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Abstract:

• In longitudinal studies subjects are measured for one or more response variable, over
time. Although the underlying evolution of such response variables is continuous in
time, in practice the measurements are observed at discrete time points. In longitudi-
nal clinical trials it is also common to observe relevant events, generating time-to-event
data. If both types of data are available, we might be interested in the association
between the two processes, longitudinal and time-to-event. Commonly, when death
is considered the event, the observation sequence of longitudinal measurements is
terminated by the event process. When the two observed processes are related, the
analysis of the data set should be suited to the specific objectives. We distinguish
three situations: if the interest is to analyse the longitudinal outcome response vari-
able with drop-out at the time-to-event; to analyse time-to-event, whilst exploiting
correlation with a noisy version of a time-varying risk factor; or to analyse the relation-
ship between the two processes. Joint models assume a full distribution for the joint
distribution of longitudinal and time-to-event processes, which includes a description
of the relation between the two processes.
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1. INTRODUCTION

Longitudinal studies are characterised by observation of repeated measure-

ments on a number of subjects at a series of time points. In this work we will only

consider continuous response variables. It is of interest, particularly in longitudi-

nal clinical trials, to test significant differences between the underlying processes

of the same response variables for different treatment groups.

Time to event data are a set of times on individuals, induced by multiple

or single events. We will for this work only consider single events. In clinical

trials patients are usually assigned to different treatment groups, or in different

age or gender groups. Therefore, the aim of time-to-event analysis is to identify

differences in the time-to-event distributions of different groups.

In medical studies it is common to have data on repeated measurements

jointly with time-to-event. The interest on data analysis is sometimes on the

analysis of time-to-event, allowing for correlation with a time dependent variable,

or on the analysis of longitudinal outcome with potentially informative missing

data. Individual longitudinal and survival models might be considered. However,

the notion of joint modelling is motivated in a setting of dependent longitudinal

and time-to-event data.

If the interest of inference is on the association between the response vari-

able and the survival mechanism, the two processes have to be modelled jointly,

including parameters that represent their correlation. The proposal goes to the

so called joint models for longitudinal and time-to-event. These models are based

on a joint distribution for the two processes, longitudinal and failure time.

2. LONGITUDINAL DATA ANALYSIS

A longitudinal data set is characterised by repeated measurements of one or

more response variables on a number of subjects at a series of time points. We first

introduce linear models for repeated measurements with focus on general linear

mixed effects models. For the analysis of repeated measurements it is common

to assume independence between subjects, to have the replication across subjects

for the analysis of time trajectory. However, this assumption is not adequate for

measurements within the same subject, as measurements in time from a same

person tend to be correlated. Moreover, measurements from different subjects

and within a same individual are also subject to measurement error.
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2.1. Notation

In the context of repeated measurements of a response variable, we let

Yij be a response variable measured on subject i = 1, ..., n at time point tij ,

with j = 1, ...,mi. We include a set of p explanatory variables given by the

vector xij with dimension p, which can be time dependent or only measured at

baseline. The full set of repeated measurements for subject i is represented by the

vector Yi = (Yi1, ..., Yimi
), with mean E[Yi] = µi, and variance covariance matrix

Var(Yi) = Vi of dimension (mi ×mi), where each element (j, k) of this matrix is

the covariance Cov(Yij , Yik) = vijk, and Var(Yij) = vij , for j = k.

The most common model-based approach for longitudinal repeated mea-

surements assumes independence between subjects i, where each measurement is

a realisation of a Gaussian random variable. The linear model is based on the

regression of explanatory variables:

(2.1) Yij = µi(tij) + ǫij .

Different models for longitudinal data differ on the correlation structure for

the errors ǫij . For the entire data set of N =
∑n

i=1mi longitudinal measurements,

we use the notation Y = (Y1, ...,Yn) as the random variable of all measurements

for all subjects, with the linear model for longitudinal measurements as

Y ∼ MV N
(

Xβ,V (ψ)
)

,

where X is the (N× p) design matrix of explanatory variables. The matrix V ,

with dimension (N×N) and parameters ψ, is a block diagonal matrix, because

we assume independence between subjects, with each diagonal matrix V i repre-

senting the variance covariance matrix for subject i.

2.2. General linear mixed models

We will be using linear longitudinal models as defined previously, with

ideas from [1] and [2]. The general idea of linear mixed effects models is to

assume a structure for the ǫij ’s as in (2.1), separating pure measurement error

from variability between and within individuals. The general linear mixed effects

model is defined as

(2.2) Yij = µi(tij) + Ωi(tij) + Zij ,

where Ωi(tij) is an unobserved random process, and Zij are independent reali-

sations of a zero-mean Gaussian random variable with variance τ2, representing
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pure measurement error. Diggle et al. [2] propose to decompose the unobserved

random process Ωi(tij) into two components in an additive way,

Ωi(tij) = d′ij Ui +Wi(tij) ,

where Ui are n independent realisations of a r-dimension multivariate Gaus-

sian random variable with mean zero and variance covariance matrix G, and

dij are r-dimension vectors of explanatory variables for the random process Ui.

The Wi(tij) are n independent realisations of a stationary Gaussian process with

mean zero, variance σ2 and correlation function ρ(u), with u being time lag. The

processes Ui and Wi(tij) are in [2] terminology random effects and serial correla-

tion components, interpreted as the variability between and within individuals,

respectively.

Notice that decomposing ǫij in the previous additive way implies that

Var(ǫij) = DiGD
′
i + σ2Hi + τ2Ii ,

where Hi is a matrix with (j, k) element hijk = ρ(|tik − tij |).

For estimation of model parameters we will use likelihood-based methods.

The full likelihood is easily available for the entire data set.

2.3. Modelling missing process in longitudinal analysis

In this section we will be referring to balanced longitudinal study designs.

This meaning that the study specifies that all subjects are observed at the same

equally spaced time points, the same number of times. It is common that not

all subjects provide the complete set of measurements for the study, originating

missing values. Therefore, we review longitudinal models that cope with poten-

tially informative missing data. In particular, we consider longitudinal models

where the event is “drop-out of the study”. This will lead us to distinguish differ-

ent reasons for missing values, and how they can be associated with the repeated

measurement processes.

Missing values in longitudinal studies occur in two different ways. They

can be missing at intermittent times in the sequence, which means that other

measurements are observed following missing values; for example, when a patient

does not feel well for the visit, or just forgets the appointment. The other type

of missing values appear when all other values after this are also missing, and

the patient is said to have dropped-out of the study (measurement sequence

terminates prematurely [3]). There might be several reasons for a patient to

drop-out a study such as death, feeling the treatment is not helpful to them or

just moving house.
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The main concern of longitudinal analysis with missing data arises when

there is an association between the longitudinal profile and the missing process.

For example, if a patient drops-out the study because he/she believes that the

treatment is not being effective, the missing values should not be dissociated

from the measurement process. Therefore, it is necessary to distinguish between

different reasons for missing values, to be possible to conjecture on possible as-

sociation. Little and Rubin [4] classified the nature of missing data mechanism

as:

MCAR — Missing Completely At Random: when the probability of miss-

ing does not depend on either the observed or unobserved measurements.

For example, when a patient forgets to attend the appointment.

MAR — Missing At Random: when the probability of missing depends on

the observed data, but not on the unobserved measurements. Conditional

on the observed measurements, missing process and data are independent.

For example, the patients leaves the study on doctors advice based on

previous observed longitudinal measurements.

MNAR — Missing Not At Random: when the probability of missing

depends on observed and unobserved data. For example, when a patient

leaves the study because he/she feels ill on the day of their appointment,

and the illness is related with all the longitudinal profile, including those

measurements that would have been observed if they would have kept on

going to the appointments.

In a setting of time-to-event, it is reasonable to consider missing values

as events, and the design times at which the missing values occur as the set of

possible event times. The events associated with intermittent missingness are

multiple events in a same subject. However, it is commonly assumed that this

type of missing data is missing completely at random, because other measure-

ments are observed after in time. Hence, intermittent missing values are treated

as ignorable and inferences can me made using likelihood based methods.

The drop-out missing value originates a single event, identified as the time

that terminates the longitudinal sequence. It is usual in clinical trials to record

the cause of the patient’s drop-out. This information helps to identify the nature

of the missing data.

Let Y be the random variable associate with the complete data vector for

a single subject, that can be decompose as Y = (Yobs,Ymis) with observed and

missing measurements, respectively. Also, D be the missing data indicator (0/1)

for the same subject, for observed and missing measurements, respectively. The

model for the complete data requires the specification of the joint distribution

[Y ,D], where [·] represents the density distribution. Using this notation, Little [5]

contrasts different models for the drop-out mechanism that come in parallel with
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the nature of the missing data as before. These are:

Covariate-Dependent Drop-out — when the drop-out mechanism does not

depend on any longitudinal values, but is allowed to depend on the covari-

ates:

[D|Y ] = [D] ≡ MCAR .

Missing-at-Random Drop-out — when the drop-out mechanism depends

only on observed data:

[D|Y ] = [D|Yobs] ≡ MAR .

Nonignorable Outcome-Based Drop-out — when the drop-out may depend

on missing components of Y :

[D|Y ] = [D|Yobs,Ymis] ≡ MNAR .

It is proved that likelihood-based inferences on the model parameters are

unbiased when ignoring the missing values of the data [6], if the data is believed

to be MCAR. The standard procedure for testing for MCAR is to compare the

empirical distributions of complete observed variables for respondents and non-

respondents subjects, using t-tests [7].

If the likelihood function can be factorised into two independent parts, one

corresponding to the response parameters and the other corresponding to missing

parameters, the missing process is considered to be at least MAR with respect

to the response process. Under the MAR assumption Rubin [6] shows that if

the parameters θ and ψ, on the distributions f(y|θ) and f(d|y,ψ), are distinct,

then likelihood inference is possible, by integrating out the density of ymis. If the

parameters θ and ψ do not have common components it is possible to factorise

f(yobs,d|θ,ψ) =

∫

f(yobs,ymis|θ) f(d|yobs,ymis,ψ) dymis ,

and under the MAR assumption f(d|yobs,ymis,ψ) = f(d|yobs,ψ), so

f(yobs,d|θ,ψ) = f(d|yobs,ψ) f(yobs|θ) .

Therefore, maximisation of the likelihood for model parameters, requires

the maximisation of two independent terms, that do not share common parame-

ters. However a theorem proved by Molenberghs et al. [8] implies that MAR is

untestable without additional assumptions no matter how much data are avail-

able. Also, Molenberghs and colleagues [9] derive the bias on parameter estimates

when data is MCAR and MAR and simple methods like last observation carried

forward and complete case analysis are used, and show that likelihood-base meth-

ods provide consistent estimators.
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Missing values which are MCAR or MAR are known in the literature as

ignorable, because longitudinal analysis can be performed ignoring them. How-

ever, missing values originated by MNAR are said to be informative or non-

ignorable [10].

3. TIME-TO-EVENT DATA ANALYSIS

Time-to-event data is generated by observing several subjects until a single

or multiple event occur, and the data is the waiting time. For example, in a

medical context a single time-to-event is the time to recurrence of a health con-

dition, time of response to a treatment or time to death from a certain cause.

To determine time-to-event correctly, it is necessary to choose an appropriate time

origin, which has to be easily identified and common for all patients. Usually,

time from randomisation, time from diagnosis or time from beginning of medica-

tion is chosen. From now we will refer to failure time with the same meaning as

time-to-event.

The special difficulty with time-to-event data, is that the event will not

occur for some subjects during the follow-up period of the study. The only infor-

mation available for these patients is a maximum time, up to which it is known

not to have observed the event. For example, in a clinical trial where failure time

is time to death, not all patients will die during the study. For these patients we

observe a right-censored time, which in the maximum is the follow-up time of the

study. The set of failure and censored times we call survival data, or sometimes

observed lifetime. Therefore, the analysis of time-to-event data is also commonly

called survival data analysis.

The observed censored times can represent subjects still alive when the

study is finished, or subjects who drop-out of the study. We consider drop-out

time, the time when a subject drops out of the study, and we use it analogously

to time-to-event.

3.1. Notation

Let the random variable F denote the time-to-event and let f1, ..., fn be

a random sample from F on i = 1, ..., n subjects. However, the event is not

always observed and every subject i has associated a censored time, coming from

a random variable C, where c1, ..., cn is the random sample from C for the same

subjects. Therefore, the observed survival data is the realisation si = min {fi, ci},

i = 1, ..., n, of a random variable S.
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A common assumption in survival analysis is non-informative censoring,

meaning that random variables C and F are independent. Therefore, if F ≤ C,

S = F and a failure time is observed, if C < F , S = C and a censoring time is

observed. The observed data are realisations (si, δi), where si is defined as before,

and δi is a subject indicator (1/0), for failure or censored time, respectively.

To describe the distribution of failure time f , it is more appropriate to

use the survival and hazard functions. The survival function S(t) is defined as

the probability of failure time being beyond some point t, S(t) = P(F >t). The

hazard function is the probability of failure time occur in the next short period

of time, given that failure time did not occur up to that time and all the past

history,

λ(t) = lim
∆t→0+

P
(

t≤F < t+ ∆t |F ≥ t
)

∆t
,

and is defined as the instantaneous death rate for an individual surviving to time t.

It is possible to combine the two definitions and get the relation

(3.1) λ(t) =
f(t)

S(t)
,

where f(t) is the density function of F .

For observed survival data (si, δi) on subjects i = 1, ..., n, the likelihood

function of model parameter is the product of probabilities given the observed

data, for all subjects i. Usually the censoring mechanism is ignored [11] and the

likelihood of interest is

(3.2) L(θ; s, δ) ∝
∏

i

f(si)
δi×S(si)

1−δi ,

where each failure time contributes with the density function and each censored

time contributes with the survival function.

3.2. Survival models

When modelling survival data, the most common non-parametric method

is the product-limit estimator [12], sometimes called the Kaplan–Meier estima-

tor. Consider the ordered subset of k ≤ n unique observed failure times from the

observed survival times, s(1) < ... < s(k). Let di be the number of failures which

occur at ti and ni the number of individuals who are at risk just before time ti,

making up the risk set R(ti), say. Notice that ni represents the number of subjects

that survive at least until time ti. Therefore, di/ni is an estimate of the proba-

bility of failure at time ti, conditional on surviving up to ti. The product-limit
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estimator is then defined as

(3.3) Ŝ(t) =















1 if t < s(1) ,

∏

s(i)≤t

(

1 −
di

ni

)

if t ≥ s(1) .

The most common way to model survival data is through the hazard func-

tion, including a set of q explanatory variablesW measured at baseline to predict

failure time. The most widely use semi-parametric model is the so called Cox

proportional hazards model [13],

(3.4) λ(t|W ) = λ0(t) exp(W ′α) ,

where α is a (q×1) vector of parameters to estimate, and λ0(t) is the unknown

hazard function at the baseline variablesW= 0. This is a semi-parametric model,

because the baseline covariates are modelled parametrically whereas the base-

line hazard function is modelled non-parametrically with no specific form. The

function λ0(t) is considered a nuisance parameter in the Cox proportional haz-

ards analysis. Therefore, when writing the likelihood function for this model as

in (3.2), it is not possible to estimate simultaneously the baseline hazard func-

tion and parameters of interest α. Consequently, Cox [14] suggests an estimation

method based on conditional probabilities at the set of failure times, which is

based on maximising the partial likelihood. The main advantage of the partial

likelihood is that it does not depend on the baseline proportional hazard function

λ0(·), and only parameters of explanatory variables are estimated. For complete

details on parameter estimates in the partial likelihood and score function vector

see [15].

3.3. Time dependent covariates in time-to-event analysis

When the interest is on inference for the model parameters of a time-to-

event process, we allow for survival data analysis, which deals with censored event

times. The most popular model is the Cox proportional hazards model, where

the hazard of an individual with some covariates is proportional to a baseline

function of time [13], as discussed before. This model allows for fixed covariates

that do not change over time [16], and parameters are estimated by maximising

the partial-likelihood [14]. However, it is often the case that time-dependent

covariates are available and these also want to be included in the survival model.

The Cox proportional hazards model can be extended to incorporate the

observed time-dependent covariates [17], with the partial likelihood evaluated at
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each event time in the form

(3.5)
∏

ti: event time

exp {W ′
i (ti)α}

∑

j∈R(ti)
exp

{

W ′
j(ti)α

} ,

where R(ti) represents the set of subjects at risk at event time ti. This model is

described in [16] Chapter 8, and the efficiency of the parameter estimates using

partial likelihood is compared with those obtained from a fully parametric model.

Moreover, Hougaard [11] in section 2.4.4 argues that time dependent covariates

have to be predicted, which means the trajectory of the covariate has to be known

at every time points.

There are also ways for handling with missing time dependent covariates, as

in longitudinal models mention in the previous section. Lin and Ying [18] estimate

from the subjects with complete measurements, the conditional expectation of

missing covariates at all time points. Thus, in the parameter estimating equations

this is subtracted to the observed covariate. They claim this method is generally

more efficient than using only subjects with complete data. However, it is stated

that the validity of the method “depends critically on the MCAR assumption”.

Paik and Tsai [19] suggest a very similar estimator, with the advantage that

is consistent under the missingness mechanism. But also in this work, the authors

conclude that when the missing probability depends on unobserved values of the

covariate, their estimator is biased.

If we consider longitudinal measurements as time dependent covariates, it is

ignored that these are measured with error, and the observe measurements are a

noisy version of true process. A drawback of the previous methods is that they do

not account for measurement error in the repeated measurements. Prentice [20]

shows that regression coefficients on the partial likelihood are asymptotically bi-

ased when it accommodates covariates measured with error, and he suggests a

modified partial likelihood, using conditional expectations on the relative ob-

served hazard. Altman and DeStavola [21] review the different problems of in-

cluding time dependent covariates measured with error in survival data analysis.

Following this, models for the joint distribution of time-to-event and longitudinal

response variables have been proposed, included in the so called area of joint

analysis of longitudinal and time-to-event outcomes.

4. JOINT MODELLING

In the context of joint modelling it is necessary to establish a clear frame-

work to distinguish terminology from longitudinal and time-to-event processes.
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Two processes are considered, the longitudinal Y and time-to-event F processes

with possible association, which we are interested in. Another common issue in

any data set is the missing process generating missing data. Therefore, the miss-

ing data can be missing of longitudinal measurements or missing to observe the

event. When the event is not observed the missing process is called censoring C,

and missing of longitudinal measurements is called missing data D. The censor-

ing process C is usually assumed non-informative, in the sense that is considered

independent of the time-to-event and longitudinal processes.

The missing of longitudinal measurements can be intermittent or termi-

nating the sequence of longitudinal measurements, as discussed in section 2.

In the case of intermittent missingness we assume these MCAR and it is known

that these can be ignored in the likelihood function. If a missing longitudinal

measurement terminates the sequence of longitudinal measurements, we call it a

drop-out time from a drop-out process D, as corresponds to a subject drop-out

of the study. Moreover, the drop-out process cannot be ignored in most of the

cases and it is considered to be MNAR.

We then have four processes, longitudinal process Y , drop-out process D,

time-to-event process F and censoring process C, and assumptions on possible

associations on these processes is necessary. For example, we might assume that

the event of interest is drop-out time, and so processes D and F are the same.

This is an assumption of many clinical trials, as there is no record of an actual

time-to-event, and the time of the last observation is considered the failure time.

Furthermore, the missing longitudinal measurements caused by drop-out time are

allowed to be associated with the event time, that is MNAR.

Different associations are possible between the four processes. We will

consider the situation that time-to-event is available in the data set and the

event generates missing data. Therefore, the time-to-event process completely

determines the drop-out process. Figure 1 represents graphically this situation.

Figure 1: Graphical representation of possible associations between
longitudinal, time-to-event and drop-out processes.

Another situation would be the longitudinal process associated with both

processes time-to-event and drop-out, but these not associated with each other.
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4.1. Model based joint models

We review full likelihood methods for exact estimation of model parameters

in the joint distribution of repeated measurements and time-to-event. These

are what we will call joint models, which model the joint distribution [Y ,F ],

for Y and F the random variables of repeated measurements and failure time,

respectively. Inference on model parameters is done through the decomposition

of the full likelihood. Nevertheless, it is not clear a joint distribution for the two

random variables. Therefore, in joint models the joint distribution is factorised

using Bayes rule.

The two different factorisations of the joint distribution generates differ-

ent model strategies that contrast model interpretations, and consequently their

suitability for individual problems. These are pattern-mixture and selection mod-

els [4, 22] that factorise:

pattern-mixture models selection models

[Y ,F ] = [F ] [Y |F ] [Y ,F ] = [Y ] [F |Y ] .

The parameters involved in each of the model components have different

interpretations, in one model they are the parameters of the conditional distribu-

tion in the other they are the parameters of the marginal distribution. Depend-

ing on the context, the parameters of interest for inference will also be different.

Notice that, if event is drop-out, F =D in the terminology of section 2, and if

the missing process is MCAR the two model strategies are equivalent, as the two

processes are independent.

The model strategy depends mostly on the nature of the statistical prob-

lem and the scientific questions to be answered. Although mathematically the

models describe exactly the same joint distribution, they have different statistical

interpretations. Selection models are mainly used when inference is on time-to-

event model parameters, improving the inference by allowing for correlation in

the longitudinal measurements. In opposition, when primary interest is on the

longitudinal trajectory, which might be associated with an event pattern, the

pattern-mixture models are more commonly used. Therefore, the two different

approaches lead to different understanding and inferences of the model parame-

ters, together with different views on how to store the data.

Pattern-mixture models stratify regression models by missing pattern co-

hort, then model the marginal distribution of the response as a mixture of dis-

tributions over the patterns. These models are useful as an exploratory tool to

check on longitudinal profile differences between drop-out groups. Selection mod-

els assume a model for the complete longitudinal data and then multiply by the
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probability of observing the event given the complete data, though the observed

data does not match the complete data.

Selection models can be seen as an alternative to pattern-mixture models

for data with many complex missing patterns. The terminology of these models

is clear for pattern-mixture models, they model a mixture of conditional distri-

butions each for each missing pattern data. For selection models they model the

selection of drop-outs condition on the measurement history.

The models above can be extended to incorporate random effects, in this

case they are called random pattern-mixture models and random selection models.

The individual unobserved random effects in the selection models are included

in the marginal longitudinal model, whereas in the pattern-mixture models these

come in the marginal distribution of the event times. Therefore, when jointly

modelling repeated measurements Y , event times F and random effects U , the

joint distributions are:

random pattern-mixture models random selection models

[Y ,F ,U ] = [U ] [F |U ] [Y |F ] [Y ,F ,U ] = [U ] [Y |U ] [F |Y ] .

Diggle [23] defines one different class of joint models, these as random effects

models. Random effects joint models assume that both repeated measurements

and event time depend on a unobserved random effect, these specified through

a certain bivariate distribution. The random effects joint model is described by

assuming conditional independence between Y and F given the random effects

U = (U1, U2), as

random effects model

[Y ,F ,U ] = [U ] [Y |U1] [F |U2] .

In random effects joint models the association between longitudinal mea-

surements and time-to-event is completely determine by the correlation structure

between the two random effects U1 and U2. The three different strategies to

model the joint distribution, can be distinguish visually by diagrams presented

by Diggle [23] and shown here in Figure 2.

The diagrams in Figure 2 represent conditional independence graphs for

the three random variables. The absence of an edge indicates conditional inde-

pendence between the two vertices of the edge, given the third vertice involved

in the graph. In Figure 2(a) it is represented the saturated model, where all the

associations are possible. Figure 2(b) represents selection models, where longi-

tudinal measurements are influenced by their individual random effects, and it

is the realisation of the measurement process that will influence the event, and

not the random effect. On the contrary, in pattern-mixture models in Figure 2(c)
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the individual random effects will determine the time of event, which after being

predefined develops the individual longitudinal profile with some error. Regard-

ing random effects joint models, Figure 2(d) suggests that both processes are a

joint response to an unobserved individual specific process, and conditional on

the responses being independent of each other.

Figure 2: Graphical representation of saturated, selection, pattern-mixture
and random effects models as in [23].

Little [5] produces a detailed review on selection and pattern-mixture mod-

els, when different missing mechanisms are present, in parallel with examples of

data sets. Hogan and Laird [24] give a good comparison between pattern-mixture

and selections models, and refers to random effect pattern-mixture and random

effect selection models, but not with the same definition as we introduce here.

We refer to this below, when giving examples of random effects models.

4.1.1. Pattern-mixture models

In mixture models it is necessary to specify a model for the marginal dis-

tribution of the event times [F ] and the conditional distribution of [Y |F ]. For

the former, standard distributions would be the multinomial, or through mod-

elling the hazard function with a Cox model, additive model or accelerated life

model. The latter distribution is not always established, as the sample space

of drop-out patterns can be integrated out of the conditional distribution, and

inferences are made directly on the marginal distribution of [Y ]. The main goal

of pattern-mixture models is to adjust the inference about Y for the effects of

drop-out, with the convenience of not having to specify the event time marginal

distribution.
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One of the first pattern-mixture models was proposed by Wu and Bai-

ley [25] whose aim was to compare rates of change of a continuous variable under

informative missingness, for k different treatment groups. A conditional linear

random effects model is proposed for the continuous variable, where the random

effects Ui = (U1i, U2i) are conditional on the event time. Especially the random

slope is a polynomial function of some degree, on the event time,

(U2i|F i = fi) =

L
∑

l=0

γlk s
l
i .

Two alternative estimation methods based on simple linear regression are

proposed for the expected values of the random slope in the k group, namely linear

minimum variance unbiased estimator and linear minimum mean squared errors

estimator. These are compared by simulation studies with three other estimates

and found to be more efficient. Testing for MNAR in this model, corresponds to

test for the alternative hypothesis HA : γl 6= 0, for all l, when the null hypothesis

is H0 : γl = 0, for all l. Wu and Bailey [26] consider the particular case of l = 1.

Little [22] proposes a pattern-mixture model, where the drop-out patterns

are considered realisations of a multinomial model, such that model parameters

are the probabilities of having each of the drop-out patterns. For each drop-

out pattern, the conditional distribution of the longitudinal measurements are

assumed to be multivariate Gaussian. Usually, pattern-mixture models have a

large number of parameters due to possible high number of drop-out patterns,

which can cause identifiability problems. Therefore, it is mentioned the need

to have at least one more longitudinal complete case than number of response

variables to obtain consistent estimates for each pattern.

For a saturated model, where each multivariate distribution has distinct

parameters, not all the parameters are possible to estimate. For example, the

model parameters of missing patterns with no observed measurements, will not

come out in the likelihood. The work of Little proposes parameter restrictions to

the conditional models, which would reflect a certain missing process. The same

approach is extended to categorical response variables, where the multinomial

distribution is defined through a contingency table. However, it is noticed that

the methodology can be inefficient because it requires a reasonable large number

of complete cases.

The model proposed by Little does not allow for observed censored sur-

vival times, because it specifically models the probability of observing an event.

Nevertheless, this can be extended to different multinomial distributions for each

subsets of subjects with failure and censored times. This is a reasonable model

when we want to assume independence between censoring and failure processes.
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The work by Hogan and Laird [27] is motivated by limitations of the pre-

vious models that assume fully observed events, and parametric models for the

drop-out process. Accordingly, the distribution [F ] is specified non-parametrically

by estimating multinomial probabilities with incomplete data, and the conditional

distribution [Y |F ] is assumed a linear regression with individual random effects bi.

An advantage of using a Gaussian model for the conditional distribution is

that the unconditional distribution is a mixture of conditional normal distribu-

tions. When the event times are completely observed the maximum likelihood

estimates are easily obtained by maximising the likelihood.

The work of Li and Schluchter [28] examines different conditional models for

the random effects bi|Fi. Firstly, they consider a conditional quadratic and linear

models, where random effects follow quadratic or linear regression curves on sur-

vival times. Secondly, a pattern-mixture model is described in the general form of

the mixed effects model, using a single parameter for each missing pattern. These

models differ on the design matrix di, and many other models can be defined

depending on the observed survival time allowing for censoring. For example,

for a non-parametric model it is possible to use a piecewise linear or spline model.

In the opinion of Hogan and Laird [24] pattern-mixture models appeared

to approximate selection models, as these are difficult to fit, have problems with

identifiability and sensitivity to parametric assumptions. In addition, they con-

sidered pattern-mixture models not very appealing, because they mainly focus on

the stratification of the sample by time of drop-out. However, they consider their

main advantage over selection models, to be able to integrate out the cumulative

distribution of F . Therefore, it is possible to make inference on the marginal lon-

gitudinal parameters, without specifying a model for the drop-out process. When

specifying a model for the drop-out, non-parametric estimators are usually use,

like Kaplan–Meier as in [27].

All pattern-mixture models presented here make the assumption that can-

not be verified of fYobs|F = fY |F , which is not equivalent to fYobs
= fY [27]. Other

authors discuss more carefully about identification problems of pattern-mixture

models, generated by unverifiable assumptions between the distribution of the

complete data and only the observed measurements.

Thijs and co-authors [29] look at sensitivity analysis for pattern-mixture

models, and propose three different strategies to fit pattern-mixture models un-

der identified restrictions. The model strategies allow extrapolation beyond the

time of drop-out, and inference on the distribution of the unobserved outcomes

given the observed ones is possible. When restrictions are made it is plausible to

perform a sensitivity analysis as the model assumptions are well identified. Birm-

ingham et al. [30] present three class of restrictions that identify marginal distri-

butions of the outcome, and are comparable to restrictions in selection models.
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4.1.2. Selection models

In selection models the marginal distribution of longitudinal measurements

is modelled, whereas the model for event time is conditional on the response

variable. The most common approach for the distribution of repeated measure-

ments is a linear mixed effects model, usually only random intercept and slope.

Generally, choices for the conditional time-to-event distribution are logistic lin-

ear regression, probit regression, where probabilities are modelled as function of

some longitudinal measurements. However, in some works the Cox proportional

hazards model and accelerated life model are proposed.

One of the earliest proposals on selection models, as defined here, is [31]

where the event time depends directly on the repeated measurements. The prob-

ability of drop-out at any time tk is a parametric logistic linear model, with re-

gression parameters on all the history of the observed measurements (y1, ..., yk−1)

and on the unobserved measurement at drop-out time yk, that is,

logit
{

P (F = k|y)
}

= β0 + β1yk +
k

∑

j=2

βj yk+1−j .

If β1 = β2 = ... = βk = 0 the missing process is completely at random, and

if only β1 = 0 and all other different from 0 the missing values are missing at

random.

This same model is used in [23], and likelihood ratio tests are performed on

the β parameters to test for random drop-out and informative drop-out. A draw-

back of this model is the restriction on a monotone drop-out. This model does

not deal with censoring times, but the model can be extended to accommodate

for that.

Scharfstein and colleagues [32] refer to a general logistic regression model,

in the context of a selection model, for the probability of drop-out given the

complete vector of measurements,

logit
{

P (drop-out|Y )
}

= β0 + q(Y ) ,

where q(·) can be any function. For the particular application, they consider the

class of functions Q = {α log(Y ) : α ∈ R}, where α is a selection bias parameter.

That is, it is possible to test for the value of α to be zero to understand the

missing process, as before for the values of β.

In this paper the advantage of having a methodology that depends on a

general function q(·) is discussed. The flexibility of function q(·) quantifies the

influence of the response on the probability to drop-out, which allows a straight-

forward sensitivity analysis, where different assumptions can be tested.
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Most of the joint models described here model repeated measurements data

with the popular parametric linear mixed effects model. However, in many appli-

cations the data may not fit well by linear models, or it is of interest to model the

response non-parametrically. Brown et al. [33] propose a cubic B-spline to model

the longitudinal data, so that there is no parametric assumption on the trajectory

of subject’s longitudinal profile. This approach is relevant when inference on the

effect of the longitudinal measures on the time-to-event is of interest, but not

on the longitudinal process or its trajectory over time. Therefore, this approach

allows a much more flexible modelling of the longitudinal data. Bayesian meth-

ods are used for the estimation, and the B-spline is extended to accommodates

estimation on multiple response variables.

4.1.3. Random effects models

There are many models called selections models, that we include in our clas-

sification of random effects models. Although, the conditional distribution of time-

to-event is modelled, this is conditional on a latent process, and the longitudinal

and time-to-event processes are assumed independent conditional on the latent

process. Therefore, we include these models in the class of random effects joint

models. These models are also called shared parameter models, because the longi-

tudinal response and missing mechanisms are modelled by sharing random effects.

In random effects joint models we assume both event time and longitudinal

process dependent on a underlying disease or illness progression, defined by a

random effect, rather than to the actual outcome. Moreover, the two processes

are independent conditional on the unobserved random effects. For example,

in [24] the joint distribution is defined as

[Y ,F ] =

∫

U

[U ] [Y |U ] [F |U ] dU .

Wu and Carroll [34] propose a random effects model called an “informative

right censoring” model. In this model it is assumed that the repeated measure-

ments follow a linear mixed effect model, with subject specific random effects, in

particular random intercept and random slope. They further assume a general

density function M(t) for the failure process, conditional on the subject specific

random effects. In particular they use a probit drop-out model for M(t), and

estimation of model parameters is obtained by maximising a pseudo-likelihood.

Testing for non-informative missingness under this model, is equivalent to

test for the regression parameters that relate the conditional probability with

the random effects to be zero. A test statistic is proposed for testing for non-

informative missing process.
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The model propose by Schluchter [35] is also a random effects model, as

they use a trivariate Gaussian distribution to model the joint distribution of log-

arithm transformation of time-to-event, and the random intercept and random

slope. These are random effects in a linear mixed effects model for the longi-

tudinal measurements, and it is assumed that the event time is associated with

an underlying process that is unobserved. The parameter estimates are acquired

with an EM algorithm on the complete log-likelihood of the parameters given the

observed data.

Some of the advantages of this model enumerated by the author are, the

allowance for unbalanced data due to staggered entries or unequally-time visits,

it is possible to use all the data available and possibility to apply likelihood

ratio tests on the model parameters. In particular, on the correlation parameters

of the trivariate distribution, which represent the association between random

effects and event time. However, there is the computational disadvantage of this

model, that may require large amounts of data to obtain convergence in the

EM algorithm. We think this models simplifies the association structure, by only

having two cross-correlation parameters, between the event time and two random

effects, initial value and slope.

DeGruttola and Tu [36] propose to extend the two random effects joint

model to include a general structure for the random effects. The conditional

distribution of any transformation of failure times is modelled as a linear mixed

effects model, and longitudinal and time-to-event processes share the random

effects. Thus, this model assumes that both processes are measurements with

error of the same unobserved latent process that represent health deterioration.

The estimation of the model parameters is by an EM algorithm.

In all random effects models mentioned before, the survival time is modelled

parametrically. Another very popular approach to the conditional distribution of

the event times is by semiparametric survival models, such as the Cox propor-

tional hazards model. Faucett and Thomas [37] propose one of the first random

effects models with proportional hazards for the event time. They consider the

joint analysis of longitudinal measurements and survival time as the joint dis-

tribution of two models, covariate tracking model and disease risk model. The

former models the longitudinal response as a linear mixed model with subject

specific random effects, intercept and slope, as in a linear growth curve model,

Yij = U1i + U2i tij + ǫij .

The latter allows a Cox proportional hazards model for the disease risk,

with the same random effects as in the longitudinal model, assuming that these

describe the true latent process

λ(t|Ui) = λ0(t) exp
{

β(U1i + U2it)
}

.
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Wulfsohn and Tsiatis [38] consider the same model as Faucett and Thomas,

as an alternative to the two-stage model. In this proposal, they notice that the

normality of the random effects is on the overall subjects, and constant over time,

which does not imply normality on the random effects of the subjects at risk at

a certain time point.

In the two stage model the random effects are estimated in the first stage, by

fitting a longitudinal model, and these are input to the Cox proportional hazards

model in a second stage. In the model propose by Wulfsohn and Tsiatis [38] the

parameters are estimated using all the information available at each time point,

by maximising the full likelihood of the joint distribution. Although, the models

by Faucett and Thomas and by Wulfsohn and Tsiatis are the same, they use

different approaches for the parameter estimation. Faucett and Thomas follow a

MCMC approach, with a Gibbs sampling whereas Wulfsohn and Tsiatis use an

EM algorithm for the estimation.

Henderson and colleagues [39] propose an extension to the previous model,

including a Gaussian stochastic process to each longitudinal response linear model

Yij = µ(tij) + Ω1i(tij) + ǫij

and event time hazard model

λ(t|Ω) = λ0(t) exp
{

α(t) + Ω2i(t)
}

.

The stochastic processes are components of a bivariate Gaussian process

Ω(t) = {Ω1(t),Ω2(t)}. This is an extension of the previous model as each Gaus-

sian stochastic process is assumed as in [40],

Ω1i(t) = diUi +Wi(t) ,

where Ui are the associated Gaussian random effects and Wi(t) is a stationary

Gaussian process that introduces serial autocorrelation. The last component is

not considered in any of the previous models. It is then assumed that both

processes are independent given Ω(t). Therefore, the association between the

two processes is interpreted by the correlation between the two latent variables.

Moreover, in the absence of association between the two processes, the analysis

becomes as two independent longitudinal and survival analyses.

Guo et al. [41] propose a model which they call a random pattern-mixture

model, that incorporates aspects from both selection and mixture models. This

model considers random subject-specific effects on the conditional longitudinal

response, as in most of the cases, and a random pattern specific effects V . The

model implies the factorisation

[Y ,F ,U ] =

∫

V

[V ] [F |V ] [U |V ] [Y |U,V ] dV .
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5. DISCUSSION

The approach for the analysis of repeated measurements and time-to-event

data, depends on research interests and on the assumptions we are ready to make

on the available data. We have seen how these models can incorporate extra

information. However, the assumption on association between processes need

to be tested and we have seen that, for example MAR is not testable without

additional assumptions. If the primary interest is on the time-to-event process,

repeated measurements are used as time-dependent covariates in a Cox propor-

tional hazards model. Conversely, if the interest is to make inference on the

longitudinal profile, the missing pattern has to be considered.

We reviewed different methods for joint modelling of longitudinal and time-

to-event data, based on the full likelihood of the joint distribution of the two

processes. Different factorisations of the joint distribution lead to different model

interpretations, namely pattern-mixture and selection models. We argue the

approach of the analysis depends on scientific questions that need to be answered,

and on the nature of association between processes. Cox [42] describes four

different types of relation between a longitudinal process and failure times, not

only in medical context and shows the implication of these on appropriate analysis

in each case.

The model specification of selection models is more intuitive, usually with

linear mixed effects model for the marginal distribution of the repeated measure-

ments and a proportional hazards model for the conditional time-to-event distri-

bution. However, these models usually involve intensive computational methods,

as numerical integration and convergence difficulties.

The most common model for the longitudinal response variable, in pattern-

mixture and selection models, is the general linear mixed effects model. Though,

we notice the model proposals mainly differ in the random effects to use. Tsiatis

and Davidian [43] give an interesting discussion on the philosophical issues of

which of the fixed effects, random effects and stochastic processes should be

included to model the longitudinal measurements. Their arguments are mainly

related with biological processes that are involved in the specific data sets.

In particular we are not aware of pattern-mixture models that include a

stochastic process in the conditional distribution of the longitudinal measure-

ments. This could be related with model restrictions to include a stochastic pro-

cesses on a conditional distribution which already has a time dependent process.

In this work, the focus is on the informative missingness of longitudinal

measurements, due to an event. However, subjects do not always experience the

event, and a censoring time is the only information available. The censoring
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mechanism is always assumed non-informative and independent of time-to-event

and longitudinal processes. In more complex models the censoring mechanism

can be considered informative with an associated distribution, which would imply

different models.
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