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Abstract:

• Despite rapid advances in sequencing technology, many commercially relevant species
remain unsequenced, and many that are sequenced have very poorly annotated
genomes. There is therefore still considerable interest in using comparative approaches
to exploit information from well-characterised model organisms in order to better un-
derstand related species. This paper develops a statistical method for automating part
of a comparative genomics bioinformatic pipeline for the identification of genes and
genomic regions in a model organism associated with a QTL region in an unsequenced
species. A non-parametric Bayesian statistical model is used for characterising the
density of a large number of BLAST hits across a model species genome. The method
is illustrated using a test problem demonstrating that markers associated with Bovine
hemoglobin can be automatically mapped to a region of the human genome containing
human hemoglobin genes. Consequently, by exploiting the (relatively) high quality of
genome annotation for model organisms and humans it is possible to quickly identify
candidate genes in those well-characterised genomes relevant to the quantitative trait
of interest.
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1. INTRODUCTION

The mapping of the genetic component influencing quantitative traits of

a species, such as height and weight, can be achieved even in the absence of a

complete physical map of a species’ genome. This is called quantitative trait

loci (QTL) mapping. One method by which QTLs can be mapped utilizes a

map of typed genetic markers in order to establish the statistical correlation

between a given quantitative trait and a given point, between two markers, on

the genetic map ([12]). This allows for the identification of regions which are

highly statistically correlated with the quantitative trait and therefore likely to

contain a QTL. These regions can then be sequenced and the genes influencing

the quantitative trait can be identified.

This method of finding the genes that influence a particular quantitative

trait has its drawbacks. For one thing it is dependent on the quality and resolution

of the genetic map used to map the QTLs. A low resolution genetic map would

lead to a low resolution QTL map in which relatively large regions are identified as

being statistically significant and therefore likely to contain a QTL. This in turn

requires the sequencing of large portions of the sequence genome. Alternatively

the method can be used on high resolution genetic maps. However, this too has

problems: constructing high resolution genetic maps is far from a trivial process

and can be expensive and labour intensive, especially for traditional linkage maps.

The method described in this paper uses a comparative genomics approach

to locate genes which are correlated with the QTL. It works by first identifying

statistically significant QTL regions. Then a high resolution map is constructed

by integrating available partial maps of the chromosome in which the QTL regions

lie into a single map. There are a number of methods available for integrating

partial genetic maps ([14, 18, 16, 19, 6, 13, 11]) and in this paper we use a Bayesian

approach to map integration developed by Jow et al. ([11]).

On obtaining a high resolution integrated map, the markers lying between

the QTL flanking markers are identified and a BLAST ([1]) search made of their

sequences against the genome of a target species. This gives us a series of “hits”

on the target genome, that is, locations where the search sequences match. Using

these hits it is possible to estimate the probability density of hits across the target

genome using, for example, standard kernel density techniques ([17]) or Bayesian

alternatives based on Dirichlet processes ([4, 2, 3]). We will use a Bayesian

density estimate and then threshold this density to identify regions along the

target species which are likely to contain genes performing similar functions to

the genes associated with the QTL of the source species.

The rest of this paper is organised as follows. Section 2.1 describes how

to construct a Bayesian density estimate from a collection of BLAST hits across
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a number of chromosomes. The model is described in detail, with the resulting

MCMC algorithm available in the appendix. This section also describes a pro-

cedure for determining the location of regions likely to contain genes associated

with the QTL. Section 3 validates the MCMC algorithm and implementation on

a synthetic example and Section 4 provides a real example of how our method can

be used to help identify genes associated with QTLs obtained from the Bovine

Hemoglobin genome by using the Human genome.

2. METHODS

In this section we describe how to construct a Bayesian density estimate

from a collection of BLAST hits and the procedure for determining the location

of intervals likely to contain genes associated with the QTL.

2.1. Bayesian density estimation

Suppose that the target genome consists of C chromosomes with lengths

L1, ..., LC . The data take the form of n BLAST hits describing the location (y)

and chromosome (c) on which each hit was made: (yi, ci), i= 1, ..., n. Let nc

be the number of observed hits on chromosome c. We construct the Bayesian

density estimate by modelling these locations as an infinite mixture of normal

distributions with unknown means (µ) and variances (σ2) and with these pa-

rameters φ = (µ, σ2) resulting from a Dirichlet process with a particular base

distribution. Let θc denote the probability of a hit occurring on chromosome c.

The formulation of the model is slightly complicated by the need to have a con-

tinuous density across the C chromosomes. In summary we have, for i = 1, ..., n

and ci ∈ {1, ..., C},

θ = (θ1, ..., θC)|α ∼ Dir(αℓ) ,

Yi, ci|φici
, θci

∼ N(µici
, σ2

ici
) × Bern(θci

) ,

φici
|Gci

∼ Gci
,

Gci
|α ∼ DP(α,G0ci

) ,

G0ci
= U(0, Lci

) × Inv Γ(a, L2
ci
b) ,

where DP(α,G0) denotes a Dirichlet process with base measure G0 and concen-

tration parameter α, and ℓ is the normalized form of L, that is, ℓc = Lc/
∑C

j=1
Lj .

The form of the base distribution has been chosen so that it is independent of

the scale used to measure the location of the BLAST hits, for example, Mb or b.
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All that remains for a full model specification is to choose the prior distribution

for α. In this paper we take a flexible semi-conjugate form with

α ∼ Γ(g, h) .

Given the data model above and the hit data, it is generally not possible to

derive an analytical expression for the probability density at an arbitrary point y

on an unknown chromosome k. However, numerical sampling methods can be

used approximate this (predictive) density as

(2.1) π(y, k|D) ≃ 1

Tn

T
∑

t=1

n
∑

i=1

π
(

y, k|φt
ik, θ

t
k

)

,

where (φt
ik, θ

t
k), t= 1, ..., T , is a sample from the posterior distribution π(φik, θk|D)

obtained using an appropriate sampling algorithm. In this paper we have used

an MCMC algorithm based on one by Escobar and West ([3]); the algorithm is

described in the appendix.

2.2. Identification of QTL intervals

On obtaining the probability density of hits across the entire target genome

the remaining task is to identify regions with a high probability density. This

is done by identifying the highest density regions (HDRs) containing a given

percentage of the density; see [10]. For example, a 75% HDR could be found

across all the chromosomes. Given that in our model the target genome is one-

dimensional, the HDR would be a set of regions across all the chromosomes.

These regions can then be searched for genes of interest.

3. SIMULATED DATA

To validate our MCMC algorithm and implementation, we simulated a

dataset of 200“hits” spread over three chromosomes with lengths 100 Mb, 200 Mb

and 400 Mb. The distribution of the locations of hits on the different chromosomes

were taken to be normal distributions on chromosomes 1 and 3 and a mixture

of two normal distributions on chromosome 2; see the dashed lines in Figure 1.

Also the probability of a hit being located on a particular chromosome was taken

as being proportional to the length of the chromosome, that is, with probability

1/7, 2/7 and 4/7 for chromosomes 1, 2 and 3 respectively.

We specify the base distribution for the cluster variances (σ2) by taking

a = 2.05 and b = 0.000105, so that E(σ2) = 10−4L2 and SD(σ2) =
√

2E(σ2).
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For example, on chromosome 1 this gives E(σ2) = (1Mb)2, that is, suggests

cluster standard deviations are around 1 Mb. We also input fairly weak prior

information for α by taking g = 4 and h = 2, that is, E(α) = 2 and SD(α) = 1.
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Figure 1: The theoretical distribution of hits along the chromosomes
(dashed lines) and the Bayesian density estimate obtained from
the simulated data (dotted line).

3.1. Results

The MCMC algorithm outlined in the appendix was applied to the simu-

lated dataset. Convergence was assessed by using informal visual methods and

the diagnostics suggested by Gelman and Rubin ([5]) and by Heidelberger and

Welch ([7]). We found that a burn-in of 100K iterations was required to achieve

convergence and we then ran the chain for a further 100K iterations, thinning

the output by taking every 100th iterate. This gave a posterior sample of size 1K

observations from which we could calculate the Bayesian density estimate (2.1)

across the (simulated) chromosomes. The results are summarized in in Table 1

and Figure 1, and show that there is a reasonably close match between the theo-

retical and estimated probabilities of a hit being found on a particular chromo-

some and between the Bayesian density estimate for the location of hits and their

generating distribution.
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Table 1: Probability of a hit being located on each (simulated)
chromosome (to 3 d.p.).

Chromosome Probability

1 0.142

2 0.285

3 0.573

4. BOVINE HEMOGLOBIN MARKER DATA

To illustrate the power of our method, we now show how the Human genome

can be used to help identify genes associated with QTLs obtained from the Bovine

Hemoglobin genome. The sequences of molecular markers associated with Bovine

Hemoglobin genes were taken from the NCBI “GENE” database ([15]) and the

markers we use are given in Table 2. For our analysis, we use the same input

parameters (a, b, g and h) as in Section 3.

Table 2: Markers associated with Bovine Hemoglobin genes.

Marker name Associated gene Gene symbol Sequence length

REN97351 Hemoglobin Beta HBB 248

RH69634 Hemoglobin Beta HBB 141

PMC115301P1 Hemoglobin Beta HBB 136

GDB:178694 Hemoglobin Beta HBB 300

HBB Hemoglobin Gamma HBG 171

PMC86017P3 Hemoglobin Gamma HBG 267

PMC21968P1 Hemoglobin Epsilon HBE 989

Hba-a1 Hemoglobin Alpha HBA 188

AW312144 Hemoglobin Alpha HBA 327

CB603723 Hemoglobin Zeta HBZ 312

BE749596 Hemoglobin Theta 1 HBQ 277

AW428039.1 Hemoglobin Mu HBM 193

4.1. Results

A BLAST search of these markers was conducted against the reference

Human genome (NCBI 36.3 build) using the parameters listed in Table 3, and

gave 188 hits distributed across 15 chromosomes. The MCMC algorithm was
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then run on these hit data. As with the simulated data, convergence was as-

sessed by using informal visual methods and standard diagnostics tools. Again,

we found that a burn-in of 100K iterations was required to achieve convergence.

Table 3: BLAST search parameters against the Human genome
for the Bovine Hemoglobin markers.

BLAST parameter argument value

Expectation Value −e 0.1

Gap Cost −G 5

Gap Extension Cost −E 2

Nucleotide Mismatch Cost −q 3

Nucleotide Match reward −r 2

We then ran the chain for a further 100K iterations, thinning the output by

taking every 100th iterate, to obtain a posterior sample of size 1K observations.

The results are summarized in Tables 4, 5 and in Figure 2. The posterior prob-

ability of a hit being on the target human chromosomes is shown in Table 4.

Table 4: Probability of a hit being located on each chromosome
of the Human genome (to 3 d.p.).

Chromosome Probability

1 0.032

3 0.022

5 0.016

6 0.005

7 0.011

9 0.032

11 0.620

12 0.016

13 0.011

14 0.005

15 0.005

16 0.161

17 0.027

19 0.021

20 0.016

2, 4, 8, 10, 18, 21, 22, X, Y ≃ 0

Table 5 contains the 50%, 60% and 75% highest density regions (HDRs) across

all chromosomes, calculated using the method of Hyndman ([10]). Figure 2 gives

a graphical view of the HDRs for those chromosomes with a hit probability of

at least 5%, that is, for chromosomes 11 and 16. The 50% and 60% HDRs



Identification of QTL Candidate Genes 9

determined over all chromosomes point to genes of interest only on chromo-

somes 11 and 16. The aim of our method in this example is to identify regions

on the human genome which are associated with the Bovine Hemoglobin genome.

Table 5: HDR intervals on the Human genome for the Bovine Hemoglobin markers.

HDR level Chromosome Intervals Number of candidate genes

50%
11 4.59Mb– 5.77Mb 95

16 0.00Mb– 0.36Mb 27

60%
11 4.37Mb– 5.98Mb 104

16 0.00Mb– 0.49Mb 33

75%

11 3.88Mb– 6.47Mb 131

11 54.52Mb– 58.11Mb 121

16 0.00Mb– 0.78Mb 59

9 124.28Mb– 124.53Mb 13

17 2.51Mb– 3.72Mb 35

20 61.14Mb– 61.92Mb 30
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Figure 2: Figure showing the Bayesian density estimate of BLAST hits
across chromosomes 11 and 16 of the Human genome.

If we look in detail at the Human genome, its Hemoglobin genes are located in

two clusters on chromosomes 11 and 16, with the β-globin cluster spanning an

interval of roughly 5.20–5.25Mb on chromosome 11 and the α-globin cluster span-
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ning an interval of roughly 0.14–0.17Mb on chromosome 16. Thus our method

has correctly and reasonably accurately identified the appropriate regions on the

Human genome.

If we examine the Human genes found within these 60% HDRs, we find

the 33 genes located on chromosome 16 listed in Table 6. These include the

five known functional genes and two pseudo-genes of the human α-globin locus.

Table 6: A list of genes in the 60% HDR for chromosome 16. The genes in bold
are the 5 known functional genes present in the Human α-globin locus
and those in italics are the two known pseudo-genes ([9]).

Ensembl Gene ID Gene name

ENSG00000220481 Z84812.3

ENSG00000181404 WASH4P

ENSG00000219509 Z84723.2

ENSG00000185203 Z84723.1

ENSG00000161980 POLR3K

ENSG00000161981 C16orf33

ENSG00000007384 RHBDF1

ENSG00000103152 MPG

ENSG00000103148 C16orf35

ENSG00000130656 HBZ

ENSG00000206178 Z84721.1

ENSG00000206177 HBM

ENSG00000218072 Z84721.4

ENSG00000188536 HBA2

ENSG00000206172 HBA1

ENSG00000207243 Y RNA

ENSG00000086506 HBQ1

ENSG00000007392 LUC7L

ENSG00000206168 Z69890.1

ENSG00000167930 ITFG3

ENSG00000215289 AC004754.1

ENSG00000076344 RGS11

ENSG00000206156 ARHGDIG

ENSG00000185615 PDIA2

ENSG00000103126 AXIN1

ENSG00000086504 MRPL28

ENSG00000129925 TMEM8

ENSG00000216963 Z97634.3

ENSG00000103200 NME4

ENSG00000103202 DECR2

ENSG00000090565 RAB11FIP3

ENSG00000201034 Y RNA

ENSG00000217816 RP1-196A12.1

Additionally, C16orf35 is known to be involved in the regulation of α-globin. The

corresponding list for chromosome 11 contains 104 genes and includes the five
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known functional Hemoglobin genes in the human β-globin locus (HBE1, HBG1,

HBG2, HBD and HBB) and one known hemoglobin pseudogene (HBBP1). The

annotations available for the remaining genes in these lists show no known direct

link to Hemoglobin or its regulation.

5. CONCLUSIONS

In this paper we have developed a method for estimating the density of

BLAST hits across chromosomes on a target genome. This estimate can then be

used to determine highest density regions (HDRs) on the target genome for genes

associated with the QTL of interest.

The method has been shown to work well on both simulated data and

real data. In this latter case this involved obtaining BLAST hits for a number

of Bovine Hemoglobin markers (given in Table 2) against the Human genome.

We were able to construct the density estimate of BLAST hits across the Human

genome and thereby determine the highest density regions. The regions obtained

were found to contain the Human α-globin and β-globin loci ([8]).

Currently our method uses a fairly superficial treatment of BLAST hits

and does not, for example, distinguish between poor BLAST hits and good ones.

Future work might involve exploring how to incorporate properly weighted BLAST

hits so that the better hits contribute more to the density estimate and this might

lead to more accurate HDRs. Also, because the chromosomes have finite length,

strictly the density across the chromosomes should have finite support. This could

be achieved, for example, by replacing the Gaussian distribution for the location of

clusters by (a mixture of) truncated Gaussian distributions. Unfortunately, such a

modification does lead to analytical intractability in the calculations underpinning

the Bayesian density estimate, though research into using such distributions is

also a possible area of future work.

APPENDIX

The MCMC algorithm is a Gibbs sampler for the cluster parameters

φici
=

(

µici
, σ2

ici

)

, i= 1, ..., n, and the parameters (α, θ). In the following sections,

we derive the posterior conditional distributions for these parameters.
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A. The cluster parameters

Here we derive the posterior conditional distributions for the φici
=(µici

,σ2
ici

),

i= 1, ..., n. Letting φ′ici
=

{

φjci
: j 6= i

}

, the conditional prior density for φici
|φ′ici

is

π
(

φici
|φ′ici

)

=
α

α+ nci
− 1

g0ci
(φici

) +
∑

j 6=i

1

α+ nci
−1

δφjci
(φici

)

where g0ci
is the probability density corresponding to the distribution G0ci

, nci
is

the number of observed hits on chromosome ci and δy(x) is Dirac’s delta function

(δy(x) = 0 if x 6= y and
∫

δy(x) dx = 1).

Multiplying this by the likelihood π(yi, ci|φici
, θci

), we get the conditional

posterior density

π
(

φici
|φ′ici

, yi, θci

)

= qi0 gici
(φici

) +
∑

j 6=i

qij δφjci
(φici

)

where

qij = κπ(yi, ci|φjci
, θci

) ,

qi0 = κα

∫

π(yi, ci|φici
, θci

) g0ci
(φici

) dφici
,

gici
(φici

) = π(yi, ci|φici
) g0ci

(φici
)

/
∫

π(yi, ci|φici
) g0ci

(φici
) dφici

and κ is a normalizing constant such that

qi0 +
∑

j 6=i

qij = 1 .

We can derive closed form expressions for the densities gici
and the qij

by using the base distribution for the Dirichlet process Gci
, G0ci

= U(0, Lci
)×

Inv Γ(a, L2
ci
b), as follows. Let φ(·|a, b2) denote the N(a, b2) density, ψa(·|b, c) the

St(a, b, c) density and Ψa(·) the ta distribution function. Note that if X∼ ta then

b+
√
cX ∼ St(a, b, c). Also, to simplify notation, we write τ = σ2. Then

qij = κπ(yi, ci|φici
, θci

) = κ θci
φ(yi|µici

, τici
)
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and

qi0 = κα

∫

π(yi, ci|φici
, θci

) g0ci
(φi) dφici

= κα

∫ Lci

0

∫ ∞

0

θci
φ(yi|µici

, τici
) × 1

Lci

×
(L2

ci
b)a τ−a−1

ici
e−L2

ci
b/τici

Γ(a)
dτici

dµici

=
κα θci

Lci

∫ Lci

0

ψ2a(µ|yi, L
2
ci
b/a) dµ

=
κα θci

Lci

{

Ψ2a

(

1 − yi/Lci
√

b/a

)

− Ψ2a

(

−yi/Lci
√

b/a

)

}

.

Also, for 0 ≤ µici
≤ Lci

, τici
> 0

gici
(φici

) =
π(yi, ci|φi, θci

) g0(φici
)

∫

π(yi, ci|φici
, θci

) g0(φici
) dφici

=
φ(yi|µici

, τici
) × (L2

ci
b)a τ−a−1

ici
e−L2

ci
b/τici

/

Γ(a)

Ψ2a

(

1− yi/Lci√
b/a

)

− Ψ2a

(

−yi/Lci√
b/a

)

=
(L2

ci
b)a τ

−a−3/2

ici

√
2π Γ(a)

{

Ψ2a

(

1− yi/Lci√
b/a

)

− Ψ2a

(

−yi/Lci√
b/a

)

}

× exp

{

−
(

L2
ci
b+

(yi −µici
)2

2

)/

τici

}

.

For simulation purposes, it is useful to note that

gici
(φici

) = π(µici
)π(σ2

ici
|µici

)

where

µici
∼ St

(

2a, yi, L
2
ci
b/a

)

, 0 ≤ µici
≤ Lci

and

σ2
ici

∣

∣µici
∼ Inv Γ

(

a+
1

2
, L2

ci
b+

(yi − µici
)2

2

)

.

B. The remaining parameters

Here we derive the posterior conditional distributions for α and θ. The

procedure is a generalisation of that used by Escobar and West ([3]).
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Suppose that chromosome c has nc hits arranged in kc clusters (c=1,2, ...,C).

Then the probability function for the number of clusters on chromosome c is

π(kc|nc, α, θ) ∝











αkc
Γ(α)

Γ(α+ nc)
, kc = 1, 2, ..., nc , if nc > 0 ,

1, kc = 0 , if nc = 0 .

Let k = (k1, k2, ..., kC). As we have independent Dirichlet processes for each

chromosome, kc|nc, α are independent for c = 1, 2, ..., C and so

π(k|n, α, θ) ∝
C

∏

c=1

αkc
Γ(α)

Γ(α+ nc)
,

for kc = 1, 2, ..., nc if nc > 0 or kc = 0 if nc = 0 (c= 1, 2, ..., C). This can be simpli-

fied slightly by letting A = {c : nc > 0} with size |A|, and renumbering the chro-

mosomes so that nc > 0 for c = 1, 2, ..., |A| and nc = 0 for c = |A|+1, |A|+2, ..., C,

giving

π(k|n, α, θ) ∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
.

The probability function for the number of hits on each chromosome has a

multinomial distribution, with

π(n|α, θ) ∝
C

∏

c=1

θnc
c ,

and so the likelihood function for (α, θ) is

π(k, n|α, θ) = π(k|n, α, θ)π(n|α, θ) ∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc
c .

Thus, if we take a gamma Γ(g, h) prior distribution for α, the joint posterior

density is

π(α, θ|k, n) ∝ π(k, n|α, θ)π(θ|α)π(α)

∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc+αℓc−1
c × αg−1e−hα

∝
|A|
∏

c=1

Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc+αℓc−1
c × αg+(k̄−1)|A|−1e−hα ,

where k̄ =
∑|A|

c=1 kc/|A| be the mean cluster size over chromosomes with hits.

Therefore the (conditional) posterior density for θ is

π(θ|α, k, n)
C

∏

c=1

θnc+αℓc−1
c ,
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that is, a Dir(n+αℓ) distribution. Also the (conditional) posterior density for α

is

π(α|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

Γ(α)

Γ(α+ nc)
,

where G = g + (k̄ − 1) |A| and H = h− ∑C
c=1

ℓc log θc. Using the identity

Γ(α)

Γ(α+ nc)
=

(α+ nc)B(α+ 1, nc)

α Γ(nc)
,

where B(·, ·) is the Beta function, we obtain

π(α|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

(α+ nc)B(α+ 1, nc) .(B.1)

As the Beta function has integral representation

B(α+ 1, nc) =

∫ 1

0

xα
c (1 − xc)

nc−1 dxc

it is clear that

π(α, η|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

(α+ nc) η
α
c (1− ηc)

nc−1 ,

where η = (η1, η2, ..., η|A|)
′ are beta distributed auxiliary variables, has distribu-

tion (B.1) when marginalised over η. Therefore, letting η̄g =
(
∏|A|

c=1 ηc

)1/|A|
be

the geometric mean of the components of η, we have

π(α|η, θ, k, n) ∝ αG−1 exp
{

−(H − |A| log η̄g)α
}

|A|
∏

c=1

(α+ nc) .(B.2)

Now

|A|
∏

c=1

(α+ nc) = e0(n)α|A| + e1(n)α|A|−1 + e2(n)α|A|−2 + · · · + e|A|(n)

where

e0(n) = 1 , e1(n) =

|A|
∑

i=1

ni , e2(n) =

|A|
∑

1=i<j

ni nj , ... , e|A|(n) =

|A|
∏

i=1

ni .

Here the ek(n) are elementary symmetric polynomials which may be calculated

efficiently by using the Newton–Girard formula

k ek(n) =
k

∑

i=1

(−1)i−1ek−i(n)Sk(n) where Sk(n) =

|A|
∑

i=1

nk
i .
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Substituting this power series expansion into (B.2) gives

π(α|η, θ, k, n) ∝
|A|
∑

i=0

ei(n)αG+|A|−i−1 exp
{

−(H−|A| log η̄g)α
}

,

which is a mixture of Gamma distributions, that is,

α|η, θ, k, n ∼
|A|
∑

i=0

pi Γ
(

α;G+ |A|− i, H−|A| log η̄g

)

with mixture proportions

pi =
ei(n) Γ(G+ |A|− i)

∑|A|
j=0

ej(n) Γ(G+ |A|− j) (H−|A| log η̄g)j−i
, i = 0, 1, ..., |A| .

Finally, for c = 1, 2, ..., |A|,

ηc|α, k, n ∼ Beta(α+ 1, nc) , independently .

ACKNOWLEDGMENTS

This work was conducted as part of the ComparaGRID project and funded

by the UK Biotechnology and Biological Sciences Research Council grant number

BBS/B/17158.

REFERENCES

[1] Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W. and Lipman, D.J.

(1990). Basic local alignment search tool, Journal of Molecular Biology, 215(3),
403–410.

[2] Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems, The Annals of Statistics, 2(6), 1152–1174.

[3] Escobar, M.D. and West, M. (1995). Bayesian density estimation and infer-
ence using mixtures, Journal of the American Statistical Society, 90(430), 577–
588.

[4] Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems,
The Annals of Statistics, 1(2), 209–230.

[5] Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using
multiple sequences, Statistical Science, 7(4), 457–511.



Identification of QTL Candidate Genes 17

[6] Givry, S.; Bouchez, M.; Chabrier, F.; Milan, S. and Schiex, T. (2005).
Cartha-GENE: multipopulation integrated genetic and radiation hybrid mapping,
Bioinformatics, 21(8), 1703–1704.

[7] Heidelberger, P. and Welch, P. (1982). Simulation run length control in the
presence of an initial transient, Operations Research, 31(6), 1109–1144.

[8] Higgs, D.R.; Vickers, M.A. and Wilkie, A.O. (1989). A review of the mo-
lecular genetics of the human alpha-globin gene cluster, Blood, 73(5), 1081–1104.

[9] Hubbard, T.J.P.; Aken, B.L.; Beal1, K.; Ballester1, B.; Caccamo, M.;

Chen, Y.; Clarke, L.; Coates, G.; Cunningham, F.; Cutts, T.; Down, T.;

Dyer, S.C.; Fitzgerald, S.; Fernandez-Banet, J.; Graf, S.; Haider, S.;

Hammond, M.; Herrero, J.; Holland, R.; Howe, K.; Howe, K.; John-

son, N.; Kahari, A.; Keefe, D.; Kokocinski, F.; Kulesha, E.; Law-

son, D.; Longden, I.; Melsopp, C.; Megy, K.; Meidl, P.; Overduin, B.;

Parker, A.; Prlic, A.; Rice, S.; Rios, D.; Schuster, M.; Sealy, I.; Seve-

rin, J.; Slater, G.; Smedley, D.; Spudich, G.; Trevanion, S.; Vilella, A.;

Vogel, J.; White, S.; Wood, M.; Cox, T.; Curwen, V.; Durbin, R.;

Fernandez-Suarez, X.M.; Flicek, P.; Kasprzyk, A.; Proctor, G.;

Searle, S.; Smith, J.; Ureta-Vidal, A. and Birney, E. (2007). Ensembl
2007, Nucleic Acids Res., 35 (Database issue), 610–617.

[10] Hyndman, R.J. (1996). Computing and graphing highest density regions, The
American Statistician, 50(2), 120–126.

[11] Jow, H.; Bhattacharjee, M.; Boys, R.J. and Wilkinson, D.J. (2010). The
integration of genetic maps using Bayesian inference, Journal of Computational
Biology, 17, 825–840.

[12] Lander, E.R. and Botstein, D. (1989). Mapping mendialian factors underly-
ing quantitative traits using RFLP linkage maps, Genetics, 121, 185–199.

[13] Liao, W.; Collins, A.; Hobbs, M.; Khatkar, M.S.; Luo, J. and Nicholas,

F.W. (2007). A comparative location database (CompLDB): map integration
within and between species, Mammalian Genome, 18(5), 287–299.

[14] Morton, N.E.; Collins, A.; Lawrence, S. and Shields, D.C. (1992).
Algorithms for a location database, Annals of Human Genetics, 56, 223–232.

[15] Pruitt, K.D.; Tatusova, T. and Maglott, D.R. (2005). Ncbi reference
sequence (refseq): a curated non-redundant sequence database of genomes, tran-
scripts and proteins, Nucleic Acids Research, 33, 501–504.

[16] Schiex, T. and Gaspin, C. (1997). Carthagene: Constructing and joining max-
imum likelihood genetic maps. In “Proceedings of the Fifth International Confer-
ence on Intelligent Systems for Molecular Biology”, pp. 258–267.

[17] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis,
Chapman and Hall.

[18] Stam, P. (1993). Construction of integrated genetic linkage maps by means of a
new computer package: Joinmap, The Plant Journal, 3(5), 739–744.

[19] Stassen, H.H. and Scharfetter, C. (2000). Integration of genetic maps by
polynomial transformations, American Journal of Medical Genetics (Neuropsy-
chiatric Genetics), 96(1), 108–113.




