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1. INTRODUCTION

The exponential distribution has been extensively used in life data analysis,

but it is suitable for those situations where hazard rate is constant. For mono-

tonic hazard rate, a number of distributions have been proposed and perhaps

the most widely used among these are Weibull and gamma distributions. Both

of these distributions have increasing/decreasing hazard rate depending on their

shape parameters. However, one major disadvantage of the gamma distribution

is that its distribution function and survival function can not be expressed in nice

closed forms, particularly, if the shape parameter is not an integer. Even if the

shape parameter is an integer, the hazard function involves the incomplete gamma

function which is difficult for further mathematical manipulations. Numerical in-

tegration is often used to obtain the distribution function, the survival function

or the hazard function. This may be one of the reasons that made the gamma

distribution unpopular in comparison to the Weibull distribution. Although

Weibull distribution has a nice closed form for hazard and survival function,

it has its own disadvantages. For example, Bain and Engelhardt [1] have pointed

out that the maximum likelihood estimators (MLE’s) for the parameters of the

Weibull distribution may not behave properly over the whole parameter space.

Gupta et al. [5] proposed the use of the exponentiated gamma distribution as an

alternative to gamma and Weibull distributions. The probability density function

(p.d.f.) of the exponentiated gamma (EG) distribution is given below

(1.1) f(t|θ) = θ t e−t
[

1 − e−t(t + 1)
]θ−1

, t > 0, θ > 0 ,

where θ is the shape parameter of the distribution. The cumulative distribution

function (c.d.f.) and the reliability function, denoted as F (x) and R(x), of the

distribution having p.d.f. (1.1) are given as

F (x) =
[

1 − e−x(x + 1)
]θ

(1.2)

and

R(x) = 1 −
[

1 − e−x(x + 1)
]θ

.(1.3)

It may be noted here that the considered model is a simple generalization of

the Gamma distribution with known shape and scale parameters, namely G(2,1).

This distribution is parsimonious in parameters and, hence, simple to use. The

other advantage is that it has various shapes of hazard function for different values

of θ. It has increasing hazard function when θ > 1/2 and its hazard function takes

Bath-tub shape for θ ≤ 1/2. For other details about this distribution, we refer

Shawky and Bakoban [9].

For the estimation of the parameter of a distribution, it is most common

to use quadratic loss, defined as

(1.4) L1(θ, θ̂) = (θ̂ − θ)2 ,
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where θ̂ is the estimate of θ. It may be noted here that (1.4) defines a symmetric

loss function which may be suitable for estimation of location parameter. For

scale parameter, a modified form of this may be defined as follows

(1.5) L2(θ, θ̂) =

(

θ̂

θ
− 1

)2

.

One can criticize the use of the quadratic loss function L2 for the scale parameter

estimation, because it penalizes overestimation more heavily. An alternative loss

function may be defined on the basis of the Kullback–Leibler information number.

Kullback [7] described the entropy distance as the mean information from the

likelihood function f(t, θ) against f(t, θ̂), where t = (t1, t2, ..., tn), and, thus, the

loss function may be defined as

(1.6) L3(θ, θ̂) = E

[

ln
f(t, θ̂)

f(t, θ)

]

.

Accordingly, it reduces for the distribution (1.1) as

(1.7) L3(θ̂, θ) ∝

(

θ̂

θ

)

− ln

(

θ̂

θ

)

− 1 .

This loss function is known as Entropy loss function and it was first introduced

by James and Stein [6] for the estimation of the Variance-Covariance (i.e., Disper-

sion) matrix of the Multivariate normal distribution. Dey et al. [4] considered this

loss function for simultaneous estimation of scale parameters and their recipro-

cals, for p independent gamma distributions. Rukhin and Ananda [8] considered

the estimation problem of the variance of a Multivariate Normal vector under

the Entropy loss and Quadratic loss. The loss function (1.6) has also been used

by many other authors (see Yang [11], Wieczorkowski and Zielinski [10], etc.).

Calabria and Pulcini [2] defined General Entropy loss function (GELF) as

(1.8) L(θ, θ̂) ∝

(

θ̂

θ

)c1

− c1 ln

(

θ̂

θ

)

− 1 .

The constant c1 involved in (1.8) is its shape parameter. It reflects the departure

from symmetry. When c1 > 0, over estimation (θ̂ > θ) is considered to be more

serious than under estimation of equal magnitude and vice versa. Needless to

mention that the loss (1.8) is a generalization of the Entropy loss function (1.7).

The Bayes estimator θ̂G of θ under GELF (1.8) is given by

(1.9) θ̂G =
[

Eθ(θ
−c1)

](−1/c1)
,

provided that the expectation Eθ(θ
−c1) exists and is finite. Here, Eθ denote the

expectation w.r.t. the posterior p.d.f. of θ.

Note that if we put c1 = −1 in (1.9), it provides the Bayes estimator under

squared error loss function (SELF) L1, which associates equal importance to the

losses for over estimation and under estimation of equal magnitudes.
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In this paper, the MLE’s for the parameter θ of the EG distribution and its

reliability function R(x) for a specified x are derived in Section 2.1. In Section 2.2

Bayes estimators are obtained under GELF and SELF. Estimation of the param-

eters has been considered for a type II censored sample from p.d.f. (1.1). Finally,

numerical illustrations and comparisons are presented in Sections 3 and 4 respec-

tively.

2. CLASSICAL AND BAYESIAN ESTIMATION OF θ AND R

In a typical life test experiment, n identical objects are placed under test

and exact times of failure are recorded. Usually, life tests are time consuming

and costly. Therefore, at some predetermined fixed time τ or after predetermined

fixed number of failures r, the test may be terminated. In both cases, the data

collected consist of observations t = (t1, t2, ..., tr) and units survived, beyond the

time of termination τ in the former case and beyond the rth failure tr in the

latter, remains unobserved. In a censored case, where τ is fixed and r is random,

the censoring is said to be type I. On the other hand, when r is fixed and time

of termination τ is random, the censoring is said to be type II. For both type I

and type II censoring, Cohen [3] gave the likelihood function as

(2.1) l(t|θ) =
n!

(n − r)!

r
∏

i=1

f(t(i)|θ)
[

1 − F (t0)
](n−r)

,

where f(t(i)|θ) and F (t0) are the density and distribution functions respectively.

For type I censoring t0 = τ and for type II censoring t0 = tr. Hence, expressions

for the estimators of parameters under type I censoring can easily be obtained

from the corresponding expressions of estimators for type II censoring just by

replacing τ in place of tr. Therefore, in the following Sections, we have considered

the problem of estimation under type II censoring only.

2.1. Maximum likelihood estimators

Let us consider that n identical items whose life time follow the p.d.f. (1.1),

are put on test. The test is terminated, as soon as, we observe r ordered failure

times, say t1 < t2 < · · · < tr. Naturally, t1, t2, ..., tr constitute type II censored

sample. Consider that the life time of the items follow distribution (1.1). Sub-

stituting f(t|θ) and F (t) from (1.1) and (1.2) in (2.1), the likelihood function is

obtained as

(2.2) l(t|θ) =
n!

(n − r)!
θre−T (1 − V θ)n−r ,
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where

ui = 1−e−ti(ti +1), V = 1−e−tr(tr +1) and T =
r

∑

i=1

(

ti− ln ti−(θ−1) lnui

)

.

It may be verified that the MLE θ̂M of θ is the solution of the following

equation

(2.3) θ̂M =
r

(n − r) lnV (V −θ̂M −1)−1 −
∑r

i=1 lnui

.

It may be noted that this is an implicit equation in θ̂M , so it can not be solved

analytically. We propose to solve it by using numerical iteration method, partic-

ularly Newton–Raphson method.

Using the invariance property, the MLE R̂M of R may be obtained by

replacing θ by its MLE θ̂M in (1.3). The same is, therefore, given by

(2.4) R̂M = 1 −
[

1 − e−t(t + 1)
]θ̂M .

2.2. Bayes estimators

2.2.1. Bayes estimator of θ

For Bayesian estimation, we need to specify a prior distribution for the

parameter. Consider a Gamma prior for θ having p.d.f.

(2.5) g(θ) =
δν

Γ(ν)
e−δθ θν−1 , θ > 0, δ > 0, ν > 0 .

Using Bayes theorem for combining (1.1) and (2.5), we get the posterior of θ

given t as follows

(2.6) h1(θ|t) =
(δ + q)ν+r

k Γ(ν + r)
e−(δ+q)θ θν+r−1

(

1 − V θ
)(n−r)

,

where

k =
n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)

−(ν+r)

, w(j) = (−1)j

(

n − r

j

)

,

u =
r

∏

i=1

[

1 − e−ti(ti +1)
]

, q = − lnu and p = lnV .
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Using (1.9), the Bayes estimator of θ under GELF for the posterior (2.6) is

obtained as

(2.7) θ̂G =
1

δ + q

(

Γ(ν + r − c1)

Γ(ν + r)

)

−(1/c1)(k1

k

)

−(1/c1)

,

provided ν + r > c1, where

k1 =
n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)

−(ν+r−c1)

.

It can easily be verified that the Bayes estimator of θ under SELF for the

posterior (2.6) is

(2.8) θ̂S =
ν + r

δ + q
×

k11

k
,

where

k11 =
n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)

−(ν+r+1)

.

2.2.2. Bayes estimator of R

The posterior p.d.f. of R, given t, can be obtained from the posterior p.d.f.

(2.6), using the transformation (1.3). After simplification, it reduces to

(2.9) h2(R|t1, t2, ..., tr) =
Qν+r

Γ(ν +r)k

(

φ1(R)
)ν+r−1

e−(Q−1)φ1(R)
(

1−V Zφ1(R)
)(n−r)

,

where

φ1(R) = ln(1−R)−1, Q = Z(δ+q), Z = 1/ ln(z−1), z = z(t) = 1−e−t(t+1) .

Now, the Bayes estimator of R under GELF relative to the posterior (2.9)

is obtained as

(2.10)

R̂G =



1 +
1

k

n−r
∑

j=0

∞
∑

l=1

c1(c1 +1) · · · (c1 + l −1)

l
ω(j)

(

1 +
l − jZp

Q

)

−(ν+r)




(−1/c1)

.

Putting c1 = −1 in (2.10), we get the Bayes estimator of R under SELF as

(2.11) R̂S =
1

k

n−r
∑

j=0

w(j) (k12 − k13) ,
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where

k12 =

(

1 −
jZ p

Q

)

−(ν+r)

and k13 =

(

1 −
jZ p −1

Q

)

−(ν+r)

.

It may be noted that the expression for R̂S obtained above is the same as

that obtained by Shawky and Bakoban [9].

3. COMPARISON OF ESTIMATORS

In this Section, we shall compare the estimators obtained under GELF with

the corresponding Bayes estimators under SELF and the MLE. The estimators

θ̂M and R̂M denote the MLE’s of the parameter θ and the reliability function

R(x) for a specified x respectively. (θ̂G, R̂G) and (θ̂S , R̂S) are the corresponding

Bayes estimators under GELF and SELF. The comparisons are based on the

risks(average loss over sample space) of the estimators of the parameters

θ and R of the considered model. The exact expressions for the risks can not

be obtained, therefore, the risks of the estimators are estimated on the basis of

Monte-Carlo simulation study of 5000 samples. It may be noted that the risks of

the estimators under type II censoring will be a function of sample size n, number

of observations r, parameters δ and ν of prior distribution, parameter θ of the

model, x and loss function parameter c1. In order to consider a variation of these

values, we have obtained the simulated risks for n = 15[5]25 and r = 8[2]14.

The various values of the hyper parameters considered here are δ = 1[1]7 and

ν = 1[1]7. We vary c1 = −3.0[0.5]3.0. θ and x are arbitrarily taken as 1.5 and 0.5

respectively. After an extensive study of results, conclusions are drawn regarding

the behavior of the estimators. It may be mentioned here that because of space

restriction, results for all the variations in the parameters are not shown here.

Only selected figures are included. In the figures RG(·) and RS(·) denote the risks

of (·) under GELF and SELF respectively.

Firstly, we observed the impact of variation of sample size n and number

of observations r under type II censoring on the risks of estimators θ̂G, θ̂S , θ̂M ,

R̂G, R̂S and R̂M , keeping the value of other parameters fixed. It is observed

that as n increases, the risks of all the estimators decrease in all the considered

cases; although the decrease is more for θ̂M and R̂M . For large sample sizes, the

difference between the risks of the estimators are negligibly small. It is further

observed that if we increase the value of r keeping the sample size n fixed, there

is a slight decrease in the risks of the estimators (to save the space corresponding

figures are not included in this paper). Keeping these points in mind, we have

presented the figures with (n, r) equal to (15, 12) only.

Let us now study the effect of variation of loss parameter c1 on the risks

of the estimators. It is re-iterated that the positive sign of the loss parameter c1
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indicates that over estimation is more serious than under estimation and the

magnitude of c1 indicates its intensity. It is observed that, in general, the risks of

the estimators under GELF increases, as c1 increases (see figure 1). The increase

in the risks is more for θ̂M as compared to the other estimators. For almost all

values of c1, the risk of θ̂G under GELF is found to be least among the considered

estimators. It is interesting to remark here that θ̂G has the least risk under SELF

also. It is further noted that for reliability estimation, R̂M has the smallest risk

under GELF (see figure 3). For negative values of c1, the behavior of risks of

estimators under GELF is more or less similar to the one obtained for positive c1

(see figure 2).

While studying the effect of variation in the value of ν, we observed that, in

general, under both loss functions, the risks of the estimators of θ (except for θ̂M )

increase as ν increases. It is also seen that θ̂G has smaller risk compared to the

risks of other estimators when ν ≤ 4; otherwise θ̂M has smaller risk (see figure 4).

The behavior of risks of the estimators of reliability are just reverse to those for

the estimators of θ. It decrease as ν increases except for R̂M . The smallest risk is

observed for R̂S as compared to the risks of others (under both the losses; namely

GELF and SELF), except when ν ≤ 2 for which R̂M has smaller risk (see figure 7).

For negative values of c1, the trend of risks as ν increases, is similar to that of

positive c1. Under GELF, the risk of θ̂M is found to be smaller than the risks of

other estimators, when ν ≥ 5 and for 2 ≤ ν < 5, θ̂S has smaller risk than others;

but for ν = 1, θ̂G has smaller risk. Under SELF, the risk of θ̂M is smaller than the

risk of other estimators for ν ≥ 3 and for ν < 3, θ̂S has smaller risk. The trend of

risks of the estimators of reliability is just reverse to those of the estimators of θ;

i.e., the risks, in general, decrease as ν increases. Under both the loss functions,

R̂G has a smaller risk than others for ν ≥ 3 and for ν < 3, under both the loss

functions, R̂M has the smallest risk (see figure 6).

While observing the effect of variation in the value of δ, it is noted that for

positive values of c1, as δ increases, risks of estimators increase, in general, for

fixed values of other parameters. θ̂M has smaller risk than the Bayes estimators

θ̂G and θ̂S for large value of δ ≥ 6, while for 2 ≤ δ < 6, θ̂S has the smallest risk,

but for δ = 1, θ̂G has smallest risk. The trend remains more or less the same

under both loss functions (see figure 5), and in case of estimators of reliability, it is

observed that the risk of the MLE, R̂M , is smaller than those of Bayes estimators

R̂G and R̂S (see figure 9). For negative values of c1, it is observed that as δ

increases, risks increase, in general, except for the MLE’s. This trend is similar

to that for positive c1. However, for δ ≤ 3, θ̂G has smaller risk under GELF

and for rest of the values of δ, θ̂M performs better than the other estimators.

For 3 ≤ δ ≤ 6, θ̂G performs better than others under SELF (see figure 8).

It is worthwhile to mention here that the risks of the estimators under

type I censored data were also obtained for θ = 1.5 and τ = 3, taking values of

c1 = −3[0.5]3, n = 15[5]25, δ = 1[1]7 and ν = 1[1]7. After an extensive study
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of the results, thus obtained, we observed that the risks of the estimators under

type I censored data behave similarly to the risks of the estimators under type II

censored data with little changes in the magnitude of the risks. Thus, we may infer

that censoring mechanism has no significantly different effect on the performance

of the proposed estimators so far as behavior of their risks are concerned.
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Figure 9: Risks of estimators of R under GELF (left) SELF (right) for
fixed n = 15, r = 12, x = 0.5, θ = 1.5, ν = 2, c1 = +2.0.
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4. CONCLUSION

On the basis of the discussion given in the previous Section, we may con-

clude that the proposed estimator θ̂G performs better than θ̂S and θ̂M for small

values of δ and ν and c1 ≤−1.0 (when under estimation is more serious than over

estimation) in the sense of having smaller risk. Contrary to it, when over esti-

mation is more serious than under estimation, our proposed estimator performs

well when δ = 1, ν ≤ 4 and c1 ≥ 2. Thus, the use of the proposed estimator θ̂G

is recommended even under quadratic loss function. In case of estimation of re-

liability function, our proposed estimator R̂G performs better than R̂S and R̂M

when c1 = −2, δ = 1 and ν ≥ 3. In other cases, R̂G has slightly higher risk than

R̂S and R̂M . Therefore, the proposed estimator R̂G is recommended for use only

if under estimation is more serious and hyper parameter ν is large.
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