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Abstract:

• Max-autoregressive models for time series data are useful when we want to make
inference about rare events, mainly in areas like hydrology, geophysics and finance.
In fact, they are more convenient for analysis than heavy-tailed ARMA, as their
finite-dimensional distributions can easily be written explicitly. The recent power
max-autoregressive model (pARMAX) has the interesting feature of describing an
asymptotic independent tail behavior, a property that can be observed in various
data series. An estimator of the model parameter c (0 < c < 1) is already available
in the literature, but only in the restrictive case c > 1/2. Here it is presented an
estimator for all c ∈ (0, 1). Consistency and asymptotic normality are also stated.
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1. INTRODUCTION

Extreme Value Theory (EVT) is an important tool for many applied sci-

ences whenever we are faced with modeling high values of certain phenomena.

Ocean wave modeling, wind engineering, thermodynamics of earthquakes, risk

assessment on financial markets are some examples. The first results were develo-

ped considering independent observations but, more recently, models for extreme

values have been constructed under the more realistic assumption of temporal de-

pendence. Among these models, stationary Markov chains are very interesting,

specially because they may have a somewhat simple treatment in what concerns

extremal properties. The max-autoregressive moving average processes MARMA

(Davis and Resnick [7]), and also the particular case MAR(1) or ARMAX, given

by,

Xi = kXi−1 ∨Wi ,

with 0 < k < 1 and {Wi}i∈Z
i.i.d. (Alpuim [2]; Canto e Castro [6]; Ancona-

Navarrete and Tawn [3]; Beirlant et al. [4]; Lebedev [12]) are some examples.

Heavy tailed MARMA and ARMA are both good choices for modeling time se-

ries data with sudden large peaks, although the former are more convenient for

analysis as their finite-dimensional distributions can easily be written explicitly.

More recently, some careful attention has been given to the statistical mode-

ling of the tail dependence between consecutive pairs from a stationary first-order

Markov chain, since it is important to distinguish asymptotic dependence from

asymptotic independence. More precisely, according to Bortot and Tawn ([5]), a

Markov chain {Yi} is said to be asymptotically tail dependent or independent,

whenever b > 0 or b = 0, respectively, in the limit below:

lim
y→y∗

P
(
Y2 >y |Y1 >y

)
= b ,

where y∗ is the right-endpoint of Y1, i.e., y∗ = sup{y : P (Y1 ≤ y) < 1}. For asymp-

totically tail independent Markov chains, the dependence between exceedances of

y gradually decreases as y → y∗, which leads to an extremal feature increasingly

resembling an i.i.d. sequence at high levels. As pointed out in Bortot and Tawn

([5]), this phenomenon has been noticed in a number of data and theoretical ap-

plications. In these cases, procedures as in Smith et al. ([16]) assuming that the

limiting behavior of the chain is exact above a fixed high threshold, and hence

the dependence structure between consecutive random variables (r.v.’s) above the

threshold can be modeled through a bivariate extreme value distribution, are not

suitable. This problem is overcome by setting the way how P
(
Y2 >y |Y1 >y

)

converges to zero, as y → y∗, which involves the coefficient of asymptotic tail

dependence η (Ledford and Tawn [13], [14]). This is a nontrivial class, including

many commonly studied processes, such as Gaussian Markov chains (Sibuya [15]).
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Coefficient η characterizes the asymptotic tail dependence behavior, i.e., η = 1

corresponds to tail dependence whilst η < 1 means asymptotic tail independence,

with η = 1/2 occurring for the (almost) independent case. The ARMAX process,

which has unit η, is in the group of tail dependent Markov chains (Ferreira and

Canto e Castro [8]) and hence is not suitable to model data series expressing the

described phenomenon.

Ferreira and Canto e Castro ([8]) introduced the power max-autoregressive

process (in short, pARMAX), defined as,

Xi = Xc
i−1 ∨ Zi , 0 < c < 1, i ∈ Z ,

with {Zi} i.i.d., for which η is a function of the model parameter c, under

the very mild assumption of heavy tailed innovations. More precisely, we have

η = max(1/2, c) and hence pARMAX is an asymptotic tail independent process,

even almost independent in cases c ≤ 1/2. Hence, it is a suitable model to de-

scribe the above mentioned phenomenon of time series exhibiting asymptotic tail

independence. In Figure 1, the similarity between the sample paths of heavy tailed

pARMAX and AR(1) processes, in this case based on marginal d.f.’s Pareto(1/γ),

with shape parameter γ > 0, given by

K(x) = 1 − x−1/γ , x ≥ 1 ,(1.1)

indicate that the former can be considered as an alternative for data modeling,

particularly with respect to extreme values. The pARMAX process has easily

derived extremal properties and also easily explicited finite-dimensional distri-

butions (Ferreira and Canto e Castro [8], [9]). Moreover, a generalization of

pARMAX has also been applied in modeling financial data (Ferreira and Canto

e Castro [10]). Based on the estimation procedure for the Ledford and Tawn

coefficient η, Ferreira and Canto e Castro ([9]) presented consistent and asymp-

totically normal estimators for the process parameter c, which applies only in

cases where c > 1/2. Following a similar procedure to that of Lebedev ([12]) to

estimate the parameter of unit Fréchet ARMAX, an estimator for the pARMAX

parameter c is derived, this time covering all values of c ∈ (0, 1). From a Klotz’s

result (Klotz [11], Theorem 1), consistence and asymptotic normality are easily

stated.
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Figure 1: 5000 realizations of pARMAX, Xi =Xc
i−1

∨Zi, on the left, and of AR(1),
Xi = cXi−1 +Zi, on the right, with, from top to bottom, c = 0.7, 0.8, 0.9,
respectively, and with marginal Pareto(0.7).

2. THE pARMAX PROCESS

Consider {Zi} a sequence of i.i.d. copies of a r.v., Z, having real nonnegative

support and marginal d.f. FZ . A sequence {Xi} is said to be a pARMAX process

if,

Xi = Xc
i−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ...(2.1)

with Xi independent of Zj , for all integer i < j. The sequence {Zi} is also known

as the innovations sequence of the process.

In the sequel we consider that {Zi} has support in [1, ∞[, a necessary

condition for stationarity.

Let K be the marginal distribution function (d.f.) of the process. Hence K

is a solution of the equation

K(x) = K(x1/c)FZ(x) .(2.2)

(See Ferreira and Canto e Castro [8], [9] for details). An example of a stationary

pARMAX process is given below.
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Example 2.1. Consider {Zi} with common d.f.,

FZ(x) = c1{x=1} +
1 − x−1/γ

1 − x−1/(cγ)
1{x>1} ,

where 1{·} is the indicator function. Hence, the Pareto(1/γ) d.f. given in (1.1)

satisfies (2.2), being, therefore, a stationary distribution for Xi.

The k-step transition probability function (t.p.f.) from x to ]−∞, y], given

by,

Qk
(
x, ]−∞, y]

)
:= P

(
Xn+k ≤ y |Xn = x

)
=

K(y)

K(y1/ck
)
1n

x≤y1/ck
o ,(2.3)

where the last step is due to (2.2), will be used in the forward results.

2.1. Parameter estimation

Now we will present an estimator for the pARMAX parameter (c) based

on a similar procedure as in Lebedev ([12]) for unit Fréchet max-autoregressive,

Xi = max
(
cXi−1, (1− c)Zi

)
. In the pARMAX case, Pareto marginals will be

considered.

Set, for each k ≥ 1,

pk = P
(
Xk+1 ≤X1

)
.(2.4)

The following result states a relation between pk and parameter c, more precisely,

ck. For sake of simplicity, from now on consider ak := ck.

Proposition 2.1. Let {Xi} be a stationary pARMAX process as defined

in (2.1) with marginal d.f. K satisfying (1.1). Then the equality,

pk = ak

(
ψ(2 ak) − ψ(ak)

)
,(2.5)

holds where ψ is the well-known digamma function, i.e., ψ(z) = Γ′(z)/Γ(z) with

Γ(z) =
∫ ∞
0 tz−1e−tdt the Euler Gamma function.

Proof: Just observe that, using (2.3), we have,

pk =

∫
P

(
Xk+1≤ x |X1 = x

)
dK(x)

=

∫
Qk

(
x, ]−∞, x]

)
dK(x)(2.6)

=

∫
K(x)

K(x1/ck
)
dK(x) , k ≥ 1 .

where after some algebra (see for instance Abramowitz and Stegun [1]) and no-

tation ak = ck, expression (2.5) can be derived.
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Note that pk does not depend on the marginal d.f. parameter γ. There exist

simple estimates for the above probabilities:

p̂k =
1

n−k

n∑

j=k+1

1{Xj≤Xj−k} , k ≥ 1 .(2.7)

The next result states consistency and asymptotic normality for estimators

âk (= ĉk), obtained from equation (2.5) by plugging in the empirical estimates p̂k.

More precisely, we have the following result.

Proposition 2.2. Let {Xi} be a stationary pARMAX process as defined

in Proposition 2.1. Then, for each positive integer k,

n1/2(âk − ak)
D→ N

(
0, σ2

k/g
′(ak)

2
)

(2.8)

where g(x) = x
(
ψ(2x) − ψ(x)

)
and

σ2
k = pk(1 − pk) (1 − 2 pk + λk)/(1 − λk) ,(2.9)

with pk given in (2.5) and λk = p−1
k

Z ∞

1

1
2

[
K(x)K(x1/ak−1 )

K2(x1/ak )
+ K2(xa1 )

K(x)K(x1/ak−1 )

]
K(dx).

Proof: Observe that p̂k is the mean of Bernoulli trials with Markov de-

pendence. From Theorem 1 in Klotz ([11]), convergence n1/2(p̂k −pk)
D→ N(0, σ2

k)

holds for σ2
k given in (2.9), where λk = P

(
Xj ≤Xj−k |Xj−1 ≤Xj−k−1

)
with

max
(
0, (2 pk −1)/pk

)
≤ λk ≤ 1. Hence, the result (2.8) is straightforward by the

Delta Method.

In order to obtain the variance in (2.9) we must compute λk. First note that,

λk =
P

(
Xj ≤Xj−k , Xj−1 ≤Xj−k−1

)

pk
,(2.10)

in which, using successive conditioning on the numerator lead us to,

P
(
Xj ≤Xj−k , Xj−1 ≤Xj−k−1

)
=

=

∫ ∞

1

∫ ∞

1

∫ x

1
Q

(
w, ]−∞, y]

)
Qk−1(y, dw)Q(x, dy)K(dx) .

Now considering (2.3), the following development holds:

P
(
Xj ≤Xj−k, Xj−1 ≤Xj−k−1

)
=

=

∫ ∞

1

∫ ∞

1

∫ min(x,y1/c)

1
FZ(y) Qk−1(y, dw)Q(x, dy)K(dx)

=

∫ ∞

1

[∫ xc

1
FZ(y)Qk−1

(
y, ]−∞, y1/c]

)
+

∫ ∞

xc

FZ(y)Qk−1
(
y, ]−∞, x]

)
]
Q(x, dy)K(dx)

=

∫ ∞

1

[∫ xc

1
FZ(y)

K(y1/c)

K(y1/ck
)

+

∫ x1/ck−1

xc

FZ(y)
K(x)

K(x1/ck−1
)

]
Q(x, dy)K(dx) .



146 Marta Ferreira

If d.f. FZ admits density fZ , the transition density of (2.3) is given by q(x, y) =

fZ(y)1{xc<y} + FZ(xc)1{xc=y}. Thus, the first term in the last integral is null

and hence,

P
(
Xj ≤Xj−k, Xj−1 ≤Xj−k−1

)
=

=

∫ ∞

1

K(x)

K
(
x1/ck−1

) F 2
Z

(
x1/ck−1

)
−F 2

Z(xc)

2
K(dx) +

∫ ∞

1

K(x)

K
(
x1/ck−1

) F 2
Z(xc)K(dx) .

(2.11)

Now the result follows from equation (2.2) and notation ak = ck.

Note that pk ∈ (1/2, 1) (see Figure 2 and Table 1) and no definite results

can be obtained for p̂k < 1/2.
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Figure 2: Plot of (from top to bottom) p1, ..., p5 given in (2.5).

Table 1: Values of pk computed from (2.5), for Pareto marginal pARMAX
processes with parameter values: c = 0.1, 0.2, ..., 0.9.

c k = 1 k = 2 k = 3 k = 4 k = 5

0.1 0.513472 0.500161 0.500002 0.5 0.5

0.2 0.545531 0.502419 0.500103 0.500004 0.5

0.3 0.588572 0.511114 0.501132 0.500106 0.50001

0.4 0.63855 0.531074 0.505905 0.501021 0.500169

0.5 0.693147 0.565986 0.52013 0.505648 0.501503

0.6 0.750948 0.617901 0.551814 0.521466 0.50849

0.7 0.811047 0.687525 0.609375 0.561751 0.533835

0.8 0.872845 0.77475 0.699936 0.643619 0.601832

0.9 0.935927 0.879101 0.828815 0.784424 0.74534
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However, the probability of such events goes to zero as n→ ∞ and hence,

this may be an indication of an inconsistency in our choice of the model. In what

concerns the lag k, it can be chosen in order to obtain the smallest variance (σ2
k)

provided that the estimate, p̂k, takes value in (1/2, 1), which means as small as

possible (see, for instance, Table 2).

Table 2: True values of λk and respective estimates, λ̂k in (2.12) and λ̃k

in (2.13), considering n= 5000 realizations of process pARMAX
for cases c = 0.3, 0.5, 0.7, 0.9, with marginal Pareto(1).

k = 1 k = 2 k = 3 k = 4 k = 5

c = 0.3

λk 0.4805 0.5744 0.6070 0.6122 0.6128λk 0.4778 0.5751 0.5991 0.6032 0.6071fλk 0.4782 0.5754 0.5995 0.6035 0.6075

c = 0.5

λk 0.6393 0.6756 0.7047 0.7195 0.7250λk 0.6461 0.6686 0.7057 0.7238 0.7236fλk 0.6461 0.6687 0.7058 0.7239 0.7237

c = 0.7

λk 0.7930 0.8021 0.8119 0.8210 0.8283λk 0.7973 0.8083 0.8114 0.8269 0.8277fλk 0.7975 0.8083 0.8116 0.8270 0.8277

c = 0.9

λk 0.9341 0.9348 0.9356 0.9364 0.9373λk 0.9334 0.9334 0.9342 0.9363 0.9362fλk 0.9334 0.9334 0.9341 0.9362 0.9361

We remark that this procedure allows to estimate any value of c ∈ (0, 1),

and not only the case c ∈ (1/2, 1) as in the method considered in Ferreira and

Canto e Castro ([9]), which is based on the estimation of Ledford and Tawn tail

dependence coefficient η. On the other hand, there is no explicit form for ak in

(2.5) and so it must be obtained numerically. Table 1 presents some computed

values.

2.2. An illustrative example

An illustration is now presented. We consider 5000 realizations from pAR-

MAX process in (2.1), for cases c = 0.3, 0.5, 0.7, 0.9, with marginal distribution

Pareto(1).
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In order to obtain an estimate for the variance, we can replace in (2.9),

p by p̂k stated in (2.7) and λk by the empirical counterpart

λ̂k =
1

n− k − 1

n∑

k+2

1{Xj≤Xj−k , Xj−1≤Xj−k−1}
/
p̂k(2.12)

or alternatively, use the estimator proposed by Klotz ([11]),

λ̃k =
r− bqk(2s− t) + (n−1) bpk +

��
r− bqk(2s− t) + (n−1) bpk

�2
+ 4r (1− 2bpk) (n−1) bpk

�1/2

2(n−1) bpk

(2.13)

where q̂k = 1 − p̂k, r =
∑n

i=2 xi xi−1, s =
∑n

i=1 xi and t = x1 + xn, which is

asymptotically equivalent to the maximum likelihood estimator. Again by Theo-

rem 1 in Klotz ([11]), we have that λ̃k is consistent, more precisely,
√
n(λk−λ̃k)

D→
N

(
0, λ(1−λ)/p

)
. See the very close estimates obtained for λk in Table 2. Results

of estimation are summarized in Table 3.

Table 3: True values of ak (= ck) and estimates obtained from (2.5), consider-
ing n = 5000 realizations of process pARMAX in (2.1), with marginal
Pareto(1), for cases c = 0.3, 0.5, 0.7, 0.9; estimates ĉ were obtained by

taking âk
1/k

; IC(λ),IC(bλ) and IC(eλ) are 95% confidence intervals obtained,
respectively, with true σ2 and estimated σ2 using λ̂ given in (2.12) and λ̃
given in (2.13); non filled cells mean that a p̂k less than 0.5 was obtained.

k = 1 k = 2 k = 3 k = 4 k = 5

ak 0.3 0.09 0.027 0.0081 0.00243

IC(λ) (0.2778, 0.3222) (0.0203, 0.1598) (−0.1840,0.2380) (−0.6627, 0.6789) (−2.1955, 2.2004)ak 0.295616 0.093871 — — —

IC(bλ) (0.2734,0.3178) (0.0262,0.1615) — — —

IC(eλ) (0.2734, 0.3179) (0.0262, 0.1616) — — —bc 0.295616 0.306384 — — —

ak 0.5 0.25 0.125 0.0625 0.03125

IC(λ) (0.4810, 0.5190) (0.2088, 0.2912) (0.0526,0.1974) (−0.0672, 0.1922) (−0.2100, 0.2725)ak 0.500694 0.258363 0.137758 0.062246 0.081734

IC(bλ) (0.4814, 0.5200) (0.2184, 0.2983) (0.0701,0.2054) (−0.0678, 0.1923) (−0.0244, 0.1880)

IC(eλ) (0.4814, 0.5200) (0.2184, 0.2983) (0.0701,0.2054) (−0.0678, 0.1923) (−0.0245, 0.1879)bc 0.500694 0.508294 0.516463 0.499491 0.606011

ak 0.7 0.49 0.343 0.2401 0.16807

IC(λ) (0.6838, 0.7162) (0.4563, 0.5237) (0.2947,0.3913) (0.1760, 0.3042) (0.0843, 0.2519)ak 0.682445 0.469803 0.334072 0.222017 0.149248

IC(bλ) (0.6661, 0.6989) (0.4355, 0.5041) (0.2850,0.3831) (0.1543, 0.2897) (0.0589, 0.2396)

IC(eλ) (0.6660, 0.6990) (0.4355, 0.5042) (0.2850,0.3832) (0.1543, 0.2897) (0.0589, 0.2396)bc 0.682445 0.685422 0.693873 0.686430 0.683568

ak 0.9 0.81 0.729 0.6561 0.59049

IC(λ) (0.8896, 0.9104) (0.7862, 0.8338) (0.6937,0.7643) (0.6106, 0.7016) (0.5357, 0.6452)ak 0.896950 0.803367 0.721969 0.653779 0.583686

IC(bλ) (0.8862, 0.9077) (0.7790, 0.8277) (0.6862,0.7577) (0.6080, 0.6995) (0.5286, 0.6388)

IC(eλ) (0.8862, 0.9077) (0.7790, 0.8277) (0.6863,0.7577) (0.6081, 0.6995) (0.5286, 0.6388)bc 0.896950 0.896307 0.897097 0.899203 0.897916
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