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Abstract:

• In this paper, we review the score test procedure used for testing polynomial covariate
effects in a semi parametric additive mixed model. This test is based on the mixed
model representation of the smoothing spline estimator of the nonparametric function
and treating the inverse of the smoothing parameter as an extra variance component.
Zhang and Lin (2003) found that the score test of polynomial test for non Gaussian
responses follows a scaled chi-squared distribution. Simulation studies showed that
their approximation is less satisfactory for binary data. To overcome this deficiency,
we apply the technique of Monte Carlo in order to obtain provably exact procedures.
Derivation and performance of each testing procedure are discussed throughout the
simulations that we conducted.

Key-Words:

• semi parametric additive mixed models; polynomial test; score test; Monte Carlo test.

AMS Subject Classification:

• 62G08, 62J12, 62H15.



168 Abdeljelil Farhat and Sami Mestiri



Monte Carlo Test for Polynomial Covariates 169

1. INTRODUCTION

Linear mixed models [Laird and Ware (1982)] and their extension, gener-

alized linear mixed models (GLMMs) [Breslow and Clayton (1993); Zeger and

Karim (1991)] are popular statistical models for analyzing correlated data. An

important feature of these models is that the conditional mean of the response

given covariates and random effects, after transformed by a link function, is lin-

early related to the fixed covariate effects and random effects. Since this para-

metric assumption in GLMMs is strong and may not be appropriate for data

with complex covariate effects, Lin and Zhang (1999) proposed generalized ad-

ditive mixed models (GAMMs) that allow for flexible modeling of the covariate

effects by replacing the linear predictor in GLMMs with an additive combination

of nonparametric functions of covariates and random effects. Therefore, it is of

practical importance to check the adequacy of the assumption for the parametric

linear covariate effects.

In order to evaluate the adequacy of a parametric covariate effect in a re-

gression model, one common approach is to cast the problem in the hypothesis

testing framework. In practice, the resulting estimates of a nonparametric func-

tion is used as the alternatives for testing the adequacy of the parametric covariate

effects. Brumback et al. (1999) showed that a nonparametric function estimated

via penalized splines or smoothing splines has a mixed effects representation. An

appealing feature of using the mixed effects representation is that one can cast

the hypothesis test of parametric against nonparametric covariate effects as a

variance component test. Zhang and Lin (2003) developed the variance compo-

nent score test to construct a goodness-of-fit test of polynomial regression in semi

parametric additive mixed models (SAMMs), a special case of GAMMs. Due to

the special structure of the smoothing matrix, the distribution of statistic score

is approximated by a scaled chi-squared distribution. Simulation studies showed

that the score test is conservative and not very powerful for binary response.

For checking the adequacy of parametric covariate effects, Huang and Zhang

(2008) have presented an overview on score test applied in the context of SAMMs.

Their simulations indicate that the score test shows less performance for binary

data. In this paper, we propose to use the technique of Monte Carlo (MC) tests in

order to improve the test score, for small size sample. Indeed, we adapte MC test

to solve the problem of control the power of score test. The MC approach allows

us to introduce a new test that differs in two respects from the tests existing in

the literature. First, the test is exact in the sense that the probability of rejecting

the null hypothesis when it is true is always less than or equal to the nominal

level of the test. Secondly, this approach allows to obtain exact randomized test

using very small numbers of MC replications of the original test statistic under

the null hypothesis. Finally, MC test is a reliable and easy instrument for testing
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polynomial degree of non parametric function. So, the aim of this paper is to

solve the problem of distortion of power of score test. By conducting simulations

studies, we show that the MC technique can improve the power of test.

The paper is organized as follows. Section 1 introduces the SAMMs model.

In Section 2, we describe the polynomial tests in SAMMs and we describe how

exact MC tests can be implemented. In Section 3, we present the results from a

small simulation study to compare the performance of the asymptotic score test

and the MC test. The paper is concluded in Section 4 with some discussion.

2. THE MODEL SPECIFICATION

In this section, we briefly present SAMMs for clustered data, and this es-

timation procedure. These models are special cases of GAMMs considered by

Lin and Zhang (1999). Let the data consist of a response variable yij for the j th

observation (j = 1, .., n) of the i th cluster (i = 1, .., N), a scalar covariate xij , and

a scalar covariate sij associated with fixed effects, and a scalar covariate zij as-

sociated with random effects. Conditional on a (q, 1) vector of random effects bi,

the yij are assumed to be independent with conditional means E(yij |bi) = µbij
and conditional variances var(yij |bi) = φ̟−1

ij v(µ
b
ij), where φ is a dispersion pa-

rameter, ̟ij is a known prior weight, and v is a variance function. The SAMM

assumes that the conditional mean µbij takes this form:

(2.1) g(µbij) = sij γ + f(xij) + zij bi ,

where γ is a fixed effect, f(x) is an arbitrary smooth function and g is a known

link function. bi is a random effect associated with covariates zij . It is further as-

sumed that the random effects bi are independent and have a normal distribution

N(0, σ2
b ).

We propose to transforme the model (2.1) to fully parametric model where

the unknown smoothing function f(xij) may be expressed as a linear combination

of proper basis functions. We consider the truncated power basis usually used in

this context, as by Ruppert et al. (2003) or Ngo and Wand (2004). A penalized

linear spline model for (2.1) is

(2.2) g(µbij) = sij γ +
H

∑

h=1

δh x
h
ij +

K
∑

k=1

ak(xij − κk)+ + zij bi ,

where κ1, ...,κK is a set of distinct knots in the range of xij and x+ = max(0;x).

The number of knots K is fixed and large enough (in this case K= 40) to ensure

the exibility of the curve. The knots are chosen as quantiles of x with probabilities

1/(K+1), ...,K/(K+1). We use truncated lines as the basis for regression since
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their simple mathematical form is very useful in formulating complicated models.

More complex basis such as B-splines and radial basis functions (with better

numerical properties) could also be used.

Let Y,X,B and b denote the matrix obtained from stacking up the N

subject-specific vectors of the same symbol. Also, let Z = diag(Z1, ..., ZN ) and

a = (a1, ..., aK)′. Zhang and Lin (2003) suggested that a can be treated as random

effects following N(0, τI), so the model (2.2) is considered as a linear combination

of the fixed effects β and the random effects a and b. Under this mixed-model

representation of the smoothing spline estimator of f , the SAMM (2.1) can be

written as the following GLMM:

(2.3) g(µb) = Xβ +Ba+ Zb ,

where β is the fixed effect associated with covariates matrix X. The vector a is

Normal (0, τI), the independent random effect b is Normal (0, σ2
b ). This GLMM

representation takes the same form as that Lin and Zhang (1999) used for natural

cubic spline estimators. For detailed justification of the estimation procedure, see

Lin and Zhang (1999).

3. THE POLYNOMIAL TEST

3.1. Asymptotic score test

Zhang and Lin (2003) considered the problem of testing the nonparametric

function f(x) in model (2.1) being a h-order polynomial. They first estimated

f(x) by a h-order smoothing spline and expressed f with a mixed effects repre-

sentation. Then, they tested if f(x) is h order. Testing f(x) in SAMM (2.1) being

a h-order polynomial is equivalent to testing H0 : τ = 0 in the induced GLMM in

(2.3). Under the induced GLMM in (2.3), Zhang and Lin (2003) showed that the

score Uτ for testing H0 : τ = 0 takes the following form:

Uτ (ψ̂) =
∂lM (τ, ψ; y)

∂τ

∣

∣

∣

∣

τ=0
(3.1)

=
1

2

{

(y −Xβ)′V −1BB′V −1(y −Xβ) − tr(PBB′)
}

∣

∣

∣

∣

β=β̂,ψ̂

,

where ψ = (σ2
b , φ) is the nuisance parameter vector, and lM (τ, ψ) is the marginal

log likelihood function of τ and ψ (by integrating out random effects b and fixed ef-

fects β). β̂ is the maximum likelihood estimator (MLE) of β and ψ̂ is the restricted
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maximum likelihood estimator (REML) of ψ, and Y = Xβ + Zb+ ∆(y − µb) is

the working vector from the following null GLMM

(3.2) g(µb) = Xβ + Zb ,

where ∆ = diag
{

g′(µbij)
}

, W = diag
{

ωij
}

is the working weight and ωij =
{

φ̟−1
ij v(µij) [g′(µij)]

2
}

−1
, b ∼ N(0, σ2

b ), P = V −1 −V −1X(X ′V −1X)−1X ′ and

V = W−1+ZDZ ′. W is working weight matrix evaluated at the conditional ex-

pectation µb and taken under the null hypothesis τ = 0. One can use the existing

software such as the R packages (glmmPQL) to obtain the estimates β̂ and ψ̂

by fitting the model (3.2).

Zhang and Lin (2003) showed that the null distribution of Uτ can be ap-

proximated by a scaled chi-squared distribution. A major problem in the score

test context comes from the fact that applicable procedure rely heavily on asymp-

totic approximations whose accuracy can be quiet poor. This is evident from the

study simulation reported in Zhang and Lin (2003). In any case, it is widely ac-

knowledged that score asymptotic test is unreliable in finite sample, in the sense

that the test was a little conservative and not very powerful. We reemphasize

this fact and propose to use the technique of Monte Carlo test [Dwass (1957),

Barnard (1963), Dufour and Khalaf (2002)] in order to obtain provably exact

procedures.

3.2. Monte Carlo test

In this paper, we describe the MC test methodology for testing the polyno-

mial degree of f(x). In effect, it is possible to apply the test of MC because the

statistic of score Uτ under the null distribution is a continuous pivotal function

(its distribution does not depend on unknown parameter). Let U0 denote the

observed test statistic of score calculated on the basis of data observed. Then

the critical region of a test with level α can be expressed as G(U0) ≤ α such as

G(U0) = P (U ≥ U0/H0) is the critical function for a right tailed test. G(U0) is

unknown and it will be estimated by generating under null assumption M inde-

pendent replications or exchangeable statistics U1, .., UM [see Dwass (1957) and

Dufour et al. (1998)]. For the application of the technique of the tests of MC,

we define

(3.3) ĜM (U0) =
1

M

M
∑

i=1

I[0,∞)

(

Ui − U0

)

, IA(z) =

{

1, if z ∈ A ,

0, if z /∈ A .

In other words, MĜM (U0) is the number of simulated statistics which are

greater or equal to U0, R̂M (U0) = M −MĜN (U0)+1 gives the rank of U0 among
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the variables U0, U1, .., UM . The estimated critical function is then given by this

formula:

(3.4) p̂M (U0) =
MĜM (U0) + 1

M + 1
.

Thus the critical region of level α associated with a test MC is expressed by

p̂M (U0) ≤ α such as p̂M (U0) represents the empirical probability that the value

more superior than U0 is realized if the null hypothesis is true. Hence p̂M (U0) may

be viewed as a MC-value. Note that the MC decision rule may also be expressed

in terms of R̂M (U0). Indeed the critical region MĜM (kU0)+1
M+1 < α is equivalent to

R̂M (U0) ≥ (M + 1)(1 − α) + 1.

In other words, the MC test is significant at a 5% level if the rank of U0

in the series U0, U1, .., UM is at least equal to 96. If the null distribution of U0

is nuisance-parameter-free and α(M +1) is an integer, then the critical region is

probably exact, in the sense

(3.5) P
[

p̂M (U0) ≤ α
]

= α

or alternatively

(3.6) P
[

R̂M (U0) ≥ (M +1)(1 − α) + 1
]

= α .

The proof of the equation (3.5) and (3.6) is based on the theorem concern-

ing the distribution of the ranks associated with a finite dimensional array of

exchangeable statistics; see Dufour (2006) for more informations.

The determination of the Monte Carlo p-Value for the polynomial degree

test to the model (2.1), is described as follows:

• Fit the model on original data set Y (0) and calculate the ML estimates

β̂, ψ̂ = (σ̂2
b , σ̂

2
ε) and τ̂ .

• Obtain the score statistic based on ψ̂ and denote it U
(0)
τ .

• Treat ψ̂ as fixed and fitted from the null model g(µ) = Xβ + Zb (under

the null hypothesis H0 : τ = 0 and ψ = ψ̂), repeat the following steps for

m = 1, ..,M .

– Draw the vector b̃(m) as i.i.d. N(0, σ̂2
b ) and the vector ε̃(m) as i.i.d.

N(0, σ̂2
ε).

– Obtain the simulated independent variable Ỹ (m) =Xβ+Zb̃(m) + ε̃(m)

where Ỹ = Xβ +Ba+ Zb+ ∆(y − µb) is working vector, such as

∆ = diag{g′(µbij)}.

– Regress Ỹ (m) on X and B (fit the model g(µ) = Xβ + Ba + Zb on

simulated data set).
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– Derive the score statistic test U1, ..., UM associated with the regres-

sion of Ỹ (m) on X and B.

• Obtain the rank R̂M (U0) in the series U0, U1, ..., UM .

• Reject the null H0 : τ = 0 if R̂M (U0) ≥ (M + 1)(1 − α) + 1.

Furthermore, a MC p-value may be obtained as p̂M (U0) = M+1−R̂M (U0)
M+1 .

We choose M so that α(M + 1) is an integer (for example, for α = 0.05; we can

take M = 19; 39; 99...).

MC test can be interpreted as a parametric bootstrap method applied to

statistics whose null distribution does not depend on nuisance parameters. How-

ever the central additional observation is that the randomization allows one to

exactly control the size of the test for a given (possibly small) number of MC

simulations. For further discussion of Monte Carlo tests (including its relation

with the bootstrap), Kiviet and Duffour (1997) and Dufour et al. (1998).

4. SIMULATION EXPERIMENTS

In order to assess the performance of two test procedures discussed above,

we conduct a small simulation study. The performance of the polynomial test are

evaluated and compared for clustered data with different types of responses and

different magnitudes of correlation. For illustration purpose, we consider testing

the linearity of covariate effects under the partially linear model framework, i.e.

whether f(x) is a linear function of x in model (2.1). Following the penalized

spline, we formulate the asymptotic score test as variance component test based

on the GLMM representation (2.3) as discussed above. In addition, for testing

the same null hypothesis, we also formulate the Monte Carlo test which is exact

in the sense that the probability of rejection the null hypothesis when is true is

always less than or equal to the nominal size of the test. In our case, we are

testing whether f(x) is a 1-degree polynomial of x. Conditional on the cluster-

specific random intercept bi ∼ N(0, σb) with σb = 0.5 and σb = 1, independent

Gaussian and Binary responses yij (for i = 1, ..., N and j = 1, .., n) were generated

respectively under the model

(4.1) g(µij) = γ0 + sij γ1 + f(xij) + bi ,

where g(µ) = µ for Gaussian response, and g(µ) = logit(µ) for Binary responses.

The scale parameter φ was estimated for Gaussian responses and was set to be

one for Binary responses. Where sij is generated from Normal lawN(0, 0.1), xij is

generated from Uniform law (U [0, 1]), the true values of γ0 and γ1 are taken to be

γ0 = 1 and γ1 = 2; two sample sizes are used (N = 2, n = 5) and (N = 4, n = 5);
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five different functions of f(x) are considered:

fc(x) = (0.25 c)x · exp(2 − 2x) − x+ 0.5 , for c = (0, 1, 2, 3, 4) .

Note that when c = 0, fc(x) is a linear function of x and fc(x) deviates further

from linearity with increasing c. The functions fc(x) are plotted in Figure 1.
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Figure 1: Functions fc(x) for c = (0, 1, 2, 3, 4) used in the simulation studies
for the polynomial test.

We apply the Asymptotic score (Asy.Sco) and the Monte Carlo (MC.Sco)

testing procedures to each simulated data set. The simulation results are based

on 1000 Monte Carlo simulation runs. For testing the null hypothesis that f(x)

is a linear function of x, the size and the power of each testing procedures are

calculated by setting c = 0 and c 6= 0 respectively. We used a penalized spline

to estimate f(x), the number of knots for the penalized spline is set to be 40.

The number of trials for the MC test was set to 19. The number of overall

replications was 1000. All experiments were performed with language R (version

7.2.1). The simulation results are presented in the table 1 and 2, which report

rejection percentages from 1000 replications at the nominal level 5% under the

null hypothesis.
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Table 1: Empirical sizes and powers of linearity test for two types of data
where N= 2 and n = 5.

Variance Data
Test

Size Powers

random effect Type c = 0 c = 1 c = 2 c = 3 c = 4

σb = 0.05

Gaussian
Asy 0.055 0.178 0.624 0.934 0.995

MC 0.051 0.211 0.645 1.000 1.000

Binary
Asy 0.033 0.073 0.167 0.260 0.511

MC 0.054 0.291 0.711 0.887 1.000

σb = 1

Gaussian
Asy 0.048 0.202 0591 0.942 0.995

MC 0.054 0.251 0.671 1.000 1.000

Binary
Asy 0.040 0.068 0.120 0.271 0.442

MC 0.061 0.125 0.741 0.910 1.000

Table 2: Empirical sizes and powers of linearity test for two types of data
where N= 4 and n = 5.

Variance Data
Test

Size Powers

random effect Type c = 0 c = 1 c = 2 c = 3 c = 4

σb = 0.05

Gaussian
Asy 0.055 0.199 0.627 0.914 0.990

MC 0.050 0.223 0.775 1.000 1.000

Binary
Asy 0.047 0.095 0.211 0.310 0.621

MC 0.052 0.325 0.812 0.970 1.000

σb = 1

Gaussian
Asy 0.045 0.207 0.603 0.922 0.995

MC 0.050 0.304 0.789 1.000 1.000

Binary
Asy 0.042 0.077 0.211 0.314 0.511

MC 0.050 0.301 0.805 0.960 1.000

The results showed that the asymptotic score test for Binary responses

was a conservative and not very powerful. The increased sample size brings

the empirical sizes of the two tests closer to the nominal levels, whereas the

variance component seems to have not much influence on them. These tests

show decreased power where the variance component increases. Regarding the

empirical size, our simulation results show that the linearity test with Monte

Carlo is very performant for Gaussian responses for different magnitudes of the

variance component. The empirical sizes were very close to the nominal size

and the powers of the test were high, and were not significantly affected by the

magnitude of the variance component. Indeed, the table 1 and 2 show that MC

test achieves a perfect size control for Binary responses for different magnitudes

of the variance component. As expected, the increased sample size improves the

overall power.
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In fact the simulation results show clearly that the technique of MC test

correct size distortion due to poor large sample approximations. In general, our

simulation indicates that the MC test is more powerful than the asymptotic score

test. For simplicity, only the linearity test is considered in the current simulation;

however in practice, one might be interested in testing higher-order polynomial

covariate effects (i.e. h > 1), which can be easily carried out by using a different

values of h.

5. DISCUSSION

We have reviewed in this paper a test procedure for testing whether the

nonparametric function is some fixed-degree polynomial. The key idea is based

on the mixed-effect representation of the natural spline estimator of the nonpara-

metric function. Zhang and Lin (2003) developed score test and approximated

its distribution by a scaled Chi-square distribution. For Binary data, the sim-

ulation studies show that the performance of the test is less satisfactory. This

is mainly due to the less satisfactory performance of the Laplace approximation

for the score statistic and the implicit Gaussian fourth-moment assumption when

estimating the variance of the score statistic. We have hence proposed the simu-

lation based procedures to derived exact p-value for polynomial test for SAMM.

We have exploited the fact the score test is pivotal under the null hypothesis

which allows one to apply the technique of MC tests.

The feasibility of our approach was illustrated trough a simulation exper-

iment. The results show that asymptotic score test is unreliable for binary re-

sponse in contrast MC test achieve perfect size control and have a good power.

It is important to emphasis that MC procedure require less calculation with mod-

ern computer facilities. Zhang and Davidian (2004) have proposed a conditional

estimation procedure built on likelihood inference for generalized additive mixed

models. It is interesting for future research to extend our Monte Carlo test con-

sidering the conditional estimation procedure.

However, The score test is sensitive to outliers. Recently, Qin and Zhu

(2008) focus on robust estimation of mean parameters of partial linear mixed

model. They proposed to approximate the nonparametric function f by a regres-

sion spline and to estimate both the linear parameter and the spline coefficients

by a M-estimator. It is interesting for future research to extend our Monte Carlo

test considering the robust score test.
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