies more generally for a

wider not necessarily symmetric class of location model densities and location

invariant losses. The latter provides on the other hand a large class of priors

which lead to Bayesian improvements for the univariate version of our problem

of symmetric densities and squared error loss. A key feature of these dominance

results is the use of Kubokawa’s (1994) Integral Expression of Risk Difference

(IERD) technique.

For multivariate settings, a lovely result by Hartigan (2004) tells us that

for multivariate normal distributions, the fully uniform Bayes procedure improves

upon the minimum risk equivariant estimator. The result is actually more gen-

eral and applies for convex restricted parameter spaces with non-empty interiors.

However, Hartigan’s result does require normality and hence a spherically sym-

metric analog remains an open question. Moreover, Hartigan’s result does not

apply to the benchmark linear minimax estimator, which represents itself a simple

improvement on the minimum risk equivariant estimator.
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With the above background, our motivation here resides in extending the

univariate dominance results to the multivariate case, extending Hartigan’s result

for balls to spherically symmetric distributions, and considering improvements

upon the linear minimax procedure as well. We provide preliminary results in

this direction in terms of sufficient conditions for dominating either the mini-

mum risk equivariant estimator, the linear minimax estimator, or both. Our

treatment possesses the interesting feature of being unified with respect to the

dimension p and the given spherically symmetric distribution. Moreover, we ar-

rive at our dominance results through a novel multivariate variant of Kubokawa’s

IERD technique. The main dominance results are presented in Section 2, and

various examples or illustrations are pursued in Section 3. These include uni-

variate distributions, the multivariate normal distribution, and scale mixture of

multivariate normal distributions.

2. MAIN RESULTS

Let X be a p-variate random vector with spherically symmetric density

(2.1) f
(

‖x − θ‖2
)

,

where the location parameter θ is constrained to a ball centered at the origin and

of radius m, say Θm. We seek improvements on the minimum risk equivariant

(MRE) estimator δ0(X) = X, and the linear minimax estimator δLMX(X) =
m2

m2+pσ2
X under squared error loss L(θ, d) = ‖d − θ‖2, where Eθ(‖X− θ‖2) =

p σ2 < ∞. Hereafter, we denote the norms of X, x, and θ by R, r, and λ respec-

tively. Our results bring into play the orthogonally invariant in θ and nonnegative

quantities H(t, λ) =
Eθ(θTX| ‖X‖≥t)
Eθ(XTX| ‖X‖≥t)

and H∗(t, λ) =
λEθ(‖X‖‖X‖≥ t)
Eθ(|XTX‖X‖≥ t)

, t≥ 0, λ≥ 0.

We will make use of the inequality H(t, λ) ≤ H∗(t, λ) for all t ≥ 0, λ ≥ 0, which

follows as a simple application of the Cauchy–Schwartz inequality. Now, we

present the main dominance results of this paper.

Theorem 2.1. For a model as in (2.1), δg(X) = g(‖X‖)X dominates g(0)X,

whenever:

(i) g is absolutely continuous, nonconstant, and nonincreasing;

(ii) and g(r) ≥ supλ∈[0,m]H(r, λ) for all r ≥ 0.

Moreover, if conditions (i) and (ii) are satisfied, and

(iii) g(0) ∈
[

m2−pσ2

m2+pσ2
, 1
)

,

then δg(X) = g(‖X‖)X also dominates δ0(X) = X.
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Remark 2.1. By virtue of the inequality H(t, λ) ≤ H∗(t, λ) for all t ≥ 0,

λ ≥ 0, condition (ii) of Theorem 2.1 can be replaced by the weaker, but never-

theless useful, condition

(ii ′) and g(r) ≥ supλ∈[0,m]H
∗(r, λ) for all r ≥ 0.

Proof of the Theorem: It is straightforward to verify that g(0)X domi-

nates X under condition (iii), so that conditions for which δg(X) dominates

g(0)X, such as (i) and (ii), are necessarily conditions for which δg(X) = g(‖X‖)X
also dominates δ0(X) = X. Now, using Kubokawa’s IERD technique, the risk dif-

ference between the estimators δg(X) and g(0)X can be written as

1

2
∆(θ) =

1

2

[

R
(

θ, g(‖X‖)X
)

− R
(

θ, g(0)X
)

]

=
1

2

[

Eθ

∥

∥g(‖X‖)X − θ
∥

∥

2 −
∥

∥g(0)X − θ
∥

∥

2
]

=
1

2
Eθ

(∫ ‖X‖

0

∂

∂t

∥

∥g(t)X − θ
∥

∥

2
dt

)

=

∫

Rp

∫ ‖x‖

0
g′(t)

[

g(t)x − θ
]T

xf
(

‖x − θ‖2
)

dt dx

=

∫ ∞

0
g′(t)

∫

{x∈Rp: ‖x‖≥t}
[

g(t)xT x − θT x
]

f
(

‖x − θ‖2
)

dx dt .

Now, observe that conditions (i) and (ii) imply that ∆(θ) ≤ 0 for all θ ∈ Θm,

establishing the result.

Here are some further remarks and observations in relationship to Theorem 2.1.

The nonincreasing property of condition (i) is not necessarily restrictive.

Indeed, for the multivariate normal case, Marchand and Perron (2001, theorem5)

establish that the nonincreasing property holds for all Bayesian estimators asso-

ciated with symmetric, logconcave prior densities on [−m, m]. The conditions

of Theorem 2.1 suggest the bounds (ii) and (ii ′) themselves supλ∈[0,m]H(r, λ)

and supλ∈[0,m]H
∗(r, λ) as candidate g functions. These functions are of the form

H(r, λ(r)) and H∗(r, λ(r)), where λ(·) is some function taking values on [0, m].

All such functions lead to range preserving estimators δg; i.e., ‖δg(x)‖ ≤ m for

all x ∈ R
p; since for all r ≥ 0 and ‖θ‖ = λ(r) :

0 ≤ H(r, λ(r)) ≤ H∗(r, λ(r)) =
λ(r)Eθ

(

‖X‖‖X‖ ≥ r
)

Eθ

(

|XTX ‖X‖ ≥ r
) ≤ λ(r)

r
≤ m

r
,

and since ‖δg(x)‖ ≤ m for all x ∈ R
p whenever 0 ≤ g(r) ≤ m

r for all r > 0.

Finally, as a consequence of the above, observe that the projection of δ0(X)

onto Θm, given by δgp with gp(r) = m
r ∧1, satisfies the conditions of Theorem2.1.

We now focus on related implications for the estimators δH(X)=H(‖X‖,m)X

and δH∗(X) = H∗(‖X‖, m)X, which will turn out in several cases to be the small-

est possible g’s satisfying respectively conditions (ii) and (ii ′) of Theorem 2.1.
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Corollary 2.1.

(a) If H(r, λ) increases in λ ∈ [0, m] for all r ≥ 0, and decreases in r ∈
[0,∞] for all λ ∈ [0, m], then δH(X) = H(‖X‖, m)X dominates both

the linear minimax estimator δLMX(X) and the MRE estimator δ0(X);

(b) If H∗(r, λ) increases in λ ∈ [0, m] for all r ≥ 0, then δH∗(X) =

H∗(‖X‖, m)X dominates the MRE estimator δ0(X).

Proof: Part (a) follows as a direct application of Theorem 2.1 as H(0, m) =
Eθ(θTX)
Eθ(XTX)

= m2

m2+pσ2
∈
[m2−pσ2

m2+pσ2
, 1
)

, for ‖θ‖= m. Part (b) follows for two reasons.

First, for any positive random variable Y with density gY , and its biased version

W with density proportional to wgY (w), the ratio
E(Y 2|Y >t)
E(Y |Y >t)

= E(W |W > t) is

increasing in t, which implies that H∗(·, m) is a decreasing function on [0,∞).

Secondly, for ‖θ‖ = m, H∗(0, m) = m
Eθ(‖X‖)
Eθ(‖X‖2)

=
Eθ(‖X/m‖)
Eθ(‖X/m‖2)

<
Eθ(‖X/m‖)

2

Eθ(‖X/m‖2)
< 1,

since Eθ(‖X‖) > ‖Eθ(X)‖ = m.

3. EXAMPLES

The following subsections are devoted to applications of Corollary 2.1, with

the key difficulty arising in checking the monotonicity conditions relative to H

and H∗. We focus on general univariate cases (subsection 3.1), the multivariate

normal distribution (subsection 3.2.), and scale mixtures of multivariate normal

distributions (subsection 3.3).

3.1. Univariate spherically symmetric distributions

We express the symmetric univariate densities in (2.1) as

(3.1) fθ(x) = e−q(x−θ) ,

and restrict ourselves to cases where

q ∈ Q∗ =
{

q : q(·) is increasing and convex on (0,∞),

and q′(·) is concave on (0,∞)
}

.

Examples of such distributions include normal, Laplace, exponential power den-

sities with q(y) = α yβ + c, α > 0, 1 ≤ β ≤ 2; Hyperbolic Secant, Logistic, Gen-

eralized logistic densities with q(y) = −y + 2
α log(1 + eαy) + c, α > 0; and Cham-

pernowne densities with q(y) = log(cosh(y) + β), β ∈ [0, 2], (also see Marchand
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and Perron, 2009; Marchand et al., 2008). The next theorem establishes for such

densities the applicability of part (a) of Corollary 2.1 and dominance of δH(X)

over both the linear minimax estimator, δLMX(X), and the MRE estimator δ0(X).

Theorem 3.1. For model densities as in (3.1) with q ∈ Q∗, the estimator

δH(X) = H(‖X‖, m)X dominates both the linear minimax estimator δLMX(X)

and the MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H(r, λ) decreases

in r ∈ [0,∞) for all λ ∈ [0, m], and increases in λ ∈ [0, m] for all r ≥ 0. First,

H(r, λ) can be written as

H(r, λ) = λ

Z ∞

r
x
(

f0(x−λ) − f0(x+λ)
)

dxZ ∞

r
x2
(

f0(x−λ) + f0(x+λ)
)

dx

= λ2Eλ





tanh
(

(

q(Y +λ) − q(Y−λ)
)

/2
)

λY



 ,

where Y is a random variable with density proportional to y2(f0(y−λ)+f0(y+λ))·
·1[r,∞)(y). Such a family of densities with parameter r has increasing monotone

likelihood ratio in Y . Furthermore, since q ∈ Q∗, a result of Marchand et al.

(2008) (Lemma 1, part e) tells us that the inner function of the above expecta-

tion in Y is nonincreasing. Hence, we conclude that, for all λ ∈ [0, m], H(λ, ·)
decreases on [0,∞). Turning to the monotonicity of H(·, r), begin by writing

H(r, λ) = λ

Z ∞

r
x
(

f0(x−λ) − f0(x+λ)
)

dxZ ∞

r
x2
(

f0(x−λ) + f0(x+λ)
)

dx

= λ

Z ∞

r−λ
(y +λ)f0(y) dy −

Z ∞

r+λ
(y−λ)f0(y) dyZ ∞

r−λ
(y +λ)2f0(y) dy +

Z ∞

r+λ
(y−λ)2f0(y) dy

= λ
A(r, λ)

B(r, λ)
,

where A(r, λ) and B(r, λ) are the numerator and denominator of the above frac-

tion, respectively. Manipulations yield:

B2(r, λ)
∂H(r, λ)

∂λ
= A(r, λ)B(r, λ) + λA′(r, λ)B(r, λ) − λA(r, λ)B′(r, λ)

=
[

l(r, λ) + A1(r, λ)
]

·
[

B1(r, λ) + rλ
(

λf0(r−λ) + λf0(r+λ) − rf0(r−λ) + rf0(r+λ)
)

]

+
[

rλ
(

f0(r−λ) + f0(r+λ)
)

+ A1(r, λ)
] [

B1(r, λ) + λ l(r, λ)
]

= rλ G(r, λ)f0(r−λ) + 2A1(r, λ)B1(r, λ) + rλ2f0(r+λ) l(r, λ)

+ r2λf0(r+λ) l(r, λ) + rλf0(r+λ)B1(r, λ) + rλ2f0(r+λ) l(r, λ) ,
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where

G(r,λ) = 2λ

∫ r+λ

r−λ
yf0(y)dy − r

∫ r+λ

r−λ
yf0(y)dy +

∫ ∞

r−λ
y2f0(y)dy +

∫ ∞

r+λ
y2f0(y)dy ,

l(r, λ) =

∫ r+λ

r−λ
yf0(y) dy ,

A1(r, λ) = λ

(∫ ∞

r−λ
f0(y) dy +

∫ ∞

r+λ
f0(y) dy

)

,

B1(r, λ) =

∫ ∞

r−λ
y2f0(y) dy +

∫ ∞

r+λ
y2f0(y) dy .

Now, observe that for all r ≥ 0, λ ∈ [0, m], the quantities B1(r, λ), A1(r, λ), and

(r, λ) are nonnegative. Hence, to show the positivity of ∂H(r,λ)
∂λ , it will suffice to

show the positivity of G(r, λ). But, we have

G(r, λ) ≥
∫ r+λ

r−λ
yf0(y) (2λ − r + y) dy

≥
∫ r+λ

0
λ y f0(y) dy 1[λ,∞)(r) +

∫ λ−r

r−λ
y f0(y) (2λ − r + y) dy 1[0,λ)(r)

≥
∫ λ−r

0
2 y2f0(y) dy 1[0,λ)(r) ≥ 0 ,

which completes the proof.

3.2. Multivariate normal distributions

We consider here multivariate normal models in (2.1) X ∼ Np(θ, σ
2) with

‖θ‖ ≤ m. We take σ2 = 1 without loss of generality (since X
σ ∼ Np(θ

′= θ
σ , Ip)

with ‖θ′‖ ≤ m′ = m
σ ). We require the following key properties relative to ρ(λ, r) =

Eθ

(

θT X
‖X‖ | ‖X‖= r

)

, where λ = ‖θ‖. These properties involve modified Bessel func-

tions Iv of order v, and more specifically ratios of the form ρv(t) = Iv+1(t)/Iv(t),

t > 0.

Lemma 3.1 (Watson, 1983; Marchand and Perron, 2001).

(i) We have ρ(λ, r) = λρp/2−1(λ r);

(ii) ρp/2−1(·) is increasing and concave on [0,∞), with ρp/2−1(0) = 0 and

lim
t→∞

ρp/2−1(t) = 1;

(iii) ρp/2−1(t)/t is decreasing in t with lim
t→0+

ρp/2−1(t)/t = 1/p ;

(iv) ρp/2(t) = ρ−1
p/2−1(t) − p/t.
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Denoting fp(·, λ) and F̄p(·, λ) as the probability density and survival func-

tions of R = ‖X‖ ∼
√

χ2
p(λ

2), we will also require the following useful properties.

Lemma 3.2.

(i) We have fp(r, λ) = r
(

r
λ

)p/2−1
Ip/2−1(rλ) exp

{

− r2+λ2

2

}

;

(ii) r2fp(r, λ) = λ2fp+4(r, λ) + pfp+2(r, λ);

(iii) rfp(r, λ) ρp/2−1(λr) = λfp+2(r, λ);

(iv) the ratio
F̄p+2(r,λ)

F̄p(r,λ)
decreases in λ ∈ [0,∞), for all p ≥ 1 and r > 0.

Proof: Parts (ii) and (iii) follow directly from (i), while (i) consists of a well

known Bessel function representation of the noncentral chi-square distribution.

Part (iv) follows from the identity 2 ∂
∂λ F̄p(r, λ) = F̄p+2(r, λ) − F̄p(r, λ), and the

logconcavity of F̄p(r, ·) on [0,∞) (see Das Gupta and Sarkar, 1984; Finner and

Roters, 1997).

We now seek to apply part (a) of Corollary 2.1.

Theorem 3.2. For multivariate normal densities, the estimator δH(X) =

H(‖X‖, m)X dominates both the linear minimax estimator δLMX(X) and the

MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H(r, λ) decreases

in r ∈ [0,∞) for all λ ∈ [0, m], and increases in λ ∈ [0, m] for all r ≥ 0. Making

use of Lemmas 3.1 and 3.2, we obtain

H(r, λ) =
Eθ

(

‖X‖Eθ

(

θT X
‖X‖ | ‖X‖≥ r

))

Eθ

(

‖X‖2 | ‖X‖≥ r
)

=

Z r

∞
y Eθ

(

θT X
‖X‖ | ‖X‖= y

)

fp(y, λ) dyZ ∞

r
y2fp(y, λ) dy

=

Z r

∞
y λρp/2−1(λy)fp(y, λ) dyZ ∞

r
y2fp(y, λ) dy

(3.2)

=

Z r

∞
λ2fp+2(y, λ) dyZ ∞

r
y2fp(y, λ) dy

=







p

λ2
+

Z ∞

r
fp+4(y, λ) dyZ ∞

r
fp+2(y, λ) dy







−1

=

{

p

λ2
+

F̄p+4(r, λ)

F̄p+2(r, λ)

}−1

.
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The monotonicity property of H(r, ·) on [0, m] for all r ≥ 0 now follows from the

above expression and part (iv) of Lemma 3.2.

Now, to show that H(r, λ) decreases in r, make use of (3.2) to write

H(r, λ) = λ Er





EY

(

θT X
‖X‖ | ‖X‖= Y

)

Y





= λ Er

(

ρp/2−1(λY )

Y

)

,

where Y has density proportional to y fp(y, λ)1[r,∞)(y). Since this family of

densities with parameter r has increasing monotone likelihood ratio in Y , we

conclude indeed that H(r, λ) decreases for r ≥ 0 for all λ∈ [0, m] by making use

of part (iii) of Lemma 3.1.

3.3. Scale mixtures of multivariate normal distributions

We consider here in this subsection scale mixtures of multivariate normal

distributions where X admits the representation: X|Z = z ∼ Np(θ, zIp), Z hav-

ing Lebesgue density g on R
+. The corresponding density in (2.1) is of the form

∫ ∞

0
(2πz)−p/2 exp

{

−‖x − θ‖2

2 z

}

g(z) dz ;(3.3)

and we further assume that g is logconcave on either R
+ or some open interval

(a, b) of R
+. Uniform densities on (a, b) are included. With such a representation,

since X/
√

Z |Z = z ∼ Np

(

θ/
√

z, Ip

)

, we infer from part (i) of Lemma 3.2 that the

density function of R = ‖X‖ is given by

∫ ∞

0

y

z

(

y

λ

)p/2−1

Ip/2−1

(

λy

z

)

exp

{

−y2 + λ2

2 z

}

g(z) dz .(3.4)

We now seek to apply part (a) of Corollary 2.1.

Theorem 3.3. For scale mixtures of multivariate normal densities as in

(3.3) with g logconcave, the estimator δH∗(X) = H∗(‖X‖, m)X dominates the

MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H∗(r, ·) is non-

decreasing on [0, m] for all r ≥ 0 under the given logconcave assumption on g.
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Starting from the definition of H∗ and making use of 3.4, we obtain

H∗(r, λ) =
λ Eθ

(

R |R≥ r
)

Eθ

(

R2|R≥ r
)

=
λ
Z ∞

r

Z ∞

0
y

p
2
+1 g(z)

z I p
2
−1

(yλ
z

)

e−
y2

+λ2

2z dz dyZ ∞

r

Z ∞

0
y

p
2
+2 g(z)

z I p
2
−1

(yλ
z

)

e−
y2+λ2

2 z dz dy

=

Z ∞

r/λ

Z ∞

0
x

p
2
+1 g(λ2 t)

t I p
2
−1

(

x
t

)

e−
1+x2

2 t dt dxZ ∞

r/λ

Z ∞

0
x

p
2
+2 g(λ2 t)

t I p
2
−1

(

x
t

)

e−
1+x2

2 t dt dx
,

with the change of variables (y, z) = (λx, λ2t). Simple differentiation leads to
∂
∂λH∗(r, λ) = 1

B2
{A1 −A2 + A3 −A4}, where B is the above denominator of H∗,

A1 = 2λ

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
x

p
2
+1 g′(λ2 t) I p

2
−1

(

x

t

)

e−
1+x2

2 t dt dx ,

A2 = 2λ

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
x

p
2
+2 g′(λ2 t) I p

2
−1

(

x

t

)

e−
1+x2

2 t dt dx ,

A3 =
r

λ2

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

0

g(λ2 t)

t

(

r

λ

)
p
2
+1

I p
2
−1

(

r

λt

)

e−
λ2

+r2

2λ2 t dt ,

A4 =
r

λ2

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

0

g(λ2 t)

t

(

r

λ

)
p
2
+2

I p
2
−1

(

r

λt

)

e−
λ2

+r2

2λ2 t dt ,

with M(x, t) = g(λ2 t)
t x

p
2
+1

I p
2
−1

(

x
t

)

e−
1+x2

2t . Obviously, A3 − A4 ≥ 0, because

x≥ r
λ on the domain of integration. Furthermore, by setting h(z) =

(

−g′(z)/g(z)
)

·
·1{z:g(z)>0}(z), we have

A1 − A2 = 2λ

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
h(λ2 t) xt M(x, t) dt dx

− 2 λ

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
h(λ2 t) t M(x, t) dt dx .

Now, since h is increasing with the logconcavity of g, the FKG’s inequality (see

Lemma A.1 in the Appendix) implies that A1 − A2 is nonnegative whenever

M(x1, t2)M(x2, t1) − M(x1, t1)M(x2, t2) ≤ 0, for 0 ≤ x1 ≤ x2 and 0 ≤ t1 ≤ t2.

From the definition of M , manipulations yield for non-zero values of M(x1, t2)·
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·M(x2, t1) − M(x1, t1)M(x2, t2):

t1 t2 e(1/t1+1/t2)

(x1x2)p/2+1 g(λ2 t1) g(λ2 t2)

{

M(x1, t2)M(x2, t1) − M(x1, t1)M(x2, t2)
}

=

= I p
2
−1

(

x1

t2

)

I p
2
−1

(

x2

t1

)

− I p
2
−1

(

x1

t1

)

I p
2
−1

(

x2

t2

)

exp
{

−(x2
1−x2

2)(1/t1−1/t2)
}

= I p
2
−1

(

x1

t2

)

I p
2
−1

(

x2

t2

)

[

I p
2
−1

(

x2

t1

)

I p
2
−1

(

x2

t2

) −
I p

2
−1

(

x1

t1

)

I p
2
−1

(

x1

t2

) exp
{

−(x2
1−x2

2)(1/t1−1/t2)
}

]

≤ I p
2
−1

(

x1

t2

)

I p
2
−1

(

x2

t1

)(

t2
t1

)p/2−1[

1 − exp
{

(x2
2 − x2

1 + x1)(1/t1−1/t2)
}

]

≤ 0 ,

where the former inequality follows from the Ross inequality applications

(see Lemma A.2 in Appendix):
Ip/2−1(x2/t1)

Ip/2−1(x2/t2) ≤ (t2/t1)
p/2−1 and

Ip/2−1(x1/t1)

Ip/2−1(x1/t2) ≥
(t2/t1)

p/2−1 exp
{

x1/t1 −x1/t2
}

, and where the latter inequality follows from the

fact that (x2
2 − x2

1 + x1) (1/t1 − 1/t2) ≥ 0, for 0 ≤ x1 ≤ x2 and 0 ≤ t1 ≤ t2.

APPENDIX

The FKG inequality due to Fortuin, Kasteleyn, and Ginibre (1971) is useful

for Theorem 3.3.

Lemma A.1 (FKG inequality). Suppose a p-variate random variable X

is distributed with probability density function ξ and with positive measure ν.

For two points y = (y1, ..., yp) and z = (z1, ..., zp), in the sample space of X, we

define y ∧ z = (y1∧z1, ..., yp∧zp) and y ∨ z = (y1∨z1, ..., yp∨zp), where a∧ b =

min(a, b), a∨ b = max(a, b). Suppose that ξ satisfies ξ(y) ξ(z) ≤ ξ(y∨z) ξ(y∧z)

and that α(y), β(y) are nondecreasing in each argument and α, β and α β are

integrable with respect to ξ. Then
∫

αβξ dν ≥
∫

αξ dν
∫

βξ dν.

The following lemma, referred to as the Ross inequality is due to Joshi

and Bissu (1991) and establishes useful bounds for a ratio of modified Bessel

functions.

Lemma A.2. Suppose Iv(x) and Iv(y) are two modified Bessel functions.

Moreover, suppose that y ≥ x and v ≥ −1
2 . Then

ex−y

(

x

y

)v

≤ Iv(x)

Iv(y)
≤
(

x

y

)v

.
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