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Abstract:

• This paper reviews and develops methods for implementing in practice recent ideas
in the field of optimal dynamic treatment allocation. Given longitudinal sequences of
observational data on health status and treatment selection for a cohort of patients,
the aim is to determine a regime, or decision rule, which can be used to select treatment
in order to optimise some final response or outcome. The approach to this problem
that has been taken in the causal inference literature is shown to be extendable to
problems in the field of stochastic optimisation. New diagnostic techniques to aid in
model assessment are developed, and an application in anticoagulation is presented.
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1. INTRODUCTION

Individualised medicine, which is one of the growing areas in health re-

search, presents a number of statistical challenges. Without the luxury of major

clinical trials, can we find methods to tailor treatment to a patient’s individual

circumstances, especially for those with chronic conditions? In this paper we

give an overview of a selection of methods for optimal dynamic treatment regime

determination from observational data [1], [3], [6], [11]–[13]. Our interest in the

area is motivated by a collaboration in which an algorithm to determine decision

rules for anticoagulation doseage is required. Anticoagulants are used to main-

tain blood clotting speed and reduce risk of thrombosis. They are one of the

most prescribed groups of drugs in the world, being used for both treatment and

prophylaxis for conditions like deep venous thrombosis, stroke, atrial fibrillation,

acute myocardial infarction, prosthetic heart valves and many more. A difficulty

is that there is no standard dose: the amount required varies not just between

patients but also over time within patients, in response to lifestyle and dietary

changes, in particular the amount of vitamin K within the body. Given a pa-

tient’s current and previous values of blood clotting time, and their history of

anticoagulation, can we find decision rules to provide the optimal current dose?

Three classes of methods for a general version of this problem are sum-

marised in Section 2. We consider model formulation and estimation, and illus-

trate through simulations. In Section 3 we draw attention to links between recent

optimal dynamic treatment methods and the longstanding stochastic scheduling

research in the operational research literature. In Section 4 we propose a suite of

diagnostic tests for model adequacy based on wild bootstrap residuals. In Sec-

tion 5 we describe an application of the methods to the warfarin anticoagulation

application which motivated our interest.

2. REGRETS, BLIPS AND REGRESSION

2.1. Modelling approaches

We assume there are K decision times, for example clinic visits. At each

decision time a state variable is recorded, S1, S2, ..., SK . This might be the health

of a patient and can be multivariate or scalar. A decision on the action to be

taken is then made, such as treatment allocation, leading to an action sequence

A1, A2, ..., AK . The objective is to maximise some final value Y, which may not

be revealed until all K decisions have been taken, or which may accrue with
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time, as in the warfarin example in Section 5. Panel (a) of Figure 1 illustrates

the sequence that is followed. Throughout we will assume independence between

subjects and will take the standard assumption of no unmeasured confounders: all

non-random elements influences action choices are captured in the observed data.

We omit further technical detail on the conditions needed for valid inference.
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Figure 1: State, action and outcome sequence: (a) the general scenario;
(b) inclusion of exogenous variables; (c) orthogonalisation.

Define S̄j = (S1, ..., Sj) and Āj = (A1, ..., Aj) to indicate the history of

states and actions respectively, up to and including time j. The information

available just before action j is selected is Fj = (S̄j , Āj−1) and the aim is to

obtain decision rules dj(Fj) which will maximise the expected value of Y given

the information to hand. We will use dref
j to denote a known standard or refer-

ence regime, with the underscore being read as meaning all times from j to K.

Similarly d
opt
j is the optimal regime, which is unknown and is the target for

analysis.

Robins [14] proposed a structural nested mean model [8] approach to the

problem, based on blip functions, which can be defined as

γj(aj |Fj) = E(Y | Fj , aj , d
opt
j+1) − E(Y | Fj , d

ref
j , d

opt
j+1) .

Here γj is a function of the possible actions aj which are available at time j,

given the history Fj of states and actions up to that point. The blip contrasts

two expectations. The first is of the final response Y given that aj is selected at
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time j and under the possibly counterfactual assumption that the optimal refer-

ence regime will be followed from j+1 onward. The second expectation is similar

except action aj is replaced by the reference regime d ref
j at time j. Robins chose

the name because in each expectation the past Fj is the same, the future policy

is the same, and the only difference or “blip” is between aj and d ref
j at time j.

Under Robins’ approach a parametric form γj(aj |Fj ; θ) is assumed for the

blip function. For example we might take

γj(aj |Fj ; θ) = θ1

(

aj − (θ2 + θ3Sj + θ4Sj−1)
)

I(aj 6= d ref
j )

where I(·) is an indicator function introduced to ensure the blip is zero if the

reference action is selected. Otherwise the effect of the action aj is assumed

to depend on current and previous states Sj and Sj−1 respectively. This is a

strong assumption, but an advantage of the approach is that once parameter θ is

estimated it is straightforward to determine the causal effect of actions.

Murphy [13] prefers to work with regret functions

µj(aj |Fj) = E(Y | Fj , d
opt
j ) − E(Y | Fj , aj , d

opt
j+1) .

These are of similar form to blip functions except they contrast the effect at time

j of action aj with the as-yet-unknown optimal rule. Thus the first expectation

assumes the optimal decision is taken from j onward, whereas in the second

expectation action aj is chosen at j and then the optimal policy followed from

j + 1 onward. Regrets are non-negative since the objective is to maximise Y.

They give a direct measure of the effect of choosing a sub-optimal action at time j.

Again a parametric form is assumed, for example

µj(aj |Fj ;ψ) = ψ1

(

aj − (ψ2 + ψ3Sj + ψ4Sj−1)
)2
.

This guarantees the non-negativity of the regrets and assumes the optimal action

— that which has zero regret — is a linear combination of Sj and Sj−1. Once ψ

is known the optimal action is therefore immediately obtained.

The parametric forms assumed for blips or regrets cannot be checked, since

they are models for differences in counterfactuals. An alternative approach intro-

duced independently by Almirall and colleagues [1] and Henderson and colleagues

[6] attempts to incorporate parametrised regrets into a model for the actual re-

sponse Y. The authors note first that the final response Y is determined by three

groups of factors:

1. The initial conditions.

2. The actions selected.

3. Chance development over time.
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It is straightforward to introduce initial conditions as a function of S1 into a

model for Y. The effect of actions can be modelled by regrets as above. To model

chance development over time, [1] and [6] envisage a sequence of exogenous vari-

ables Z1, Z2, ..., ZK which influence states and Y over and above the effects of the

chosen actions, as summarised in panel (b) of Figure 1. If the {Zj} are observed

then we can model final response as

(2.1) E[Y |S̄K , ĀK ] = β1(S1) +
K
∑

j=2

βT
j (S̄j−1, Āj−1)Zj −

K
∑

j=1

µj(Aj |Fj) ,

where β1 is an appropriate function to capture the effect of initial conditions, and

β2, β3, ..., βK are coefficients which measure the effect of the exogenous variables.

In principle these can depend on the complete history of states and actions: in

practice dimensionality can be managed by allowing them to depend only on

recent history. The regrets µ measure the effects of actions and complete the

three components. Since the {Zj} are unknown, Henderson et al. propose they

be estimated by residuals from models for Sj on previous states and actions

(S̄j−1, Āj−1). If linear models are used then the residuals are orthogonal to the

covariates. Thus, we can separate the effect of exogenous variables from the

effect of earlier decisions, as displayed in panel (c) of Figure 1. See [6] for further

information.

2.2. Estimation

Moodie et al. [11] provide a very clear description of the estimation pro-

cedures proposed by Robins and Murphy. We provide only a brief outline here.

The blips of Robins [14] can be obtained by first obtaining constructed variables

which estimate at each j the response under the optimal policy:

Hj(θ) = Y +
∑

k≥j

{

γj(d
opt
j |Fj ; θ) − γj(Aj |Fj ; θ)

}

.

A user-specified vector Vj(Aj) of length dim(θ) is then specified. By construction

Hj(θ) is independent of Vj(Aj) and so

0 =
∑

j

Hj(θ)
{

Vj(Aj) − E
[

Vj(Aj)|S̄j , Āj−1

]

}

is an unbiased estimating equation.

Murphy [13] takes a different approach. She defines a sum of squares in-

volving two versions of the parameter vector ψ, say ψ and ψ∗, together with a
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stabilising constant c:

fn

(

ψ,ψ∗, c
)

=
1

n

n
∑

i=1

K
∑

j=1

(

Y i + c +
K
∑

l=1,l 6=j

µl(S̄
i
l , Ā

i
l;ψ)

+ µj(S̄
i
j , Ā

i
j ;ψ

∗) − ÊAj

(

µj(S̄
i
j , Ā

i
j ;ψ

∗)|S̄i
j , Ā

i
j−1

)

)2

.

Murphy shows that consistent estimation is possible through an iterative proce-

dure to find (ψ, ĉ) such that

fn(ψ,ψ, ĉ) ≤ fn(ψ,ψ∗, c)

for all (ψ∗, c). Note that this is not the same as minimising f .

The estimation methods of Robins and Murphy are at best computationally

challenging. By contrast, the approach of Almirall et al. [1] and Henderson et

al. [6] is based on a model for the observed response (2.1) which means standard

methods are available. Henderson et al. propose ordinary least squares between

observed and expected responses, which is valid without any distributional as-

sumption for responses. More efficient procedures may be possible if further

assumptions are made.

2.3. Illustration

We will illustrate using a simple two-timepoint example with Normal states

and binary actions as also used by Moodie et al. [11]. Data were generated

as S1 ∼ N(450, 1502), A1 ∼ Bern(0.5), S2 ∼ N(1.25S1, 602) and A2 ∼ Bern(0.5).

Blip functions were parametrised, leading to regrets

µ1(a1|S1;ψ) =

{

I(a1 = 0) (ψ10 + ψ11S1) , ψ10 + ψ11S1 > 0 ,

−I(a1 = 1) (ψ10 + ψ11S1) , ψ10 + ψ11S1 < 0 ,

µ2(a1|S̄2, A1;ψ) =

{

I(a1 = 0) (ψ20 + ψ21S1) , ψ20 + ψ21S2 > 0 ,

−I(a1 = 1) (ψ20 + ψ21S2) , ψ20 + ψ21S2 < 0 ,

and then response Y ∼ N
(

400 + 1.6S1 − µ1(A1|S1;ψ) − µ2(S1|S̄2, A1;ψ), 602
)

.

Table 1 compares G-estimation as used by Moodie et al. with the regret-

regression method proposed by [6]. For the latter we used ordinary least squares

to fit the correctly specified model

E[Y |S̄2, Ā2] = β0 + β1S1 − µ1(A1|S1;ψ) − µ2(S1|S̄2, A1;ψ) .
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The nlm routine in R was used for parameter estimation. In all simulations the

algorithm converged very quickly. Both methods produce apparently unbiased es-

timators, as they should, with smaller standard errors under the regret-regression

method.

Table 1: Summary of simulation results based on Moodie et al. scenario.
One thousand repetitions at sample size n = 500.

G-estimation∗ Regret-regression
True ψ

Mean SE Mean SE

250.0 250.01 17.20 250.20 11.39
−1.0 −1.00 0.04 −1.00 0.03
720.0 720.30 24.05 719.85 10.82
−2.0 −2.00 0.04 −2.00 0.02

∗ These results are taken from Moodie et al. (2007), who used the doubly robust form of
G-estimation: their equation (2), which is the most efficient of the methods they considered.

Table 2 investigates how estimated parameters translate into decision regime

performance. One thousand repetitions at sample size n= 500 were generated.

After each repetition a further 10 000 observations were generated using each

of four different decision rules: the gold standard of always choosing the opti-

mal decision; equally likely randomised decisions; and following the estimated

decision rules obtained from the first stage data by G-estimation of the regret

functions and by the regret-regression procedure. Column Ȳ gives the mean

achieved response for each procedure, and column“Err” gives the overall percent-

age of times a suboptimal decision was made, pooled over both decision times.

Columns ‘Cut 1’ and ‘Cut 2’ summarise the estimated cutpoints at each decision

time, with the true values given in the gold standard row. Again we see that

both G-estimation and regret-regression perform well, with again less variability

when regret-regression is used.

Table 2: Further summary of simulation results based on Moodie et al. scenario.
See text for explanation.

Ȳ SE Err Cut 1 SE Cut 2 SE

Gold 1120.1 2.4 0.0 250.0 360.0
Random 780.0 3.5 50.0
Regrets (G-est.) 1119.6 2.8 0.6 249.9 9.9 359.5 12.7
Regret-regression 1120.0 2.5 0.3 250.5 6.3 359.9 2.6
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3. REGRET-REGRESSION FOR A TWO-ARM BANDIT PROBLEM

The methods summarised above were developed with the aim of causal

inference from observational data. In this section we argue that they can also be

applied to problems from the stochastic optimisation literature. We will illustrate

using the classic two-arm bandit problem.

At time j the state value Sj is a 2-vector (M0j ,M1j), where M0j ∈ {0, 1}

is the value of arm zero and M1j ∈ {0, 1} of arm one. The action Aj is to choose

one of the arms. Response Y is then incremented by a reward which depends on

the current value of the chosen arm. In our example the rewards are 6 or 4 for

the two values of arm zero, and 8 or 3 for the two values of arm one. If arm zero

is selected then M0j is updated for time j + 1 according to a Markov chain but

M1j remains at its previous value. The opposite happens if arm one is selected:

M1j is updated but M0j is unchanged. In our example the transition matrices

are

P0 =

(

0.2 0.8

0.3 0.7

)

and P1 =

(

0.4 0.6

0.5 0.5

)

.

This is a special case of the so-called multi-armed bandit problem. A single

resource is available to process a collection of competing projects (arms) over an

infinite horizon. At each decision time j = 0, 1, ..., a decision must be taken as

to which arm will be selected for processing. If arm k is chosen at time j then a

discounted reward of
λjRk(Mkj)

is gained, where λ ∈ [0, 1) is a discount rate, Rk(·) is a reward function and Mkj

is the value of a Markov chain modelling the evolution of arm k at time j. After

a unit of time dedicated to project k, it changes state according to a Markov law

of motion Pk. The states of the other arms remain unchanged.

The objective is to find a policy for allocating arms for processing that max-

imises the total expected discounted reward over an infinite horizon. In principle,

for particular problems the use of dynamic programming and the application of

Bellman’s principle of optimality [2] would allow these classical problems to be

solved. However, as the size of the problem increases, the computational dif-

ficulties become intractable. Additionally, no insight into the structure of the

optimal policy is obtained. An alternative method of solution, based around

forwards induction, was introduced by Gittins and Jones [5]. They defined a

dynamic allocation index (DAI) as

Gk(xk) = sup
τ>0

E
[

∑τ−1
t=0 λ

tR(Mt)|M0 = xk

]

1 − E [λτ ]
,

where the bandit is initially in state xk and τ is a positively valued stopping time

defined on the process. The Gittins Index policy is the one that selects the arm
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with the current largest DAI. Such policies, since Whittle [17], are now referred

to as Gittins Index policies. There are a number of methods for calculating the

Gittins index including direct calculation, calibration methods, linear program-

ming and special purpose algorithms; see [4] for more details. The “largest to

smallest algorithm” [15] was implemented for the illustration here.

For the special two-arm two-value case described at the opening of this

section, the Gittins Index policy under almost no discounting (λ = 0.9999) is to

choose arms 1,0,1,1 for states (0,0), (0,1), (1,0) and (1,1) respectively. Note that

a play-the-winner rule which optimises current reward would be 1,0,1,0 in the

same order. The difference is at state (1,1) where the rewards on offer are (4,3).

The Gittins policy of choosing arm one acknowledges future expectation — the

possibility that the arm one reward value could change from 3 to 8 — whereas

the play-the-winner rule is myopic and takes the higher immediate reward of 4

on offer from arm zero.

The Gittins policy is derived under an assumption that the process con-

tinues indefinitely and the optimal policy is stationary. We can use the regret-

regression method to examine optimal dynamic policies for fixed length horizons.

We simply simulate the process with actions chosen randomly and then fit a lin-

ear model incorporating regrets and residuals from dummy variables to describe

the values. After each action the model includes residuals associated with eight

dummy variables: one for each state/action combination. We choose optimal

actions by working from the final timepoint and changing the action to ensure

regrets are positive, starting with a working guess at which actions are optimal.

Since linear models are used, this is a trivial task even when large samples are

used to smooth out the noise generated by the Markov chains.

Table 3 illustrates for K= 5, showing the optimal action for each state Sj

(j = 1, 2, ..., 5) for this problem, along with the regrets for choosing a suboptimal

action. It is interesting to compare the optimal choices with the Gittins policy.

In states (0,0) and (1,0) they are the same: choose action Aj = 1 and hence take

reward 8 units. State (1,1) has Gittins and optimal actions the same at Aj = 1

until time j = 5 at which final time the higher short-term reward under action

Aj = 0 should be taken. State (0,1) also has a change in optimal action near

the end, but this time at the penultimate decision stage. When in this state at

earlier times, the optimal dynamic policy is to choose action Aj = 1 whereas the

stationary Gittins policy is to choose Aj = 0.

For reference we give the mean reward under four decision regimes:

Regime Mean Y

Random, prob 0.5 25.2
Play-the-winner 26.0
Gittins 27.1
Optimal dynamic 27.8
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Table 3: Optimal actions and regrets for two-arm bandit problem with horizonK= 5.
The first reward is obtained if Aj = 0, the second if Aj = 1.
See text for other parameter values.

Optimal action
State Sj Rewards

j = 1 j = 2 j = 3 j = 4 j = 5

(0,0) 6 or 8 1 1 1 1 1
(0,1) 6 or 3 1 1 1 0 0
(1,0) 4 or 8 1 1 1 1 1
(1,1) 4 or 3 1 1 1 1 0

Regret
State Sj Rewards

j = 1 j = 2 j = 3 j = 4 j = 5

(0,0) 6 or 8 0.32 0.32 0.32 0.80 2.00
(0,1) 6 or 3 0.32 0.32 0.32 0.40 3.00
(1,0) 4 or 8 0.88 0.88 0.88 1.60 4.00
(1,1) 4 or 3 0.88 0.88 0.88 0.40 1.00

4. DIAGNOSTICS

We return to the general problem of Section 2 and focus on the regret-

regression approach based on (2.1). An advantage of this approach is that we

model the actual responses and hence can obtain residuals between observed and

fitted values. Plots of residuals against covariates, fitted values, selected actions or

estimated regrets can be used for diagnostic assessment and model comparisons.

However, we have made no assumptions on response Y other than independence

and our model (2.1) for the mean. In particular we have not assumed homogeneity

of variance, which implies that whilst there should be no trends in the means

of plots of residuals there may well be systematic patterns in the scatter, even

for a correctly specified model. Further, standard bootstrap methods can be

problematic when observations are independent but not identically distributed.

We propose to test for trend in residual plots using the wild bootstrap

or conditional multiplier method [7], [10]. Suppose we have variables {Di}

(i = 1, 2, ..., n) which are independent with zero mean and finite but not neces-

sarily equal variance. Suppose further that T0 = n−1/2
∑n

i=1Di converges in dis-

tribution to some variable D. Let {ξi} (i = 1, 2, ..., n) be independent and identi-

cally distributed with zero mean and unit variance. Then T1 = n−1/2
∑n

i=1 ξiDi

also converges in distribution to D. The wild bootstrap resampling method is to

generate N independent copies of {ξi} and use the resulting N copies of T1 as an

empirical estimator of the distribution of T0. Note that all original variables Di

contribute exactly once to each T1: there is no omission or duplication as in the

standard bootstrap.
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A complication is that residuals Ri = Yi −E[Yi|S̄iK , ĀiK ] are not indepen-

dent. Our proposal is to base a test statistic on a contrast: T0 = n−1/2
∑n

i=1 ciRi

where
∑n

i=1 ci = 0. We then obtain N resamples of T1 = n−1/2
∑n

i=1 ξi ciRi and

we compare the observed T0 with the empirical distribution of T1 to obtain a test

of trend. The detail is as follows:

1. Order the residuals against a chosen covariate (or the fitted value).

2. Divide the residuals into six equally sized groups 1 to 6 corresponding to

lowest sixth to highest sixth covariate values (with minor adjustments

below if the six groups cannot be equal).

3. Select a contrast set from the following:

Contrast coefficients c
Test

1 2 3 4 5 6

T1 Trend 1 1 1 −1 −1 −1
T2 Curvature 1 1 −2 −2 1 1
T3 Lower tail 1 −1 0 0 0 0
T4 Upper tail 0 0 0 0 1 −1

4. Compute T0 with the chosen contrasts for the six groups. Compute N

wild bootstrap versions as described above using standard Normal {ξi}

and obtain an empirical p-value as the proportion of resampled test

statistics which are more extreme than T0.

Simulation results (not shown) indicate that all of the tests have the correct

size for correctly specified models and that none uniformly dominates for power.

We propose that all four be adopted in practice and in addition we recommend

a fifth test based on the extremum of the cumulative residuals:

T5 = max
j

{

j
∑

i=1

Ri

}

.

5. APPLICATION

Rosthøj et al. [16] and Henderson et al. [6] describe analyses of data on war-

farin treatment of patients on long term anticoagulation. There are 303 patients

with 14 clinic visits each. At each visit the International Normalised Ratio (INR)

of blood clotting time was recorded, along with the change in prescribed dose

of anticoagulant. If INR is too high then patients have risk of severe bleeding,

whereas if INR is too low then there is risk of thrombosis. The aim therefore is to

adjust dose to maintain as closely as possible INR within a target range, which

can depend on underlying condition of the patient.
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The response variable Y used in previous analysis is the overall percentage

time the patient spent in range (PTR), which was to be maximised. The state

variable Sj used by [16] and [6] is a standardised version of the INR, defined to

be zero if the patient has INR in range, and otherwise the scaled distance to

the nearest target boundary, with scaling by the population standard deviation.

This ensures comparability between patients with different conditions and target

intervals. The action variable Aj is the change in dose, in mg Warfarin. The first

four visits are considered as a stabilisation period, and since there is no informa-

tion after the final visit this is not used for the analyses to come. Thus K= 9

and the data for analysis consist of states S1, S2, ..., S9 and actions A1, A2, ..., A9

for the 303 patients. Henderson et al. [6] also worked with a discretised state S∗
j

given by

S∗
j =































1 , Sj ≤ −0.3 (very low) ,

2 , −0.3 < Sj < 0 (low) ,

3 , Sj = 0 (in range) ,

4 , 0 < Sj < 0.55 (high) ,

5 , Sj ≥ 0.55 (very high) .

Rosthøj et al. used the methods of [13] and were able to fit only one very

simple regret model:

(5.1) µj(aj |Fj) =

{

I(aj 6= 0)
(

5.84 + 1.59 a2
j

)

, Sj = 0 ,

0.24
(

aj + 2.01Sj

)2
, Sj 6= 0 .

Here the optimal decision by construction is to leave dose unchanged if INR

is within range, and is otherwise to change in proportion to state. For high states

the dose should be increased so as to reduce clotting time, and the opposite for low

states. The regret for a suboptimal decision increases quadratically as the dose

change moves away from optimal. The model is overly simple and not claimed

to be realistic, but Rosthøj et al. were unable to obtain convergence of either the

G-estimation or iterative methods (see Section 2) for more realistic models.

Henderson et al. used the regret-regression approach based on (2.1) and

had no difficulty in fitting more realistic models. Their final selection assumed

that the regret function depended on the current discretised state S∗
j and the

previous standardised state Sj−1. For category s of S∗
j the model is:

(5.2) µj(aj |Fj , S
∗
j = s;ψ) = ψs1f(Aj − ψs2 − ψs3Sj−1) ,

where f(u) = u if u ≥ 0 and f(u) = u2 otherwise. Parameter estimates and

bootstrap standard errors from 100 resamples are given in the upper part of

Table 4.
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Table 4: Parameter estimates and bootstrap standard errors for anticoagu-
lation model example. Upper section: λ = 1 and analysis as [6].
Lower section: λ = 0.3.

S∗j = s ψs1 SE ψs2 SE ψs3 SE

−2 0.67 0.32 2.15 0.27 −1.11 0.38
−1 0.38 0.11 2.74 0.18 −1.57 0.67

0 0.97 0.36 −0.14 0.32 −1.12 0.74
1 2.38 0.27 −2.33 0.26 −0.98 0.27
2 2.83 0.79 −3.00 0.44 0.25 0.21

1 0.28 0.17 1.86 0.33 −1.05 0.58
2 0.12 0.11 3.00 0.43 −1.54 0.81
3 0.23 0.27 −0.10 0.17 −1.21 0.75
4 1.24 0.37 −1.57 0.42 −0.27 0.43
5 1.47 0.60 −1.98 0.69 0.39 0.39

To illustrate our diagnostic test suggestion, we will consider residuals from

the two fitted models plotted against the regret following the first considered visit

time. Figure 2 shows that the residuals from model (5.1) are more variable than

those from model (5.2), with perhaps more evidence of trend in the early and later

segments. To investigate, we applied the five wild bootstrap tests of Section 4.

p-values from 200 wild bootstrap samples are given in Table 5. They confirm the

early and late trends for model (5.1) are significant and the model is not fully

adequate, but there are no significant trends for model (5.2).
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Figure 2: Warfarin residuals against regret at time 1.
Left plot: model (5.1); right plot: model (5.2).
The solid line is a smooth through the data.
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Table 5: Wild bootstrap p-values for residuals in Figure 2.

Test
Model

T1 T2 T3 T4 T5

(5.1) 0.830 0.000 0.593 0.018 0.055
(5.2) 0.753 0.611 0.136 0.870 0.816

We summarise now a new analysis of the warfarin data with a revised

response variable. As well as a decision on the dose to be taken, at each clinic

visit there is also a recommendation as to the timing of the next visit. Generally

overly frequent visits are discouraged. Letting N(τ) be the number of visits in

follow-up time τ we propose a new response

(5.3) Y = Y (τ) = λPTR(τ) + (1 − λ)
τ

N(τ)
, 0 ≤ λ ≤ 1 ,

which weights together percentage time in range and average time between visits.

Overly frequent visits thus reduce the response. For the warfarin data N(τ) is

fixed at nine visits of interest but the time τ taken varies considerably between

patients.

We will use model (5.2) for analysis. Choosing λ = 1 gives the previous

results. To explore, we also analysed for a variety of other values for λ. To

illustrate, the lower part of Table 4 gives parameter estimates at λ= 0.3 together

with bootstrap standard errors obtained from 100 resamples. The general trend

against s is the same as for λ = 1 but since the response is on a different scale it

is hard to make a direct comparison. Instead, in Figure 3 we show the estimated

optimal actions at a variety of combinations of current and previous state. The

crosses indicate the values obtained when λ = 1 and the other points indicate

values at a sequence of decreasing λ. As expected, increase in dose is indicated

when INR is low, and decrease when INR is high, with previous INR moderating

the action. Generally there is little effect of λ except at high INR, where the

recommendation would be to reduce dose by a smaller amount if timing of visits

is of interest. The rationale is that large dose changes are usually followed by

quick return visits to monitor the effect. If this is to be discouraged then more

modest changes are recommended. There lack of effect of λ at the low values

of INR reflects the asymmetry in risk: very low values of INR need immediate

strong action.
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Figure 3: Effect of changing λ in response 5.3. The crosses mark optimal actions
when λ = 1. The other points show how the optimal action changes as
λ varies through {0.995, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3}, moved to
the right for display purposes.

6. DISCUSSION

We have presented an overview of the structural nested mean model ap-

proach to optimal dynamic treatment regime determination, with focus on blip

models [14], regret models [13], and regret-regression models [1], [6]. Although

there has been growing discussion in the literature on causal inference for dy-

namic treatment regimes, the area is still very much underdeveloped and there

are few genuine applications in realistic problems. One issue is the computa-

tional challenge faced for reasonable sized data sets. Another is the assumption

of balanced data, in the sense of common clinic or visit times. Methods which

allow irregular timing of visits are needed. In this case the definition of regrets

and blips is problematic. The counting process approach may be fruitful [9] but

much further research is needed. Nonetheless we see great promise in this type

of approach.
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