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Abstract:

• This paper approaches the problem of small area estimation in the framework of
spatially correlated data. We propose a class of estimators allowing the integration of
sample information of a spatial nature. Those estimators are based on linear models
with spatially correlated small area effects where the neighbourhood structure is a
function of the distance between small areas. Within a Monte Carlo simulation study
we analyze the merits of the proposed estimators in comparison to several traditional
estimators. We conclude that the proposed estimators can compete in precision with
competitive estimators, while allowing significant reductions in bias. Their merits are
particularly conspicuous when analyzing their conditional properties.
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1. INTRODUCTION

Sample survey data are extensively used to provide reliable direct estimates

of parameters of interest for the whole population and for domains of different

kinds and sizes. When the domains were not originally planned, they usually are

poorly represented in the sample or even not represent at all. These domains

are called small areas and they usually correspond to small geographical areas,

such as a municipality or a census division, or a small subpopulation like a par-

ticular economic activity or a subgroup of people obtained by cross-classification

of demographic characteristics. Traditionally, sample sizes are chosen to provide

reliable estimates for large domains and the lack of sample data from the target

small area seriously affects the precision of estimates obtained from area-specific

direct estimators. This fact has given rise to the development of various types

of estimators that combine both the survey data for the target small areas and

auxiliary information from sources outside the survey, often related to recent cen-

suses and current administrative data, in order to increase precision. Under this

context, the use of indirect estimators has been extensively applied. Such indirect

estimators are based on either implicit or explicit models that provide a link to

related small areas through auxiliary data.

Although traditional indirect estimators based on implicit models, which in-

clude synthetic and composite estimators, are easy to apply, they usually present

undesirable properties. For that reason, other model based methods of small area

estimation have been suggested in the literature. These methods can make spe-

cific allowance for local variation through complex error structures in the models

that link the small areas, can be validated from the sample data and can handle

complex cases such as cross-sectional, time series and spatial data. Such meth-

ods are often based on explicit Linear Mixed Models. The Best Linear Unbiased

Prediction (BLUP) approach, using Henderson’s method ([13]), is the most pop-

ular technique for estimating small area parameters of interest (usually the mean

or the total). Under this approach and from the model point of view the small

area parameters of interest are functions of fixed (β) and random (u) effects.

Consequently, the prediction of small area parameters of interest is based on the

estimation/prediction of these model effects. In practice this type of models al-

ways involves unknown variance components in the variance-covariance structure

of random effects. When these unknown components are substituted by consis-

tent estimates the resulting estimator is usually named as Empirical Best Linear

Unbiased Predictor (EBLUP).

In the context of unit level spatial data, little work has been done on

model-based methods of small area estimation. [25], [26] and [5] proposed a

spatial unit level random effects model with spatial dependence incorporated in

the error structure through a simultaneous autoregressive (SAR) error process.
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Other findings are due to [4], [36], [30], [31], [32] and [40]. All these approaches

consider a contiguity matrix to describe the neighbourhood structure between

small areas. Nevertheless, there has been a lack of work regarding the explicit

modeling of spatial correlation as a function of the distance between observations

or small areas.

The main aim of this paper is to propose an approach to the problem of

small area estimation in circumstances in which the sample data are of a spa-

tial nature (or in other contexts in which it is possible to establish some kind

of proximity between the domains of study), using an estimator that explicitly

consider spatial correlation as a function of distance between small areas of study.

This estimator, applicable to unit level data, exploits both auxiliary information

relating to other known variables on the population and structures of spatial

correlation between the sample data through the specification of an adequate

non-diagonal structure for the variance-covariance matrices of random effects.

It is based on a general class of models that includes some of the existing models

as special cases and can be understood as an EBLUP of the small area totals.

Consequently, it does not require the specification of a specific prior distribution

for model random effects. We also aim to evaluate this estimator in comparison

with traditional synthetic and composite estimators that do not explicitly con-

sider spatial variability. The paper is organized under five sections. Section 1

introduces the context of the small area estimation and the goals of the paper.

Section 2 reviews some traditional indirect estimators. Section 3 proposes an

EBLUP estimator for small area totals based on spatial unit level data. The

estimator is assisted by a class of models that fits into the general linear mixed

theory. Section 4 describes the design of the Monte Carlo simulation study and

presents empirical results. This study analyzes the performance of the proposed

estimator over the direct and indirect estimators using a real data set from an

agricultural survey conducted by the Portuguese Statistical Office. Discussion of

the main findings of this study, along with some of its limitations and possible

future developments are the subject of Section 5.

2. INDIRECT ESTIMATORS

One possible approach for “borrow information” in the context of small

area estimation based on implicit models is to use direct modified estimators.

These estimators maintain certain design-based properties such as approximately

unbiased. This is the case of the regression estimator ([37])

(2.1) τ̂d,reg = τ̂d + (τxd − τ̂xd)
′ β̂ , d = 1, ..., D ,

where τ̂d is an estimator of the d th domain total of the interest variable, usu-

ally the Horvitz–Thompson or a post-stratified estimator and τ̂xd have the same
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meaning in relation to the vector of auxiliary variables xi = (xi1, ..., xip)
′,

β̂ =
[∑

d∈U

∑
i∈sd

υ−2
i π−1

i xix
′
i

]−1 ∑
d∈U

∑
i∈sd

υ−2
i π−1

i xi yi are estimators of the

regression coefficients obtained using data from the whole sample, υ2
i are regres-

sion weights and πi the inclusion probabilities resulting from the sampling design.

Estimator (2.1) is approximately unbiased, since E(τ̂d,reg) = τd + τ ′
xdE(β̂) −

E(τ̂ ′
xdβ) ≈ τd (supposing E

[
(τ̂xd − τxd)

′ (β̂ − b)
]
≪ τxdb, where b = E(β̂) from

the design-based perspective1). Although using information from outside the do-

main for estimating the regression coefficients, usually these estimators still show

low precision.

An alternative is the synthetic estimation (whose properties depend on the

assumptions of a postulated model). From the design-based point of view these

estimators can be biased and inconsistent. A synthetic regression estimator can

be presented as:

(2.2) τ̂d,sreg = τ ′
xd β̂ , d = 1, ..., D ,

where β̂ is obtained as before. A more extreme attitude under a pure model-based

approach would ignore the inclusion probabilities in estimating the regression pa-

rameters. The design-based bias of estimator (2.2) is B(τ̂d,sreg) ≈ τ ′
xd(b − bd),

assuming the regression weights are such that υ2
i ∝

∑p
j=1 aj xij , i ∈ Ud, where

aj , j = 1, ..., p, are arbitrary constants. This condition is always assured in the

most typical situation of a non-weighted regression where the parameters υ2
i are

assumed constant. Further, typically estimator (2.2) has smaller variance than

the direct modified regression estimator but it is biased from the design-based

point of view. When dealing with small areas the reduction in variance associated

with the synthetic estimator can be such that it will assure a mean square error

(MSE) lower than the one obtained through the use of the direct modified esti-

mator. There will always be a risk of a high bias and consequently the invalidity

of any confidence intervals obtained under repeated sampling. A significant ad-

vantage of synthetic estimation lies in the fact that it is always possible to obtain

domain estimates, even in situations where the sample is very small or even zero.

In order to prevent the quality of the estimator being totally dependent on the

postulated model, some combined or composite estimators have been proposed.

A combined estimator typically presents the form of the weighted average of a

design-based estimator (approximately unbiased but with high variance) and a

synthetic estimator (biased but with low variance):

(2.3) τ̂d,com = λd τ̂d,des + (1−λd) τ̂d,syn , d = 1, ..., D ,

with 0 ≤ λd ≤ 1. These estimators can be classified in two main types (according

to the way the weights λd are chosen): sample-size dependent weights and data

dependent weights. It is also possible to assume that the weights are chosen in

1This condition supposes there is a sufficiently week correlation between τ̂xd and β̂ what is
usually easily achieved as τ̂xd and β̂ are estimated at different aggregation levels.
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a deterministic way using, for example, some previous knowledge or an informed

guess. This would result in what [39] call weights fixed in advance. A good

example of a combined regression estimator where the weights depend on sample

size is the dampened regression estimator ([38]):

(2.4) τ̂d,dreg = λd τ̂d,reg + (1−λd) τ̂d,sreg , d = 1, ..., D ,

where λd = 1 if N̂d ≥ Nd and λd = 0 otherwise, where Nd is the d th domain

population size and h is a positive constant. The authors suggested to use h = 2.

The basic idea for choosing h is to assure that the bias contribution from the

synthetic component of the estimator is kept within acceptable limits. Another

possible approach for“borrow information”in the context of small area estimation

is to use a data-dependent combined estimator, through the modeling of the

bias of the synthetic part of the estimator, thus producing indirect estimates

for the weights. Many of the models that have been proposed include random

area effects and can be seen as particular cases of linear mixed models. One

of the best known models applicable at unit level is the nested error regression

model ([8], [3]). All these approaches implicitly consider some kind of sectional

correlation and the domain estimators are obtained through EBLUP, empirical

Bayes or hierarchical Bayes approaches. The well-known nested error regression

model ([3]) has the form ydi = x′
diβ + ud + ǫdi, d = 1, ..., D, i = 1, ..., Nd, where

ud and ǫd are assumed to be iid with zero means. It is also assumed that ud

and ǫdi are mutually independent, Vm(ud) = σ2
u and Vm(ǫdi) = σ2 υ2

di where υdi

are known constants. Here a common covariance between any two observations

in the same small area is assumed, Covm(ydi, ydj) = σ2
u (i 6= j). In this kind of

models it is assumed that there is no sample selection bias, resulting that they

are assumed to hold both for the population and for the sample. This may be a

very limiting assumption since small domain estimation is frequently needed in

the context of informative sampling designs.

An alternative to the EBLUP in the context of informative sampling designs

is the pseudo-EBLUP estimator ([29]). This estimator, based on the nested error

regression model, depends on survey weights and it is design-consistent.

3. A COMBINED ESTIMATOR FOR SPATIAL DATA

3.1. A class of models

Let ydi be the value of the interest variable for unit i (i = 1, ..., nd) in small

area d (d = 1, ..., D) and let x′
di = (xdi1, ..., xdip) a vector of p unit level explana-
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tory variables referring to the same unit. Consider the following class of models:

(3.1) ydi = x′
diβ+

H∑

h=1

x′
(1)di qh,diu

(1)
h +x′

(2)diu
(2)
d +ǫdi , d =1, ...,D, i =1, ...,nd ,

where β is a vector of p fixed effects; x′
(j)di is a vector of pj explanatory variables

(typically a subvector of x′
di) for the i th unit in small area d; qh,di are design

variables used to take into account the sampling design and indicate that unit di

belongs to a stratum or a sampling unit h (h = 1, ..., H); u
(1)
h = col1≤j≤p1(uhj) is

a vector of p1 random (or fixed) design effects associated with stratum (or sam-

pling unit) h; u
(2)
d = col1≤j≤p2(udj) is a vector of p2 random effects associated with

domain d; ld represents the geographical location associated to the centroid of do-

main d; f(ld − le) is a function of the vector ld − le and ǫdi is the residual term as-

sociated with unit di. We assume that Em

(
u

(1)
h

)
= 0, Em

(
u

(2)
d

)
= 0, Em(ǫdi) = 0,

Em

(
u

(1)
h u

′(1)
g

)
=

{
Σ(1), h = g
0, otherwise

, Em(ǫdi ǫej) =

{
σ2

di, d = e, i = j
0, otherwise

, Em

(
u

(2)
d u

′(2)
e

)
=

Σ(2)f(ld − le), with Σ(1) =

{
σ2

U
(1)

jk

}
(j, k =1, ..., p1), σ2

U
(1)
jk

= E(uhj uhk), Σ(2) =
{
σ2

U
(2)
jk

}
(j, k =1, ..., p2), and σ2

U
(2)
jk

= E(udj udk). The model is applied to data

from a sample of total size n =
∑D

d=1 nd, where nd is the number of sampling

units in area d. It is also assumed that random effects associated with different

aggregation levels are not correlated, E
(
u(j)u′(k)

)
= 0 for j 6= k, and that the

errors are non-correlated with random effects, E
(
u(j)ǫ′

)
= 0, ∀j.

In the proposed model, domain effects show a structure of spatial vari-

ability. The covariance between the random effects associated with domains d

and e depends on the vector defined by their geographical coordinates ld − le.

Some functions that can be applied to this context are presented in [28]. When

the spatial covariance only depends on the distance |ld − le|, then the function

f(|ld − le|) is said to be isotropic ([6]) and is typically such that lim|ld−le|→0 f = 1.

As the domains are not points in space, but areas, these coordinates are defined

by their centroids. The assumption is that the lowest level of aggregation for

which the georeferencing is available is the domain. Situations where the level

of aggregation for which the referencing is available does not coincide with the

domains of study can generate special cases of model (3.1). In particular, when

georeferencing is possible at unit level, spatial variation can be modeled through

variances-covariances of the errors vector ǫ.

Domain random effects represent the characteristics specific to the domain

of study that affect the values of the interest variable and are not represented

by the fixed effects at a higher level of aggregation. They can be thought of

as modeling the bias of the synthetic part of the model. Moreover, these do-

main random effects will now have the additional role of bringing information

from other domains, to explain the values of the interest variable in each domain.



162 P.S. Coelho and L.N. Pereira

Design effects are used to take into account the sampling design. The goal is to

allow the model to be applied to contexts with informative sampling designs, over-

coming the limitations ([27], [20]) of other data-dependent combined estimators

that implicitly assume that the sampling design is ignorable.

The methodology proposed can therefore be seen as model assisted. The

sample s is the result of a two-step procedure. First it is supposed that the

finite population can be approximately described by a superpopulation model.

In the second step it is assumed that a sample is drawn from the finite pop-

ulation through a specific sampling design. It is assumed that the sample can

be approximately described by model (3.1), which has taken into account the

existence of these two steps.

3.2. Estimation of model parameters

The model 3.1 can be presented as a special case of the general linear mixed

model, grouping the unit-specific models over the population:

(3.2) y = Xβ + Zu + ǫ ,

where y is a vector of the target variable, X is a design matrix of explana-

tory variables with rows given by x′
di , Z =

[
Z(1)Z(2)

]
is a design matrix, u =

col1≤j≤2

(
u(j)

)
is a vector of random effects and ǫ is a vector of errors. The covari-

ance matrix of u is given by G = Vm(u) = blockdiag1≤j≤2

[
G(j)

]
, where G(1) =

blockdiag1≤h≤H

{
Σ(1)

}
and G(2) = F⊗Σ(2) with F =

{
f(ld − le)

}
, d,e = 1, ..., D.

Further, R = Vm(ǫ) = diag 1≤i≤nd
1≤d≤D

{σ2
di}, Em

(
u(1)

)
= 0, Em

(
u(2)

)
= 0 and Em(ǫ) = 0.

Both covariance matrices G and R involve unknown variance components, rep-

resented by θ. Also the flexibility of the proposed class of models recommends

proceeding in each application to the selection of a specific model, i.e. to the choice

of the explanatory variables and appropriate variance-covariance structures to u

and ǫ. This step in model selection and diagnosis is crucially important to obtain-

ing a model that can adequately describe the behavior of the target population

and can be performed as a systematic procedure like those proposed by [7] or

[43].

Once a specific model has been selected, the variance components θ need to

be estimated in order to assess the variability of estimators or to predict the fixed

and random effects. Several methods are available for estimating variance com-

ponents, such as the analysis of variance (ANOVA) method ([12]), the minimum

norm quadratic unbiased estimation (MINQUE) method ([33], [34], [35]) and the

likelihood methods. Some references about the maximum likelihood estimation

(MLE) method due to Fisher may be found in [9], [1], [23], [21], [15] and [18].

On the other hand, references about the residual maximum likelihood estimation
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(RMLE) method proposed by [41] and its extensions can be found in [24], [10],

[11], [2], [42], [14], [16], [17], among others. For details about estimation general

linear mixed models see [19].

Now consider the decomposition of all matrices into sample and non-sample

components, where the subscript s is associated with the n sample units and

r is associated with the (N−n) non-sample units. The omission of the subscript

indicates that the respective matrices allude to the whole population U ≡ s ∪ r.

Assuming model 3.2 holds and variance components are known, the best linear

unbiased estimator of β and the best linear unbiased predictor of θ are given by

β̃ =
(
X′

sV
−1

s Xs

)−1
X′

sV
−1

s ys ,(3.3)

ũ = GZ′
sV

−1
s

(
ys − Xs β̃

)
,(3.4)

where Vs = E
[
(ys − Xsβ) (ys − Xsβ)′

]
= ZsGZ′

s + Rss. The vectors u(j) may

be predicted using ũ(j) = G(j)Z′
(j)sV

−1
s (ys − Xs β̃), while the predictors of the

errors ǫ, can be obtained as ǫ = R ·sV
−1

s (ys − Xs β̃), where R ·s = [R′
ss R′

rs]
′.

When the covariance matrix R =

[
Rss Rsr

Rrs Rrr

]
is block-diagonal, i.e. when

there is no correlation between errors associated with the observations inside and

outside the sample, then Rrs = 0 and ǫ̃r = 0. This is the case for model (3.1).

Nevertheless, it should be noted that some situations can be devised, particularly

when the spatial correlation can be established at unit level, where there is a

correlation between model errors that can be used in the prediction of ǫr.

3.3. Estimation of domain totals

The objective of the inference can be seen as to predict the total of an

interest variable, τd , that under the model corresponds to the summation of the

realizations of the variable of interest over all the elements in the small area d:

(3.5) τd =
∑

i∈Ud

ydi = τ ′
x,dβ +

H∑

h=1

τ ′
x(1),hdu

(1)
h + τ ′

x(2),du
(2)
ad + τǫ,d ,

where τǫ,d =
∑

i∈Ud
ǫdi. It should be noted that, from the model-based point of

view, (3.5) is a predictable function producing inference in the narrow inference

space [22]. An estimator for the small area total, τd, can be obtained as

(3.6) τ̃d = 1′
Nd

ỹd =
∑

i∈Ud

ỹdi = τ ′
xd β̃ + v′

τsV
−1
s

(
ys − Xs β̃

)
,

where ỹd is the EBLUP of the vector yd and v′
τs = τ ′

zdGZ′
s + 1′

Nd
Rd·,s is the

line vector of the model-based covariances between the small area total τd and
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the observable vector ys , Rd·,s = E(ǫadǫs), and 1′
Nd

is a unit vector of size Nd . It

should be noted that the estimator τ̃d is the EBLUP of τd , given the observable

random vector ys (cf. Appendix 1).

When Rd,rs is a null matrix, then the EBLUP of the total is τd is given by

a simplified expression:

(3.7) τ̃d = Ẽ(τd,r|u) = τy,d,s + τ ′
x,d,r β̃ + τ ′

z,d,r GZ′
sV

−1
s

(
ys − Xs β̃

)
,

where τy,d,s is the observed sample total in small area d (cf. Appendix 2). It should

also be noted that many of the regression estimators that have been proposed for

small area estimation may be viewed as EBLUP of domain totals for particular

cases of the class of models (3.1). For instance, the form of the nested error

regression model and the random coefficient model presented in Section 2 accord

with class (3.1), with u
(2)
d scalar, G(1) = 0, G(2) = σ2

u ID and R = σ2 In. Also,

the model underlying the synthetic regression estimator (2.2) is equivalent to

considering (3.1) with u
(1)
h scalar and taken as a fixed effect, G(2) = 0 and R=

σ2 In. Moreover, the direct modified regression estimator (2.1), can be obtained

considering u
(1)
h and u

(2)
d scalars and taken as a fixed effects and R = σ2 In.

3.4. Domains not represented in the sample

Situations may arise where some domains are not represented in the sample.

If no sample falls into small area d, then the respective random effects u
(2)
d may

still be predicted if there is covariance between u
(2)
d and at least one of the small

area random effects represented in the sample u
(2)
e (e = 1, ..., D; e 6= d). We have

then

(3.8) ũ
(2)
d = G

(2)
d,· Z′

(2)sV
−1

s

(
ys − Xs β̃

)
,

where G
′(2)
d,· = col ne 6=0

1≤e≤D

[
G

′(2)
d,e

]
= E

[
u(2)u

′(2)
d

]
and G

(2)
d,e = Σ(2)f(ld− le). In an

extreme situation where the small area effects u
(2)
d are not correlated with any

other small area effect for a domain represented in the sample, i.e. when G
(2)
d,e = 0,

∀ e 6= d : ne 6= 0, then ũ
(2)
d = 0. The estimator τ̃d is then reduced to a form similar

to a following synthetic estimator:

(3.9) τ̃d = τy,d,s + τ ′
x,d,r β̃ +

H∑

h=1

τ ′
x(1),dh,r ũ

(1)
h .

It may be noted that this estimator may be written in the same generic form

(3.10) τ̂d = τ ′
x,d β̂ + f ′

(
ys − Xs β̂

)
,
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where f is used to weight the regression residuals. This form puts in evidence

that estimator (3.9) can be seen as a combined estimator where the weights in

f ′ allow a correction of the synthetic part of the estimator τ ′
x,d β̃ through the

prediction errors in the domain that is the target of inference, but also in other

domains spatially correlated. When no correlation between domains is specified,

the correction factor depends only on the prediction errors in the target small area

and the estimator is reduced to a similar form to the data-dependent combined

estimators presented in Section 2.

These characteristics seem to be particularly interesting when estimating in

small domains, where the available sample size is small, since it borrows informa-

tion from outside the domain of study in order to assist the estimation. Moreover,

taking advantage of the potential spatial correlation of data it is possible to avoid

the reduction of the proposed estimators to pure synthetic estimators even when

the sample size in the domain is null.

4. MONTE CARLO SIMULATION STUDY

4.1. Generation of the pseudo-population

For the simulation a pseudo-population is used. This population is obtained

from a real data set containing the responses to the 1993 wave of the Agricul-

tural Structure Survey. It is an agricultural survey conducted by the Portuguese

Statistical Office in the period between agricultural censuses. The responses for

the variable total production of cereals were extracted and circumscribed to the

NUTSII of Alentejo. The total sample size in this region is 7,060 and the pop-

ulation size 47,049. The design for the Agricultural Structure Survey is based

on stratified sampling. The sample is first stratified using the região agrária as

the level for geographic stratification. A região agrária is an administrative di-

vision used for agricultural purposes. In each região agrária a new stratification

is established based on Used Agricultural Surface (UAS) classes. In the same

região agrária some other strata are defined based on the value of other variables

considered weakly correlated with UAS. In Alentejo there are 19 strata.

For simulation purposes a pseudo-population is generated by replicating the

agricultural establishments in the sample proportionally to the inverse of their in-

clusion probabilities. The sampling frame resulting from this replication includes

the value of production of cereals for each establishment in 1993, and the same

value reported for 1989 (year of the agricultural census). The production in 1989

is used as an auxiliary variable in the models used in the simulation. Also, geo-

graphical coordinates associated with the centroids of freguesias were recorded.
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This was the lowest level of aggregation for which geographical referencing was

available. This means that geographical differentiation between establishments

included in the same freguesia is not available. A freguesia is an administrative

division that segments the Alentejo into 284 sub-regions.

4.2. Description of the simulations

Using the sampling frame corresponding to the pseudo-population of agri-

cultural establishments we have run a Monte Carlo simulation. The goal is to

evaluate the design-based properties of a set of alternative estimators. Note that

the approach followed in this paper is to evaluate the properties and relative

merits of the proposed estimators through simulation. In fact, due to the com-

plexity of these estimators their design-based properties (e.g. bias, variance) are

impossible to obtain through analytical methods. Also, their model-based prop-

erties would be of limited interest from the point of view of a benchmark with

alternative direct estimators used in this simulation whose properties only make

sense to evaluate from the design-based perspective. The target parameter is

the total of the variable production of cereals at freguesia level. The number

of simulations performed is 560. In each simulation a sample is drawn from the

pseudo-population U∗, using a stratified design similar to the one used in the Agri-

cultural Structures Survey. The only difference in relation to that survey design

is that the sample size by stratum was reduced to 30% of the original size (2,118

establishments). The goal is to simulate a framework similar to that survey, but

with a smaller sample size, enabling the evaluation of the estimators’ behavior in

“critical” situations where the domain sample size is very small (sometimes only

a few units or even none). This sampling design leads to a relative precision of

7.5% (for a 95% confidence-level) in the estimation of the total of the interest

variable at the population level, using the Horvitz–Thompson estimator. The

expected sample sizes for the 284 domains of interest vary from 0.3 to 45.8 units.

4.3. Estimators

The estimators analyzed in the simulation are presented in this section.

They are mainly implementations of the direct, synthetic and combined regression

estimators presented in Sections 2 and 3. It should be noted that all the regression

estimators include the same auxiliary variables (associated with the fixed effects),

allowing a fair comparison of their relative merits. In what follows, the notation

ad is used to represent the small area d of region a, where the regions correspond

to the level of aggregation of NUTSIII and the small area of interest to freguesia.

Table 1 summarizes the estimators used in the simulation.
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Table 1: Estimators used in the simulation study.

Estimator Description

τ̂ad1 Horvitz–Thompson estimator

τ̂ad2 Direct modified regression estimator (2.1)

τ̂ad3 Dampened regression estimator (2.4)

τ̂ad4 Pure synthetic regression estimator (2.2) with fixed effects
estimated ignoring the sampling design

τ̂ad5 Synthetic regression estimator where the sampling design is
explicitly considered through the inclusion of a vector of design
variables Ehi indicating the belonging of each establishment i

to the strata h =1, ..., Heτad6 Data-dependent combined regression estimator based on the
nested error unit level regression modeleτad7 Data-dependent combined regression estimator, similar to eτad6

but including fixed strata effects βh0, h =1, ..., Heτad8 Data-dependent combined regression estimator, based on a
model included in the proposed class of models (3.1), with
random small area effects presenting a spatial covariance
structure following an isotropic exponential model.

The isotropic exponential model used to represent spatial variability in τ̂ad8

was suggested in the model diagnosis phase. We have tested several structures

(exponential, spherical, linear, log-linear and Gaussian), through the evaluation

the significance of covariance parameters (using Wald tests) and information cri-

teria (such as AIC and BIC). Among the structures that showed statistical sig-

nificance we retained the one that minimized the several information criteria.

Although we have chosen the exponential model, some of the other structures re-

sulted in very similar adjustments. Also note that for the data-dependent regres-

sion estimators the variance components are estimated through REML method.

The only exception regards estimator τ̃ad8 , where the parameter ce was estimated

a priori through the adjustment of an exponential semivariogram to an empirical

semivariogram.

Note that the estimators included in the simulation vary in nature: τ̂ad1 and

τ̂ad2 are design-based estimators, τ̂ad4 and τ̂ad5 are synthetic estimators, while the

others can be classified as combined estimators as described in previous sections.

The included estimators also differentiate in the way the sampling design is (or

not) taking into account: in τ̂ad1, τ̂ad2 and τ̂ad3 the sampling design information

is taking into account using sampling weights, τ̂ad5, τ̂ad7 and τ̂ad8 include fixed

strata effects, while in τ̂ad4 and τ̂ad6 the sampling design information is ignored.
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4.4. Precision and bias measures

The estimators under consideration are evaluated using a set of precision

and bias measures. In what follows K represents the number of simulations,

and τ̂kd the d th small area estimate of the total obtained from the simulation k

(k = 1, ..., K).

4.4.1. Unconditional analysis

Taking into account the high number of small areas in the population (284)

and in order to facilitate the presentation of the simulation results, the small

areas are divided into six groups. Each group g contains Dg small areas. Table 2

presents the definition of each group and the number of small areas involved.

Table 2: Small area groups in the simulation study.

Group Expected sample size Number of small areas

0 — 20

1 [0; 2] 20

2 [2; 3.5] 43

3 [3.5; 5] 49

4 [5; 10] 87

5 [10;+∞] 65

Groups 1 to 5 were defined according to the expected sample size of the small

areas. Group 0 includes small areas for which the total of the interest vari-

able is zero (freguesias where there is no cereal production) regardless their size.

The goal is to separate these small areas from the other groups to prevent them

from changing the conclusions regarding the relative merits of the estimators.

The Monte Carlo relative error for the estimators’ expected value is on average

8.0% in group 1 and varies between 3.4% and 4.1% in groups 2 to 5.

For the unconditional analysis the following measures were considered for

each group g:

Average absolute bias: AABg = D−1
g

Dg∑

d=1

ABd , where ABd = K−1
K∑

j=1
|τ̂jd− τd| ;

Average MSE: AMSEg = D−1
g

Dg∑

d=1

MSEd , where MSEd = K−1
K∑

j=1
(τ̂jd− τd)

2 ;
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Average variance: AVg = D−1
g

Dg∑

d=1

Vd , where Vd = K−1
K∑

j=1
(τ̂jd− ¯̂τd)

2 ;

Average absolute bias ratio: AABRg =D−1
g

Dg∑

d=1

ABRd , where ABRd =ABd/
√

Vd ;

Average coverage rate for a design-based

100(1−α) confidence interval: ACRg = D−1
g

Dg∑

d=1

TCd ,

where TCd = 100×Rd/K and Rd represents the number of simula-

tions for which the confidence interval τ̂jd ± tα/2

√
Vd contains the

true parameter τd .

4.4.2. Conditional analysis

A conditional analysis was also conducted using a set of precision and bias

measures for each small area d. The superscript (nd) indicates that the respective

measure is conditioned to the realized sample size, nd, in small area d. They are:

Conditional relative bias: CRB
(nd)
d = K−1

nd

Knd∑

j=1

(τ̂jd − τd)
/
τd ;

Conditional relative standard error: CRSE
(nd)
d =

√√√√√K−1
nd

Knd∑

j=1

(τ̂jd − τd)2
/
τd ;

Conditional variation coefficient: CVC
(nd)
d =

√
V

(nd)
d

/
τd ,

where V
(nd)

d = K−1
nd

Knd∑
j=1

(τ̂jd− ¯̂τd)
2 is the conditional variance ;

Conditional bias ratio: CBR
(nd)
d = B

(nd)
d

/√
V nd

d ,

where B
(nd)
d = K−1

nd

Knd∑
j=1

(τ̂jd − τd) is the conditional bias ;

Coverage rate of the conditional design-based

confidence interval: CR
(nd)
d = 100×R

(nd)
d /Knd

,

where R
(nd)
d represents the number of simulations

for which the confidence interval τ̂jd ± tα/2

√
V

(nd)
d

contains the true parameter τd .
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4.5. Results

4.5.1. Unconditional analysis

Table 3 summarizes the unconditional results of the simulation study.

The values for absolute bias, variance and MSE are presented relatively to the

respective value associated with τ̂ad2.

Table 3: Unconditional results.

Group τ̂ad1 τ̂ad2 τ̂ad3 τ̂ad4 τ̂ad5 eτad6 eτad7 eτad8

Absolute bias

0 0.00 1.00 2.39 96.54 19.67 91.80 15.50 11.07
1 0.60 1.00 3.44 23.64 10.32 22.57 9.63 9.46
2 1.13 1.00 4.15 22.72 15.14 24.30 12.07 12.59
3 1.33 1.00 4.65 45.75 18.54 44.16 13.72 13.55
4 1.46 1.00 4.40 51.13 20.76 49.14 13.60 14.47
5 1.09 1.00 3.36 77.28 22.51 68.04 14.14 18.14

Variance

0 0.00 1.00 1.07 0.67 0.03 0.60 0.21 0.29
1 1.10 1.00 0.79 0.03 0.01 0.09 0.06 0.09
2 2.06 1.00 0.76 0.06 0.02 0.26 0.18 0.25
3 1.77 1.00 0.80 0.10 0.03 0.45 0.34 0.40
4 2.01 1.00 0.79 0.19 0.05 1.18 0.94 1.10
5 1.84 1.00 0.85 0.45 0.10 2.29 1.91 2.13

MSE

0 0.00 1.00 1.08 14.74 0.68 13.18 0.63 0.61
1 1.09 1.00 0.85 0.93 0.40 0.91 0.37 0.39
2 2.06 1.00 0.79 0.92 0.45 1.21 0.47 0.57
3 1.77 1.00 0.82 1.67 0.45 1.89 0.58 0.63
4 2.01 1.00 0.82 3.36 0.63 3.99 1.20 1.46
5 1.84 1.00 0.87 7.88 0.76 7.39 2.27 2.76

Bias ratio

0 0.01 0.04 0.09 5.39 4.55 5.15 2.29 1.68
1 0.03 0.04 0.19 5.36 6.40 3.86 2.58 1.63
2 0.03 0.03 0.18 3.64 3.70 2.18 1.44 1.26
3 0.03 0.03 0.14 3.45 3.05 2.13 0.85 0.71
4 0.04 0.03 0.15 3.74 3.58 2.11 0.75 0.62
5 0.03 0.03 0.12 3.70 2.60 1.76 0.40 0.42

Coverage Rate

0 1.00 0.96 0.96 0.01 0.16 0.00 0.59 0.71
1 0.97 0.97 0.95 0.07 0.32 0.21 0.51 0.69
2 0.96 0.96 0.94 0.28 0.37 0.48 0.65 0.70
3 0.96 0.95 0.94 0.23 0.46 0.50 0.82 0.84
4 0.96 0.95 0.95 0.23 0.35 0.48 0.84 0.86
5 0.96 0.95 0.95 0.18 0.44 0.60 0.91 0.91
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As expected the two design-based estimators τ̂ad1 and τ̂ad2 are approxi-

mately unbiased, even for very small areas. For these estimators the average

coverage rate is very near the nominal confidence level (95%). Nevertheless,

especially in the smallest domains, they show variance and MSE substantially

higher than those observed for the synthetic and combined estimators. It is also

to be noted that τ̂ad2 brings significant precision gains when compared with the

Horvitz–Thompson estimator.

On the other hand, the two synthetic estimators show very different be-

havior. τ̂ad4, which can be viewed as a pure synthetic estimator shows disastrous

behavior both in terms of bias and precision. These results are clear evidence

of the effects of ignoring an informative sampling design. On the other hand,

the synthetic estimator with fixed strata effects, τ̂ad5 , shows significant precision

gains when compared to the direct regression estimator. These precision gains

show a tendency to decrease as the expected sample size in the small areas in-

creases. Its major drawback is related to the high bias, which originates average

bias ratios that are always above 2.6, compromising the construction of design-

based confidence intervals. In fact the average coverage rate for this estimator is

always below 0.46, and in many cases near 0.30.

The combined regression estimator with sample-size dependent weights,

τ̂ad3 , shows a systematic precision gain when compared to the direct regression

estimator (with the exception of group 0, the ratio between the average MSE

of the two estimators is between 0.79 and 0.87). Nevertheless, these gains are

always moderate and substantially lower than the ones observed for the synthetic

regression estimator. This estimator also shows a very good behavior in what

regards bias. In fact, although having an absolute bias higher than those ob-

served for the direct estimators, the average bias ratio is always lower than 0.2,

which originates an average coverage rate very near the nominal confidence level.

With regard to the combined estimators with data-dependent weights it can once

again be observed that disregard of the sampling design, as in estimator τ̃ad6,

produces undesirable properties both in terms of bias and precision. In fact, τ̃ad6

systematically shows higher MSE than the direct regression estimator (with the

exception of group 1). It also exhibits dramatic biases (of the same magnitude as

the synthetic estimator τ̂ad4) and bias ratios that on average are situated between

1.76 and 5.15.

The combined estimators τ̃ad7 and τ̃ad8 , which explicitly consider strata

effects, show very different behavior. These estimators show average MSE that

for the smallest small areas (groups 0 to 3) is near those observed for the best

synthetic estimator, while allowing significant reduction in bias and bias ratio.

In particular, τ̃ad7 based on a nested error model with fixed strata effects re-

veals important precision gains when compared to the direct regression estimator,

τ̂ad2 , or the sample-size dependent regression estimator, τ̂ad3 , in groups 0 to 3.
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It is to be noted that for groups 4 and 5 (corresponding to expected sample sizes

higher than 5 units) τ̃ad7 shows some precision loss regarding the direct regression

estimator, which is particularly important in group 5. It is also significant that,

in the groups 0 to 3, τ̃ad7 exhibits a MSE that is similar or even smaller than

that associated with the synthetic estimator τ̂ad5 . In these groups the increase

in variance in τ̃ad7 is more than compensated by the reduction in bias. In what

regards bias measures, the estimator τ̃ad7 shows a behavior that is situated be-

tween those recorded for the direct and the synthetic estimators. The average

absolute bias ratios vary from 0.40 to 2.58 (increasing with the reduction of the

expected sample size) and are strikingly lower than the ones associated with the

synthetic estimators (varying between 15% and 50% of those obtained for the

best synthetic estimator). This results in average coverage rates for a design-

based confidence interval that are substantially higher than those observed for

the synthetic estimators.

The estimator τ̃ad8 considers a spatial covariance based on an isotropic

exponential structure at the small area level. For all small area groups (with the

exception of group 0) it shows a small loss of precision when compared to τ̃ad7 ,

but still allows important precision gains regarding the direct estimators and the

sample-size dependent regression estimator, τ̂ad3 , in groups 0 to 3. It is worth

noting that this decline in precision is mainly induced by an increase in variance,

since τ̃ad8 shows average absolute bias that is very near or even smaller than for

τ̃ad7 (mainly in the smaller areas). The bias ratios for τ̃ad8 are, for groups 0

to 4, substantially smaller than those observed for τ̃ad7 , varying now from 0.42

to 1.68. The reduction in the bias ratio tends to diminish with the increase in

the expected sample size, resulting that in group 5 the bias ratio of the two

estimators is similar. In fact it is in smaller areas that τ̃ad7 approximates more

closely a synthetic estimator, allowing the additional sample information used in

τ̃ad8 (from other spatially correlated small areas) to contribute to bias reduction.

Between the combined estimators that allow precision gains in small areas groups

0 to 3, τ̃ad8 is the one that shows the best behavior in terms of average bias ratio,

which varies from 16% to 37% of those obtained for the best synthetic estimator.

4.5.2. Conditional analysis

Figure 1 and Table 4 summarize the simulation’s conditional results for one

small area in the study. Considering the large number of small areas in the study

(284), these data are only intended to illustrate typical results associated with

one of the smallest areas. The results refer to a small area with expected sample

size of 4.2 units, thus belonging to group 3.
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Figure 1: Conditional results.

Table 4: Unconditional coverage rates.

Sample size τ̂ad1 τ̂ad2 τ̂ad3 τ̂ad4 τ̂ad5 eτad6 eτad7 eτad8

2 0.52 0.90 0.51 0.80 0.31 0.83 0.81 0.84

3 0.88 0.89 0.81 0.74 0.32 0.77 0.90 0.88

4 0.98 0.95 0.95 0.61 0.29 0.72 0.91 0.90

5 0.91 0.96 0.96 0.66 0.35 0.89 0.94 0.94

6 0.88 0.97 0.96 0.78 0.27 0.89 0.92 0.92

The two design-based estimators τ̂ad1 and τ̂ad2 show bad conditional prop-

erties, namely in what regards bias. In fact, both estimators show important

conditional biases and bias ratios when the effective sample size departs from the

expected sample size. This phenomenon is particularly notable in the Horvitz–

Thompson estimator. This bias tends to be negative for effective sample sizes

that are smaller than expected and positive for expected sample sizes that are

larger than expected. Also, when effective sample size is smaller than the ex-

pected sample size, the conditional variation coefficients tend to show a rising

pattern with the increase in the effective sample size. The combined result of

this bias and variance behavior is a conditional relative standard error that for

both estimators tends to increase with the effective sample size (for sample sizes

above the expected). When the effective sample size is significantly smaller or

greater than the expected sample size, these estimators (and mainly τ̂ad1) show

a significant degradation in precision. These patterns are particularly notable in

the small areas with a very small sample size.
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On the other hand, although the synthetic estimators show very high bias

and bias ratios (resulting in very low conditional coverage rates for a design-based

confidence interval), they are seen to be approximately constant and therefore

independent of the effective sample size for each small area. The conditional

variation coefficient is clearly constant showing independence from the sample

size in the small area. The combined result of these patterns is a relative standard

error which is also approximately invariant with the effective sample size. From

this conditional point of view, the synthetic regression estimator can still be

considered one of the most precise estimators.

For effective sample sizes that are smaller than the expected sample size the

combined regression estimator with sample-size dependent weights, τ̃ad3, shows

important conditional biases and bias ratios that for significant departures are

similar to those observed for the synthetic estimators. For sample sizes that

are greater than expected τ̃ad3 tends to show a behavior similar to the direct

regression estimator τ̂ad2. Therefore, the resulting conditional coverage rates

for a design-based confidence interval also show a behavior similar to a synthetic

estimator for sample sizes that are smaller than expected and similar to the direct

regression estimator when they are higher than expected. The relative standard

error also tends to show the bad property observed for the direct estimator,

characterized by an increase with the effective sample size, mainly for the smallest

areas.

The combined estimators τ̃ad7 and τ̃ad8 show interesting conditional prop-

erties as they show a mixed behavior between the direct regression estimator τ̂ad2

and the synthetic regression estimator τ̂ad5 . This behavior is characterized by

a significant resistance of precision and bias to departures between the effective

sample size and the expected sample size.

It can be observed that τ̃ad7 shows a conditional bias and bias ratio that

are approximately constant, although with a slight tendency to increase with

the reduction of the effective sample size. As to bias, this estimator shows a

clear advantage when compared to the synthetic estimators and even when com-

pared to the direct estimators and the sample-size dependent combined estimator,

particularly when the sample size departs from the expected sample size. This

results in conditional coverage rates which in extreme situations are closer to

the confidence level than those associated with some design-based estimators.

The conditional variance only shows a very slight tendency to rise with an in-

crease in the effective sample size, resulting in a conditional relative standard

error that is approximately constant. From the precision point of view it can be

seen that this estimator is still competitive with the best synthetic estimator and

maintains important precision gains when compared to the direct estimators and

the sample-size dependent combined estimator (especially when the effective and

expected sample sizes are different).
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The estimator τ̃ad8 magnifies these bias and bias ratio reductions as it

continues to show smaller conditional bias and bias ratios than τ̃ad7. Although

not seen in this illustrative small area, global results showed that these bias

reductions are particularly notable for effective sample sizes smaller than the

expected sample sizes. In fact, it is in the smaller areas and particularly when

the effective sample sizes are smaller than expected that there is an opportunity

to reduce bias by borrowing information from other domains through the use of

spatial correlations. The conditional variation coefficient still shows significant

resistance to departures from the expected sample size. For sample sizes below

the expected the variation coefficient tends to be slightly higher than the one

obtained for τ̃ad7, and still shows a pattern of a slight increase with the growth of

the effective sample size. This increase is now lessened since a part of the variance

is due to data provided by small areas in the neighborhood of the target small

area. The conditional relative standard error continues to be reasonably constant

and not substantially higher than the one obtained for τ̃ad7 . Overall, it can be

concluded that among the combined estimators analyzed τ̃ad8 is the estimator

that exhibits the best conditional properties for bias and coverage rates for a

design-based confidence interval.

5. MAIN FINDINGS AND DISCUSSION

The results of the empirical study show that the combined estimators ob-

tained from the model classes proposed can compete in precision with the best

synthetic estimators analyzed, while also allowing large reductions at the level

of bias and, particularly, the bias ratio. They manage to show better precision

than synthetic estimators for very small domains, and thus provide an important

alternative to such estimators. The results attained seem to confirm that the

combination of a synthetic and a direct component manages to take into account

a significant part of the bias in the purely synthetic estimator, trading it for an

increase in variance.

It should be noted that for this population the proposed estimators only

prove interesting for inference related to domains of a small expected sample size

(up to 5–10 units for the population analyzed). For larger sample sizes they cease

to show precision gains in comparison with the best direct estimators (particularly

with some direct modified regression estimators).

When the adjusted data displays spatial variability, the estimators that

take advantage of the spatial correlation between observations tend to present

reductions in bias (and mainly bias ratio) when compared with estimators that

ignore this variability. These reductions are usually accompanied by a modest
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loss of precision, resulting in bias ratios that are generally substantially lower

than those obtained for these other estimators. This fact is easy to understand if

we take into account that the consideration of spatial information implies the use

of observations that are exogenous to each small area when estimating its random

effect. It is natural that the inclusion of such information will also introduce some

additional variability in the resulting estimator. The spatial information permits

a repositioning of the estimator, which will display behavior that is further away

from that presented by a synthetic estimator and gain the characteristics of a

direct estimator. It should be pointed out that when the sample size in the

inference target domain is very small or even non-existent, the introduction of

spatial information relating to other domains can prevent the estimators being

reduced to ‘pure’ synthetic estimators and maintain mixed characteristics between

a synthetic and a design-based estimator. This fact helps to explain the good

behavior of these estimators in domains with a very small sample size.

The proposed estimators clearly show interesting conditional characteris-

tics, as they tend to behave in a way that is typified by strong robustness, both

in precision and bias, to differences in effective and expected sample size. Their

remarkable conditional behavior is clearly demonstrated by the fact that their

conditional bias ratios are in many cases lower than those registered for direct es-

timators, specially when there are significant discrepancies between the effective

and expected sample size. In particular, estimators that exploit spatial correlation

continued to show reductions in conditional bias and conditional bias ratios when

compared with estimators that ignore this variability. In fact, we can conclude

that while the proposed estimator shows interesting unconditional properties, it is

within a conditional point of view that its advantage over competitive estimators

strikes.

One of the main limitations of this study lies on the fact that only the

specification of isotropic spatial covariance structures was considered. In fact, in

a context where the differences between the coast and the hinterland are presum-

ably very different from those between the north and south, resort to anisotropic

spatial models can allow the reality to be more satisfactorily represented. How-

ever, the sheer complexity of calculation presented by these structures, arising

from the need to process a considerable amount of data, rendered the estima-

tion of these models unviable. Although the proposed estimator is thought to

be applicable to the context where data of spatial nature is present, it would

be interesting to test its application to other contexts, whenever is possible to

establish some kind of proximity between the small areas of study.

It should be also stressed that the conclusions presented are depended of

the used data set. Although we have used a realistic data set based on real

data from a National Statistical Office, the use of different data sets, for example

exhibiting different spatial correlation, can lead to different results and possibly

different conclusions. Therefore, the proposed estimators should be tested with
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other sets of real and artificial data before they are selected for application in

other contexts. In fact, empirical studies have revealed to be a fundamental

stage in the process of choosing an estimator. The results of such studies can,

moreover, help to create greater confidence on the part of potential users of these

kinds of estimators.

A. APPENDIX 1

The estimation of τd is performed thought the prediction of the realizations

of the vector yd. Under the model (3.2) the EBLUP is:

ỹd = Xd β̃ + Zd ũ + ǫ̃d

= Xd β̃ + ZdGZ′
sV

−1
s

(
ys − Xs β̃

)
+ Rd,sV

−1
s

(
ys − Xs β̃

)

= Xad β̃ + Vad,sV
−1

s

(
ys − Xs β̃

)
,

where the subscript d indicates that the respective matrices only include observa-

tions from the small area d, Rd,s =E(ǫdǫs) and Vad,s =E
[
(yd−Xdβ)(yd−Xdβ)′

]

= E(Zduu′Z′
s) + E(ǫdǫs) = ZdGZ′

s +Rd,s . With the EBLUP ỹd, the estimator

of τd may be obtained as:

τ̃d =
∑

i∈Ud

ỹdi = τ ′
xd β̃ + τ ′

z,dGZ′
sV

−1
s

(
ys − Xs β̃

)
+ 1′

Nd
Rd·,sV

−1
s

(
ys − Xs β̃

)

= τ ′
xd β̃ + v′

τsV
−1

s

(
ys − Xs β̃

)
,

where Rd·,s = E(ǫadǫs) and v′
τs = E

[
(τd − τ ′

x,dβ) (ys − Xsβ)′
]

= τ ′
z,dGZ′

s +

1′
Nd

Rd·,s .

B. APPENDIX 2

The vector ỹd may be decomposed into ỹ′
d = (ỹ′

d,s, ỹ
′
d,r)

′. From mixed model

theory it is straightforward that ỹd,s = yd,s , with the unobservable part of yd

predicted by

ỹd,r = Xd,r β̃ + Zd,rũ + ǫ̃d,r = Xd,r β̃ + Vdr,sV
−1

s

(
ys − Xs β̃

)
,

where Rdr,s = E(ǫd,r ǫs) and Vdr,s = E
[
(yd,r−Xd,r β) (ys−Xsβ)′

]
= E(Zd,ruu′Z′

s)

+E(ǫd,r ǫs) = Zd,r GZ′
s+Rdr,s . When Rdr,s is a null matrix, then the covariances

between the unobservable vector yd,r and the observable vector ys are uniquely

determined by the random effects u. Consequently the EBLUP of yd,r coincides

with the EBLUP of E(yd,r|u):

ỹd,r = Ẽ(yd,r|u) = Xd,r β̃ + Zd,rGZ′
sV

−1
s

(
ys − Xs β̃

)
.
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The EBLUP total for the unobservable part of the small area τd,r is now equal

to the EBLUP of E(τd,r|u), with

τ̃d,r = Ẽ(τd,r|u) = τ ′
x,d,r β̃ +

H∑

h=1

τ ′
x(1),dh,rũ

(1)
h + τ ′

x(2),d,rũ
(2)
d

= τ ′
x,d,r β̃ + τ ′

z,d,r GZ′
sV

−1
s

(
ys − Xs β̃

)
,

and the estimator of τd is given in a simplified expression by

τ̃d = τy,d,s + τ ′
x,d,r β̃ + τ ′

z,d,r GZ′
sV

−1
s

(
ys − Xs β̃

)
,

where τy,d,s is the observed sample total in small area d.
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