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Abstract:

e We consider the problem of estimating an arbitrary smooth functional of £ > 1 distri-

bution functions (d.f.s) in terms of random samples from them. The natural estimate
replaces the d.f.s by their empirical d.f.s. Its bias is generally ~n~', where n is the
minimum sample size, with a p'"order iterative estimate of bias ~n~P for any p.
For p < 4, we give an explicit estimate in terms of the first 2p —2 von Mises deriva-
tives of the functional evaluated at the empirical d.f.s. These may be used to obtain
unbiased estimates, where these exist and are of known form in terms of the sample
sizes; our form for such unbiased estimates is much simpler than that obtained using
polykays and tables of the symmetric functions. Examples include functions of a
mean vector (such as the ratio of two means and the inverse of a mean), standard de-
viation, correlation, return times and exceedances. These p'" order estimates require
only ~n calculations. This is in sharp contrast with computationally intensive bias
reduction methods such as the p*™ order bootstrap and jackknife, which require ~ n?
calculations.
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1. INTRODUCTION

Let T'(F) be any smooth functional of one or more unknown distributions F’
based on random samples from them. Bias reduction of estimates of T'(F'), say
T(ﬁ), has been a subject of considerable interest. Traditionally bias reduction
has been based on well known resampling methods like bootstrapping and jack-
knifing in nonparametric settings. However, these methods may not be effective
in complex situations when the sampling distribution of the statistic changes too
abruptly with the parameter, or when this distribution is very skewed and has
heavy tails. Also the robustness properties of F' may not be preserved for T'(F')
for all T'(+). For excellent reviews of bias reduction methods, we refer the readers
to Gray and Schucany [11], Anderson et al. [1], Zacks [30], Efron [8], Hall [12],
and Chapter 4 of Beirlant et al. [2].

Recently, various analytical methods have been developed for bias reduction
in parametric settings. Withers [27] developed methods for bias reduction based
on Taylor series expansions. Sen [18] and originally von Mises [22] established
asymptotic normality of \/n {T (F)—T(F )} as n — oo under suitable regularity
conditions. Cabrera and Fernholz [3], [4] defined a target estimator: for a given T
and a parametric family of distributions it is defined by setting the expected
value of the statistic equal to the observed value. Cabrera and Fernholz [3], [4]
established under suitable regularity conditions that the target estimator has
smaller bias and mean squared error than the original estimator. See also Fernholz

[9]-

The first analytical bias reduction method in a nonparametric setting was
proposed by Withers and Nadarajah [29]. The technical tools required for Withers
and Nadarajah [29] were contained in an unpublished technical report cited there
as Withers (1994a).

This paper is an update of the unpublished technical report. The emphasis
of this paper is to describe how to find estimates of low bias for T'(F'). Because
of the material in Withers and Nadarajah [29], the emphasis here will not be
on numerical illustrations or applications. In Withers and Nadarajah [29], the
estimates proposed here were compared to alternatives. We showed in particular
that our estimates consistently outperform bootstrapping, jackknifing and those
due to Sen [18] and Cabrera and Fernholz [3], [4]. We also provided computer
programs in MAPLE for implementation of the proposed estimates.

Suppose we have k > 1 independent samples of sizes nq,...,n; from dis-
tribution functions (d.f.s) F = (Fy,...,Fy) on R, . R Let F = (Fy, ..., F})
denote their sample d.f.s and let n be the minimum sample size. The problem we
consider in this paper is that of finding an estimate of low bias for an arbitrary
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smooth functional T'(F'). The natural estimate T(F) generally has bias ~ n~1,

that is, O(n™!) as n — .

For the reader’s convenience, in Section 2, we repeat the definition of func-
tional derivatives and rules for obtaining them given in Withers [28]. In Section 3,
we have a formal asymptotic expansion of the form

(1.1) ET(F) = in—’a ,
r=0

~

where Cp = T'(F'). The coefficient of n™" in ET(F'), C,(F,T) = C, may be writ-

~

ten in terms of the (functional or von Mises) derivatives of T'(F') of order < 2r,
and is given in Section 3 explicitly for r < 4.

From (1.1) if a functional T{,(F) can be expanded as

Ty = Y n ' Ti(F)
1=0
then

ET)(F) = Y _n ' ET(F)
=0

= Z n=t Z n~"C.(F,T;)
=0 r=0

oo ]

= Z Zn_j CT(F7TJ'—7")

j=0 r=0
= > 0 G(T),
§=0

where
J
G(T) = S CHRT,) .

r=0

Defining T; iteratively by Ty = T and
(1.2) T(F) = = G(F,Tij)

for ¢ > 1 it follows that for p > 1

p—1

(1.3) T, p(F) = > n ' Ty(F)

=0
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satisfies

ET,,(F) = > n'ET,(F)

p—1 ‘ o)
- St S
=0
p—1

p—1
= Zn an’"C F.T;) +Zn7”(] (F,T;)
=0

r=0 r=p

p—1 p—1 p—1 o0
= Zn*i Zn*TCT(F,Ti) + Zn*i Zn*’“cr(F,Ti)
p—1 oo

- Zn—ﬂzc (FTj-) + 33 0GB T) + O(n ™)

=0 r=p

= Ty(F) + Zn_j Tj(F) + Zn‘j ZCT(F,TJM
i=1 7=1 r=1

p—1 oo
+ 3 nTTTCH(F T + O(nP)
=0 r=p
p—1 oo .
= Ty(F) + > nT"TCH(FT;) + O(n?)
=0 r=p

= T(F) +0(n™"),

where the two middle terms in the third last step cancel out because of (1.2).
So, we can write

ET, ,(F) = T(F)+O0(n?) .

So, Tnyp(ﬁ) is a p'" order estimate in the sense that it has bias O(n~?). This result
was given for the case k = 1, p = 2 using a different approach in an unpublished
technical report by Jaeckel [13].

Note that T,(ﬁ) given by (1.2) is the coefficient of n~% in the expansion in
powers of n~1 of the unbiased estimate (UE) of T'(F), if an UE exists.

Section 4 gives T;(F') explicitly in terms of the first 2¢ derivatives of T'(F')
for i < 3. So, Tp4(F) is an explicit estimate of bias O(n~%). Proposition 4.1
shows how to obtain from (1.3) an estimate of bias O(n™P) of the form S, ,(F),
where

Snp(F) = ZSZ )/ {(n—1)-(n—1d)}.

This estimate is unbiased for one sample if T'(F') is a polynomial in F' (such as
a moment or cumulant) of degree up to p.
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Section 5 gives examples and makes comparisons with the UEs of central
moments and cumulants given by James [14] and by Fisher [10]. Our method is
demonstrated to be give much simpler results for UEs of products of moments
than the polykay system of Wishart [23] as expounded in Section 12.22 of Stuart
and Ord [19] using tables of the symmetric functions.

Examples 5.1 to 5.3 estimate an arbitrary function of the vector w(F),
the mean of one multivariate distribution. Example 5.2 specializes to T'(F') =
a'u(F)/b'u(F), where a,b are given sj-vectors, in particular for the ratio of
means of a bivariate sample,

T(F) = m(F)/p2(F) .

Examples 5.4 and 5.5 estimate an arbitrary function of the means of k univariate
distributions; in particular it considers the case of two univariate samples (k = 2,
S1 = 82 = 1) with

T(F) = p(Fy)/p(Fz) .

Example 5.6 gives an explicit expression for the general derivative of the r** central
moment p,.. Together with the chain rule of Appendix A this enables one to obtain
a pMorder estimate of any smooth function of moments. In particular, we give
fourth order estimates for any central moment and UEs for u, for r < 7.

Examples 5.7 to 5.11 extend this to an arbitrary product of moments. An
alternative matrix method for obtaining UEs of products of moments is given
there. This involves obtaining simultaneously the UEs of all moment products of
a given degree. Examples 5.12 to 5.15 give fourth order estimates of the standard
deviation and functions of it. Example 5.16 gives third order estimates of the
ratio of the mean to the standard deviation.

Examples 5.17 to 5.21 give applications to return times and exceedances.
Examples 5.22 and 5.23 illustrate how to obtain UEs for multivariate moments
and cumulants from univariate analogs. Finally, Examples 5.24 and 5.25 give
second order estimates for the correlation and its square.

The method can also be used to estimate with reduced bias any cumulant
of T(F). This is illustrated in Section 6 which gives a third order estimate for
the covariance of any estimate of the form T(ﬁ), where now T may be a vector.
For example, by Example 5.1, if £ = 1 and T'(F') is any function of pu(F) (such as
w1 (F)/p2(F)) if s; = 2), this estimate is a function of the mean and covariance

of F only, whereas C| depends also on the third moment.
Section 7 shows how to estimate the covariance of an estimate of bias.

There are, of course, other p*® order estimates of T'(F), but they are all
computationally intensive, requiring O(n?) calculations (except in special cases),
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whereas our method requires only O(n) calculations for fixed p. The main exam-
ples are, firstly, the (p —1)*" iterated bootstrap, gp_l of equation (1.35) of Hall [12]
in which (—1)i*! should be inserted in the right hand side; and, secondly, the
p order jackknife gr—1 of equation (4.17) of Schucany et al. [17], a ratio of p X p
determinants. To see that this requires O(n”) calculations note that ¢, of their
equation (4.19) requires O(nP) calculations.

The techniques given here can also be applied to quantify their biases. Note
that if A and B are two p'? order estimates of T(F) then A — B = O,(n~P).

Appendix A gives a very useful chain rule for obtaining the derivatives of
a function of a functional. Appendix B gives some results used to obtain {T;}
of (1.3). Appendix C shows how to estimate the number of simulated samples
needed to estimate the bias to within a given relative error.

[21] by an entirely different method obtained an expansion of the form (1.1)
for

m(v) = T(F) = [[EX",
=1

where X ~ F', and so also for u,(F'). For these cases he constructs estimates

~

of bias O(n™P) given p >1. He shows for T(F') = m(v) that the UE T), o (F)
converges if E|X|" < oo, where h = >_7_; v; and n—1 > the number of partitions
of h. His expression on page 12, Theorem 4, is incorrect. He gives

var m(v) = n~ 'V +0(n7?),
where
S
V = m(v)* (A - s?) and A= Z M, mgl .
i=1
Here, A should be
S
Z My 40, m;z,l m;jl .

ij=1

For the case T'(F) = p? his Table 2 illustrates through simulations for F = U(0, 1)
and n = 5,10 how the bias of T, ,(F') falls to zero as p increases.

Throughout the paper, we shall assume that T'(F') and all of its relevant
derivatives are continuous and bounded, and that (1.1) converges with each term
and its relevant derivatives continuous and bounded.
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2. FUNCTIONAL PARTIAL DERIVATIVES AND NOTATION

Let F; denote the space of d.f.s on R®. Let x,y,x1,...,X, be points in R?*,
F € F and T: F, — R. In Withers [25] and originally in [22], the r*! order func-
tional derivative of T'(F') at (x1,...,X;)

Txl,.‘.,xr — TF(X17 "'7X’I”) )
was defined. It is characterized by the formal functional Taylor series expansion:

for G in F;,

r

(2.1) T(G)-T(F) = Z/TTF(XL...,XT) Hd(G(Xj) — F(x;))/r!,
r=1

=1

where f denote r integral signs, and the constraints Tx, . x, is symmetric in its
r arguments, and

/Txh...,xT dF(Xl) =0.

These imply F'(x;) in (2.1) can be replaced by zero. In particular, it was shown
that, for 0 <e <1,

T, = 0T (F +¢e(0,—F))/0e

at € =0, where 0, is the d.f. putting mass 1 at z, that is 0,(y) = I(x <y) =1
if z <y and 0 otherwise. For example, T'(F') = F(y) has first derivative T, =

TF(:E) = 590(3/) - F(y) = F(y):ca say.

Also, Tx, ... x, = 0 if T(F) is a ‘polynomial in F’ of degree less than r (for
example, a moment or cumulant of F' of order less than r), so that the Taylor
series in (2.1) consists of only  —1 terms. Note that T'(F') is a polynomial in F'
of degree m if for any G in F;, T(F +e(G—F)) is a polynomial in € of degree m.

Suppose now that F' = (F}, ..., Fi) consists of k distributions on R**, ..., R
and that T'(F') is a real functional of F'. Then the functional partial derivative of

T(F) at
A1y eeey Ap
Xy eeey Xy

Glyeeny G
Q1,eesQr y ey Qp
Txl:...:xr - TF( > )

X1y eeoy Xp

is defined by

where x; in R** and a; in {1,2, ..., k}, and is obtained by treating the lower order
functional partial derivatives and T'(F') as functionals of F;, alone for a = ayq, ..., a,.
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For example, T¥; %, is the ordinary functional derivative of S(F,) = T(F) at

(x1,...,%X;), and T,?{'}'_‘fff;cll’s;'l’?“,ys is the ordinary functional derivative of S(F},) =

T at (Y1, ¥s).

Just as 92f(x,y)/0x 0y = 0f(x,y)/Oy Ox under mild conditions, swap-

ping columns of T%;’% (for example, 3

T,?;',',',’,?,’cz’r’;j}ﬁ.,,7ys is also the ordinary functional derivative of S(Fy) = Tyb’l';j_’fyr at

(X1, eeey Xs).

and §2) will not alter its value. So,

The partial derivatives may also be characterized by the formal functional
Taylor series expansion: for G = (G, ..., Gi) € Fg, X -+ x F, ,

N = [T ary e ar\ 1T N <)) /r
(2.2) T<G>T<F>~;/TF(X1, XT)JHIMG%(XJ) Fa, (%)) /!

ceey

with summation of the repeated subscripts aq, ..., a, over their range 1,...,p im-
plicit, together with the constraints

T¢! % is not altered by swapping columns ,

and

/T;:lh---v;g; dF,, (x1) = 0.

-----

These imply Fy;(x;) in (2.2) can be replaced by zero. The partial derivatives
may also be calculated using

T
Al Qrpl A1 yeeeyOr | Ort1 2 : Al,..sQr 41
(2'3) TX1,-~~,Xr+1 - (Txl,.,.,x:> Xr41 + 5ai,ar+1 T<X17--~7Xr+1>i )
i=1
where 6; j =1 or 0 for i = j or i # j, ( ); means ‘drop the i*" column’, and T2

denotes the ordinary functional derivative of S(F,) = T(F') at x. The proof of
(2.3) is as for equation (2.6) of Withers [25].

3. EXPANSIONS FOR BIAS

Perhaps the easiest method to obtain expressions for the bias coefficients
{C,} of (1.1) and the bias reduction coefficients {T;(F')} of (1.3) is from their
parametric analogs, given in equation (A.1) and Appendix D (for ¢ < 3) of With-
ers [27]. The method is to identify (6,6, ¢,Y") with (F, F, T, [), where the integral
is with respect to the appropriate d.f. F;. This method was used in Withers [28§]
to derive non-parametric confidence intervals of level 1 —a +O(n~7/2) from their
parametric analogs. It is convenient to set

(3.1) T(a',V,...) = //TF<ZZJ] > dF,(z) dFy(y) -
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where x° denotes a string of i 2’s (not a product) and similarly, for a’.

notation of Withers [28] this is [1¢,27,...]op . Setting
(3.2) Ao =N/Ng with n = minn; ,

the above approach yields

(3.3) Cy=[21/2, Cy=[3]/6+2%/8,
(3.4) C3 = |4]/24 + (2,3|/12 +|23| /48,
(3.5) Cy = [5]/120 + [2,4|/48 + |3|/72 + |22, 3|/48 + |2%| /384 ,
where
2] = > A T(a?)

3] = > A2T(d?

2% = ZAmAaQ T(ai,a3)

4] = SN T(ah) - 3T(a? a®) } |

12,3 = > XX} T(a2,b3) ,

12%] = )" Ay Aay Aoy Ta, 03, a3)

5] = Z/\“{ )~ 10T(a2,a )}

2,4 = > aaA} {T(a%,b%) = 3T(a? 0%, 0%)} ,

|32| = Z/\21>\22 alaa2) )

12%,3] = ) AayAax X T(af, a3,0%)

2% = ) Aoy Aay Aag Aay T(a, 03, a3, a3) .
For example, if £k =1 (one sample) then
(3.6) C,=T@1%/2, Cy=T1%/6+1T(12%1%)/8,

More generally,

’Ai’ = )‘514_1"')‘?1-_1 |Ai’a RN )
(3.7) 2% 1

AY B = Y L ASIBEL B 4ipd . ,
1 7 1 1 yeeeyllay 3oy
’ Y Z a a b b] ‘ |a1 a; bl b]

with each aq,...,b; summed over 1, ..., k,

In the

|AL B oy, anbnny = Tat, el b, 0P)  if Aand B=2or 3,

4], = T(a") = 3T(a® a®) ,
15l = T(a®) — 10T (a?,a?) ,
|274‘a,b = T(a27b4) - 3T(a27b27b2) :
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For example,
A% =Y AN A e
and

’A2|a1,a2 = T(a aaé4) if A=2o0r3

- / / n(“l i ) AFu(w) dF oy (y)

so for the one sample case (k = 1),
A =T014,..,11) if A=2o0r3,
AL B =T(14,...,1417,..,18%)  if Aand B=2or3,
14 = T(1") - 37T(1%,1%) 5| = T(1°) — 10T (1%,1%) ,
12,4] = T(1%,1%) - 3T(1%,1%,1?) .

The general term C, is given by equation (A.1) of Withers [27], (3.2), (3.7),
and

i J
.. _ T ! . / . a,...,a,b,...,b
‘Z7j7"'|a,b,... - \/d’%a(xlr“axl)/dlib(yla"-ayj> TF (Xl,---,Xz‘,Y1,---7Yj ) )

where [ id%;(xl, ...,X;) is the Lebesgue—Stieltjes integral,

x1 A Xg A --- = min(xy, X2, ...) taken componentwise ,
fio,.. = Fa(xi Axg A--+)
Ka(X1,X2,...) = K(Y1,Y2,...), the joint cumulant at Y; = (X, <x;) ,

Kp(X1,X2,...) = Kq(X1,X2,...) expressed as a function of {fi; } at f; =0,

and [ is the indicator function and X, ~ F,. For example, using an obvious
summation notation

Ko(X1,%X2) = fi2— fife,
Ka(X1,X2,X3) = f123 —mefs +2fifef3,
Ka(X1,..,X4) = f1,.4 —Zf123f4 _Zfl 2f3.4
imply

Ky(x1,%2) = fi2, Ky (X1,X2,X3) = f123

3
K(X1,0Xa) = fia— Y frafsa .

As a check if k =1, (C1,C2) = (a1,1,a1,2) on page 580 of Withers [25].
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4. ESTIMATES OF BIAS O(n™%)

Here, we give expressions for {7;, i < 3} of (1.2) and for {S;, ¢ <3} of
Proposition 4.1. Estimates of bias O(n~%) are then given by T,,4(F) of (1.3) and
Sn.a(F) of (4.5), (4.6).

From their parametric analogs in Appendix D of Withers [27], we obtain
(see Appendix B) in the notation of (3.7)

41)  T(F) = -2/2, T(F) = [3]/3+]2°]/8 =) _AT(a%)/2,
and
T3(F) = =Y N T(a®)/2 + Y N T(a®) =) N T(a")/4

+DTNT(a?a%)/2 + D NN T(@?,67)/4 = > AN} T(a?,5%) /6
= XA T(a?, 1%, %) /48 .

For the one sample case (k = 1), these reduce to

(42) Tu(F) = -T(1%)/2,

(4.3) To(F) = T(1*)/3 + T(1%,1%)/8 — T(1%)/2,

T3(F) = —T(1%)/2 + T(13) — T(1*) /4 + 3T(1%,1%)/4 — T(12,1%) /6

(44) —T(1%,1%,1%)/48 .

Proposition 4.1. Let {N;(n), i > 0} be given functions satisfying N;(n)
/n~" — 1. Then (1.3) may be rewritten as Sy, ,(F) 4+ O(n~P), where

(4.5) Spp(F) = Z Ni(n) Si(F) .

So, Snyp(ﬁ) is a p'M order estimate of T(F).

Suppose now that it is known that there exists an UE and that it has the
form Sn,p(ﬁ). Then this gives a method of obtaining it. For example, if k =1
and T(F) is a polynomial of degree p in F (for example, a product of moments
or cumulants of total degree p), then the UE of T(F) has the form (4.5) with

(4.6) Ni(n) =1/(n—1);,

where (r); = rl/(r —i)! =r(r —1)---(r —i+1). In this case, {S;} are given in
terms of {T;} by equation (2.17.2) of Withers [27]:

So=T, Si=T1, Se=Tr—-T1, S3=T3-3T>+21T1,
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If k =1 and we choose N;(n) as in (4.6), then S; is generally a simpler expression
than T;:

So(F) = T(F), Si(F)=-T(1%)/2,
(4.7)  So(F) = T(1%)/3 + T(1%,1%)/8 ,
(4.8)  S3(F) = —T(1%)/4 +3T(1%,1%)/8 — T(1%,1%)/6 — T(1%,12,1%)/48 .
Ifk#1,

So(F) = T(F),  Si(F)=T(F)  of (42),

So(F) = To(F) = To(F) = [3]/3 + |2°|/8 + D> _(Aa—A2) T(a®)/2 ,

and so on.

For p > 1, set ep (T, F) =T,,(F) of (1.3) and let {U;(F)} be smooth.
Then a p'* order estimate of

Un(F) =Y n " Ui(F)
1=0
is
(4.9) Ulnp(F) = n7lenp (U, F) .
=0

Let #,(X) denote any 7" order cumulant of X, any ¢ x1 random vector. Then
n!'="k,(T(F)) can be expanded in the form (4.9); a method of obtaining {U;} is
illustrated in Section 6 for the case r = 2.

Proposition 4.2. ET(ﬁ) may be infinite or may not exist. For example,
this is the case if k = s =1, T(F) = u(F)~!, I > 1 and F has positive density at
zero, or F(x) approaches zero too slowly as x — 0. So, page 356 in Quenouille [16]
is wrong in gjvjngy_1 finite bias for X ~ N (2,1). In such cases, our method may
be salvaged provided we know an upper bound for |T(F)|, say |T(F)| < u < oo.
By large deviation theory P(|T(ﬁ)\ >u) =O(exp(—n))), where A > 0. Typically,
Tvmp(ﬁ) is a p™ order estimate of T(F'), where

- { T p(F), if |T(F)| <u,

4.10 Tho(F) =
( ) »(F) c, otherwise ,

and c is any finite constant, for example, u.
The estimates (4.5) and (4.9) can be adapted similarly, to give gnp(ﬁ) and

ﬁg,p(F) say. Similarly, if U, (F) is the formal expansion of n' 'k, (T (F))
then

U;q(ﬁ) I(|T(ﬁ)] <u) is a ¢ order estimate of n" e, (Tnp(ﬁ))

even if K, (T(ﬁ)) is not finite. For example, the variances in equations (10.17)—
(10.20) of Kendall and Stuart [15] are infinite if the density at zero is positive.



242 C.S. Withers and S. Nadarajah

An alternative estimate of bias O(n*p) is T,5 (Z?) = an(ﬁ), where ¢ < p
is the maximum integer such that {n_l T;(F ) 0<i< q} decreases in absolute
value. This may be useful if T}, ,(F) diverges. Note that St (F) and Tgfp( F)
may be defined analogously from (4.5) and (4.10).

5. EXAMPLES

Example 5.1. Suppose k=1, X~F on R* and T(F) = g(u), where
p = p(F) = EX has dimension s; = s and g is a function with finite deriva-
tives at p. By the chain rule (A.6) or (A.7) of Appendix A,

TF(X17'..,XT) = gj17"~7j7‘ :U’j1,X1"'er,xT ,
where

are the partial derivatives of g(u) with respect to p, and summation of the
repeated indices ji, ..., jr over their range 1, ..., s is implicit. So,

T(1i171i2>“') = Gj,.. Jig k1seskig e ,U[]l,- ‘7j’i1] /J’[klv"'ak"iz] B
where

(5.1) ulit, ool = / (5, — ) -+ (2o — pija) AF (%) |

the joint central moment. So,

T(1%) = gi; pli, ] ngw i +2 ) gijulij]
1<i<j<s

T(1%) = gijk H[Zvjvk] 7

(1) = gijkd i g, k. 1]

(12a 12) = Gj1,42,k1,k2 :U*[jla]é] H[khk?} )

i I

(12,1%) = g jkim pli, §] plk,l,m]
T(12,1%,1%) = g; jpmm plis ) plk, 1] plm,n] .
So, by (4.2)-(4.4)
T(F) = =Cy = —gij pli,jl/2,
To(F) = —gij plir /2 + gijn pli 3 K1/3 + G plis 5] plk, 11/8
T5(F) = —gi;j pli,j1/2 + gigwk plis 3, k] = gije {M[i’j’ 1) = 3 pli, J] “[k’”}/4
= ikt pli 3] plk, 1) 6 = gijkamn plis 5] plk, 1) plm,n] /48 .

A p*" order estimate of T'(F) is now given in terms of these by Tmp(ﬁ) of (1.3).
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Example 5.2. Consider Example 5.1 with g(p) = &’u/B'n = N/ D, say,
where o, 3 are given s-vectors. Its i*® order partial derivative with respect to p
is

(5.2) Gjroge = (1) = 1) D_izfsjl Bz Bii
where

(5.3) 6 = a; — B T(F)

and

m
D ityesim = Fitysim & Fizysimis + 7+ Fimitiims -

N

(1Z) = (_1)i_1 il D_i(sjl ﬁ]2/8_71 M[jla 7]1] )

(12,1%) = —4LD™6;, B, By, Bjy ulin, g2 plis. gal

(127 13) = 4! D75{2 5j1/5j1 +3 5j3//8j3} ﬂjf”/gjs M[jth] ﬂ[j37j47j5] )
T(1%,1%,1%) = —6!.D"%8, B+ By plin, 52) s, ga] pljs, del -

In particular, for g(p) = p1/u2 (the ratio of means for one bivariate sample),
T) = (-1 it g {1, 27 = T(F) 2]}

T(12,12) = —4t " {ul1,2) ul2%] - T(F) ul22},

N

N

T(1%1%) = 41 g™ {201, 2] pf2) + 3 2] w1, 2%] = 5 T(F) uf2%] 2]}

T(12,12,1%) = =61 1i3° { ul1, 2] = T(F) u[2%] } ul2%2,

S1(F) = Ti(F) = =C1 = uz{pul1,2] - T(F) ul2?]},
To(F) = 2015° {ul1,2%] = T(F) 2]} = Tu(F) {1+ 31052 ul2%]}
S(F) is the same as To(F) with ‘1 +* deleted,
Ty(F) = 3 {ul1, 2] = T(F) 2]} {1 = 18 i3 2u[2%) = 8 g l2%] + 15 3 [2%2 |
605 {ul1,2%] = T(F) 2]} {1 = 25212}
+6 3 {1, 2%) = T(F) ul2']}
and
Ss(F) = uz{ul1, 2 = T(F) uf2%] } { =9 u5u[2%] = 8 i3 wl2%] + 15 3 ul2?}
— 1205 {ul1, 2% = T(F) u[2%] } pu[2?]

+6 3" {1, 2%) = T(F) ul2')}



244 C.S. Withers and S. Nadarajah

Example 5.3. Consider Example 5.1 with g(p) = (a’u)? = NP, say,
where a is a given s-vector. The i*" order partial derivative of g(u) with re-
spect to p is

Gjrregi = (D)i NP gy 0y

Set ,
agy = N gy aj; plj, o, il -
Then
T(1') = (p)i NPagy ,
T(1%,1%) = (p)a NPy
T(1%,1%) = (p)s NP ap ag)
(

T\(F) = —=C1 = —(p)2 NP a9 /2,

To(F) = Np{—(p)z 2)/2 + (P)s 3)/3 + (P)a 04%2)/8} ,

T5(F) = N*{=(p)2 () /2 + (p)s s) — (0)a [oa) — Bay] /4
~ (D)5 (2 a(3)/6 — (P)s 0y 48} -

In particular, for a univariate sample (s = 1) with central moments {u,}
and g(un) = pP,

Si(F) = Ti(F) = —(p)2 " p2/2 ,

To(F) = —(p)2 P2 pa/2 + Sa(F)

So(F) = (p)s PP us/3+ (p)ap’*13/8

T3(F) = p)wp u2/2 4 (p)3 PP s — (P)a pP~* (1a — 3 1u3) /4

—(
—(P)s PP p3 12 /6 — (p)o 1P~ O pu3 /48

and

S3(F) = =()ap? ™ (2pa = 313) /8 — (p)s 1z piz/6 — (p) 113 /48 .
In particular, for p a positive integer, by Proposition 4.1, an UE for pP is

p—1

> Si(F)/(n—1);

=0
where So(F') = pP, and
forp=2: Si(F)=—p2,
for p=3: S1(F)=-3puuz, So(F)=2us,
for p=4: Si(F)=—6p’p2, So(F)=8puus+3pu3, S3(F)=—6us+9uj.

These results may be checked by by solving the system of equations given by page 5
in Wishart [23]. For p =4 the system has seven equations. Alternatively, one
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may follow the method of Section 12.22 of Stuart and Ord [19] using their tables
of the symmetric functions. For example, after some labor one obtains for p = 4

the UE T, (F), where
(n—1)3T,(F) = (N3 —8n%+23n — 30) my — n(n2 —Tn+4) mgm

- n(n2 —6n—|—6) ms + nQ(n—9) mam? + n¥mi
where m; = EX'. Clearly, our method gives a much simpler form.

For p = —1, that is T(F) = u~ !, the above gives

p—1

Snp(F) = Si(F)/(n—1);

=0
where
So(F)=p™",  Si(F)=—ppg,
So(F) = —2p ps+3pu"p3
S3(F) = =3p~"(2pa—3p3) + 20 Opgpe — 150~ i3,

so setting v, = p-p~", s; = S;(F)/T(F) is given by

S1 = —72,
S9 = —273—1-3722 ,
s3=—3(274—313) +20y372 — 1575 .

Some simulations estimating the bias of gm(ﬁ) of (4.5), (4.6) and Proposition 4.2
with ¢ = 1/u = p/10 for 1 <i < 4, for u~!, are given in Table 1. The estimates
present bias even for n = 100 and bias-corrected estimates of order n=2 (i.e. p = 2):
see Appendix C.

Table 1: Relative bias of gﬂp(ﬁ) for T(F) = p~! estimated from
two runs of 5000 simulations.

n=10 n = 100
p=1 p=2 p=1 p=2

Run1 0.0773  —0.0242 0.0089 0.0013
Run 2 0.0916  —0.0092 0.0087 0.0011

Norm (1/2,1)

Run1 —0.0780 —0.0105 | —0.0149 —0.0094

Norm (1,1) Run2 | —0.0660 —0.0040 | —0.0141  —0.0087
Norm (2.1) Runl | 0.0208 —0.0048 | —0.0046 —0.0070
orm {2, Run 2 0.0202 —0.0056 | —0.0056 —0.0078
Runl | 0.1096  0.0120 | 0.0052 —0.0045

Exp (1)

Run 2 0.1062 0.0184 0.0062 —0.0035
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Example 5.1 estimated a smooth function of the mean of one multivariate
distribution. We now estimate a smooth function of the means of k univariate
distributions.

Example 5.4. Suppose we have k univariate samples (that is s; =--- =
s, =1) with T(F) = g(u), where now p = (u(F1), ..., p(Fy)). That is, T(F) is a
function of the means of k£ univariate samples. Then

T A1y ey Qp \
F - gala---7ar lu’alﬂjl e /’Larvxr ’
Llyeeey LTp

where g--- is the partial derivative with respect to p and
faw = pr,(2) = & — p(Fa) = & — i -
So,
T(a', V) = Gaip,... pila] 0] -

where
pla] = pi(Fa) = [ (@ = ) dFuo)
the i*® central moment of F,. So, for \, of (3.2),

Cl - Z)\aga,au2[a]/2 ;

Cy = Z )\Z Ga,a,a 143 [CL]/G + Z Aa b Ya,a,bb 12 [CL] :u2[b]/8 )
a a,b

C'3 = Z Ai Ja,a,a,a {/1,4 [a] -3 2 [a]2}/24
+ Z >\a )‘13 Ya,a,b,b,b 12 [CL] M3 [b]/12 + Z >\a )\b )‘c Ga,a,b,b,c,c ,U/[a] H2 [b] H2 [C]/48 5

TV(F) = -Cy,
TQ(F) = Z AZ Ya,a,a 13 [a]/?’ + Z Ao Ab Ya,a,bb K1 [CL] M2 [b]/8 - Z AZ a,a 12 [a]/2 )

T3(F) = =Y A} Gaap2[a)/2 + > A2 gaaa psla]
- Z /\2 ga,a,a,a {M4 [a]/4 + NQ[G]2/2}
+ N2 N Gaabs H2lal pa[b]/4 =D " Aa AR Ga,abbs Hala) p3]b] /6
- Z Aa b Ae Ga,a,b,b,c,c ,UZ[OJ] ,UZ[b] H2 [C]/48 .
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Example 5.5. Consider Example 5.4 with g(p) = &’u/B'u = N/ D, say,
where a and 3 are given k-vectors. Set

Yo = @a/Ba = T(F) ,

Ajpg = D_MZ)\?kl_lﬁguk(a)l% ,
a

Bigy ={Airi} at =1,

A = Aok

By = Bog,1 -
Then, by (5.2),

C'1 = _A2 ;
Cy = A3 —6A5By s
Cs _A4+3A072,2+6A2B3+9A3.BQ—15A2B§ ,

Ti(F) = A, ,
TQ(F) = 2A3 — 3A2B2 + A1,2,1a

T3(F) = Ago1 —9A131 —3A3+6A4 — 124022 —3A121B2 —3A42B1 21
—8A9B3 — 12 A3By + 15A2B% .

In particular, for g(p) = u1/pe (the ratio of means for two univariate samples),
setting vy, = py " juk[2], we obtain

C1 = Xavopun/pa
Cy = M\ (—V3 +6V22) w1/ e
Cs = )\3(1/4—31/3— 151/2V3—|—15V23) w1/ pe

Ti(F) = =Asva 1 /pe2
TQ(F) = A%(—ZV;; — 9 +3V§) ,ul/,ug s
T3(F) = )\g(—61/4 —6uz — vy — 1503 +20w310 + 181/22) pi/pe

This may also be derived from (5.2).

Central moments and functions of them may be viewed as functions of
noncentral moments and so dealt with using Examples 5.1 and 5.4. However, it
is much more convenient to deal with them directly in terms of the derivatives of
the central moments. We now give these.
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Example 5.6. One univariate sample (that is k = s; = 1) with T'(F) =
pr(F) = ., the 7P central moment of X~ F. Let y = u(F) denote the mean of F.
Recall that (r); = r!/(r —i)! and set h; = pgy, = x; — p. The general derivative of
pr (F) is

Txl,...,mp = ,LI‘T,F('rl? -"axp)
(5.4)

p p
= (=1 {(r)p Hr—p — (T)p—l Z(h;_p — Mr—p+1 hi_l)} hj .
=1 j=1
For example,

Ty = =7 pr—1pig + M; - Hr

2
Tay = (ate-atny — 3 (7 = pret) i

z,Y 3
T%ZLZ = _(T)3 M —3 fog [y Jz + (T)Q Z (M?Q - NT—Q) My bz -

x7y7Z

These basic building blocks are written out more explicitly up to » = 6 in Ap-
pendix D. Setting ¢ = i1 4 i + ---, this gives

(e.0)
:U’T’(l“v 12, ) = (_1)q (T‘)q Hr—q H Hi;
(5.5) —(Mg-1 Y ir(pr—qriy — tr—qirptis—1) [ ] i,
I=1 GAI

0, if g>r,

(71)74_1(7’71)! H:uijv if q=rT.
j=1

For example,

=
3
—
S
~—
I

(r)2 pr—2 ft2 — 27 iy

Substituting into the expressions of (3.3)—(3.5) for the coefficient C; of n=% in the
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~

expansion of Fpu,(F') gives
(5.12) Ti(F) = =C1 = 1y — (1)2 pr—2p2/2
Coy = (M)apr/2 = (r)2(r—1) prr—op2/2 — (r)3 pr—3p13/6
+(r)apr—api3/8
()3 pr /6 + (r)3 (r —1) pr—2 2 /4 + (r)3 (r —2) pr—3 p13/6
(r)a pr—a(pa = 3(r=1) pi3) /24 — (r)5 pir—5 3 2/ 12
()6 pr—6 113/48
Cy = (r)apr/24 = (r)a(r=7) pr—2p2/12 — (r)6 pr—313/2
+ pr—a {=(r)a(r—3) pa/24 + (r)4 (r* —3r —8) i3 /16}
+ prr—5{—(r)5 15/120 + (r)6 (r — 2) p3 p2/12}
+ (e tir— (pa pia /48 + 13 /72 — v a3 /48) — (r)7 pir—7 13 p15,/48
+ (r)s pr—s 13 /384 .
Substituting into the expressions of (4.3)-(4.4) for the coefficient Tl(ﬁ) of n=% in
the expansion for the UE of p,(F') gives

To(F) = r?py — (r® = r) oo pi2/2 — (r)3 ttr—g p3/3 + (r)a pr—api3/8

(5.13)

C3 = —
+(r
+

r

and
T3(F) = r°pr — (' = ) pr—a pio/2 — (r)3(r+3) pr—3.13/3
+ (r)a pr—a{—2ps + (r+6)u3}/8
+ (r)s pir—s p3 p2/6 — ()6 pir—g 113 /48 .
Similarly, from (4.7) and (4.8),
So(F) = (r)a pir — 72(r =1) prr—g /2 — (r)3 pir—3 iz /3 + (r)a pr—a /8
and
S3(F) = (r)spr —7(7)3 pr—2p2/2 — 7 (r)3 pr—3 p13/3

— (r)a pr—apia/A+ (47 —9) (r)a pr—a p3/8 + (r)s pir—5 3 p12/6
— ()6 pir—o 113 /48 .

Now from page 6 in James [14] the UE for u, has the form

s r—1
(5.14) l, = {Zaw(ﬁ)n_’}/ H(l—z/n)
=0 =1

for » =2s or 2s+1, which can be recovered from {7, i < s} as in Proposition 4.1.
So, the above {7}, i <3} provide UEs for u, for r < 7. These were given for r < 6
on page 6 in James [14] and agree with our results.

For example, for ps, T(1%2) = —2uz, so Si(F) = 3us and T(1%) = 12 3,
T(12,12) = 0, so So(F) = 43 and so the UE of ps is

ps(F) {143/(n—1) +4/(n—1)3} = ps(F) {(1—n"")(1—2n")} "
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For r = 7, we obtain in this way {a;7 = a;7(F)} of (5.14) as

ap;7 = M7 , a7 = —7(2up7 +3psp2)
as7 = T(11 pr + 39 ps o — 10 praprz + 15 M3M%) ,
asy = —T(28 pr + 192 p5 prp — 80 pua ju3 + 60 pu3 13)

Example 5.7. One univariate sample (that is k = s; = 1) with T'(F) =
. Q/Lp] for {p;} arbitrary and {p;} as in Example 5.6. Set S;(u) = p; and
g(S) = H Sp 7. The ordinary partial derivatives of ¢(S) are

9 = pip; ' T(F), 9ij = pi(pj — 6ij) (mipy) ' T(F) ,
Gijk = Pi(pj — 6i) Pk — Oip — Ojuk) (i p) " T(F)

and so on, where d; ; = 1 if i = j and 0 otherwise. Set

(0] = [hira®) () - dF ()

So, [¢] = pi(1%) of (5.5) and by (5.4), and

7
1,1 . .
[”} = a1 — Y1 ey i — [if
i

where fo i fitrosiim = S fir,viv 1 defined in Example 5.2.

-----

By (A.8),
—2Ty(F) = 20
(5.15) T(1?)
= T(F) {2(1,2) + (1,1) + (1*)},
where

) = pip; [Z }ul Yt

1<J
(L) = Y0 5] .
%) = Zpi[?}uil

Other terms are calculated similarly. For example, Cy, T5(F') and Sa(F') are given
by (3.6), (4.3), and (4.7) in terms of T(12), T(1%) and T'(12,12). Also by (A.9)
o (A.11)

0,5,k

_|_3sz —6ig) (i) [ 2] + ZW% H}

(5.16)
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and
T(1%,1%) = { > pi(pi = 6i) (P — Si — O) (P — 65 — S0 — Oka)
WEN
11
X (i g p )~ [kﬂ
(5.17) + > pi(pj = 0i) (P = Gi = i) (isj )~ G
.5,k
+ sz ) (pipy) " Hij + mei_l#i(P,lQ)} ;
3

where

G’i,j,k = 2 |:Zl7’]1} [z} + 4 [I,Qi,lj,Qk] ,

Hyj = 4[1,1,22] + [2} m +2[1,2:,1,2]

[12,28,1°,2, ... ] —//Mi(xa,yb)uj(wc,yd)---dF(ﬂf) dF(y) ,
so that

b
[1;1’11;7 ] = |:;'7:j"':|7
2
[1,2:,15,2] = (i)2 pi—2 Aj Ap — iZBm‘ Ay,
Jik
for
Aj = pjp1 — Juj—1p Bij = Mitj—1 — J i1 i — pi—1Hj -

By (5.4),

11,1 . .
[”k] = —ijk pi—1 pi—1 pk—1 43 + Z v) Hi—1 -1 (,uk+2 - ukuz)
- Z it (Mt — Hga1 e — M1 1) + Ptk

3
_Z,U«iﬂjJrk + 2 1 i pie

2,1 N .
[”] = —(i)2] pi—2 Hj—1 43 + ()2 pi—2 (Mj+2 — My ,uz)
+ 205 i1 (privr — pioapi2) — 20 (g — pi iy — pio1 i)

[1,1,25] = (j)2 { (=3ipi1 i1 + pitj—2 — Hitj—2) 2 + 2 ftiy1 Mjﬂ}

+ (1) (Fpim1 pj—a i3 — pj—3 piv1 p2)
2

[1,20,1,2;] = (0)2(5)2 pi-2pjops —2 Y i(j)o pipj—2p
425 (Hij—2 Mo — Hi1 fj—1 H2 + Hif;) -
Also [¢] for 2 <i <4 and p,(12,1?) are given by (5.6)—(5.11).
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Example 5.8. Consider Example 5.7 with T'(F) = pf. Then
T(2)/T(F) = p[2ur" + e[ 1]
T(1°)/T(F) = pp,’* [3} +3(p)2p,° [} + (p)w:g’[i;%ﬂ,

2
T(212)/T(F) = pi; por(121%) + (D)o e + ()3 11y G + ()it [ 1]

Example 5.9. Consider Example 5.8 with T'(F) = pb. Set 8, = pu, ,u;ﬂ.
Then

T(1?)/T(F) = —2p+(p)2(64— 1),
T(1%)/T(F) = —6(p)2(Bs— 1) + (p)3(Bs — 381 +2) ,
T(,1%)/T(F) = 12(p)2 —4(p)a (B — 1 +23) + (p)a(0s — 1)°.
So,
~T(F)/T(F) = Ci/T(F) = —=p+ (p)2(Bs - 1)/2,
Co/T(F) = (p)2(5/2 — 1) + (9)3(B6/6 — Ba — 53 +5/6) + (p)a(Bs — 1),
To(F)/T(F) = p+ (p)2(4 —554/2) + 7(}77)3(256 —9B4+7—-6p33)/6
+ (p)a(B1—1)%/8 = > (p)iAi say,

=1

S2(F)/T(F) = (p)2(7/2 = 264) + Z(p)iAi :

For p = 2 this gives T(F) = u3,

(5.18) Ci1=pa—3p3, Ti(F)=—ps+3p5,

(5.19) Cy = —2us+5us, To(F) = —5us+ 103, So(F) = —dps+ 73 .
Note that C;, Cy agree with 1(22) of page 368 in Sukhatme [20].

The UE of p3 has the form

2 R . 3

lQ,Q = (Z ai7272(F)n_l>/H(l —’L/TL) .
i=0 i—

So, {ai = ai7272(F)} are given by

ap = T(F) = u% ,

a1 = —6T(F)+ Ti(F) = —pug — 345 ,

ag = 11T(F) — 6Ty (F) + To(F) = pg+ 345 .
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We now present a second method for finding an UE of [, ¢, This method
avoids computing {7;(F)}, but derives the UE of the vector

(5.20) T(F) = {H“ > b :p} ;

that is, for all products of a given degree p, directly from their first few coefficients
{C;}. Suppose T(F') has dimension d = d,,. Then

C, = AT,
where A; is a d xd matrix of integers and Ay = I, the identity matrix. So,
a(n) T(F)

is the UE of T(F'), where
a(n) = ZAZ- nt.
=0

But this is known to have the form

p—1
(521) T(F) = B,/ T[0-i/n).
i=1
where
Bn = B,n™" ) T(F),
i=0

where B; is a d xd matrix of integers with Bg = I;. So,

[p/2] p—1
ZBisi = {H(l - zs)} a(e_l)
i=0

i=1
= {1-Dip)e+ Dofp)e* ~ -}

X {Id_A1€+ (A2 + A7)+ (A3 + A1 AL+ ArA - AD) P+ } :
where D1 (p) = (p)2/2 and Da(p) = (p)s(p —1/3)/8. So, the UE (5.21) is given
in terms of {4;, i < p/2}:

By =14,

B = —Di(p)ly — A1,

By = Dy(p)ly+ Di(p)A1 — Ay + AT,

B3 = —D3(p)lq — Da(p)A1 — Di(p) (A2 + A7) — Az + A1 As + AsA; — AT,
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and so on. The method also applies to obtaining an UE for

q q
T(F) = {uﬁol LLe: > zp},
=2 i=1

where p=p(F'). A third method (for p<8) due to Fisher [10] is given in Section 12
of Stuart and Ord [19]. Their Tables 11 and 10, pages 554-555, may be used to
verify Examples 5.8 to 5.11 after some labor.

Example 5.10. Consider Example 5.7 with T(F) = (4, u3)’. So, (5.20)
holds with p =4 and d = [p/2] = 2.

By (5.12), (5.13), for pug, C1 = —4p4 + 63 and Cy =64 — 1543, in agree-
ment with p(4) on page 368 in Sukhatme [20]. So, by (5.18), (5.19)

—4 6 6 —15
Al_(l _3> and AQ—(_2 5 )
So,

~2 —6

B1:—6:[2—A.1: <_1 _3

>, B2:1112+6A1—A2+A2:<:1))g>.

So, UEs of u4 and p2 are M4,n(ﬁ) and ,um,n(ﬁ), where

3
pap(F) = {m +(—2ps —6p3)n~" + (s + 9u§)n_2}/H(1 —i/n) ,
=1

and 3

2,20 (F) = {u% + (—pa —3p3)n !t + (u4+3ug)n—2}/ﬂ(1 —i/n) .
i=1

~

Table 2 gives the relative bias of S, ,(F') as estimated from two runs of sixty thou-
sand simulations for p < 2 and F normal and exponential. The estimates present
bias even for n = 100 and bias-corrected estimates of order n=2 (i.e. p = 2):
see Example C.3. For p = 3 the bias is zero.

Table 2: Relative bias of Smp(ﬁ) for T(F) = pg4 estimated from
two runs of 60,000 simulations.

n=>5 n =10 n = 100
Notm (0,1) Runl | —0.3584 —0.1988 | —0.1934 —0.0543 | —0.0174  0.0021
orm (T Run2 | —0.3572 —0.1947 | —0.1871 —0.0460 | —0.0206 0.0012
Runl | —0.4957 —0.2861 | —0.2831 —0.0754 | —0.0380 —0.0063
Exp (1)

Run2 | —0.4943 —0.2851 | —0.2964 —0.0923 | —0.0399 —0.0082
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Example 5.11. Consider Example 5.7 with T(F) = (us5, usu2)’. So, (5.20)
holds with p =5 and d = [p/2] = 2.

By (5.12), (5.13) for ps, C1 = =5 us + 10pu3p and Cy = 10 us — 50 310, in
agreement with 1(5) of page 368 in Sukhatme [20]. By (5.15)—(5.17), for pous,

T(1%) = 2ps5 — 16pgpz ,  T(1%) = —24ps5 + T2p3pe ,  T(1%,1%) = 96 ugps

giving C1 = us — 8usue and Cy = —4pus + 24 psps. So,

-5 10 10 —50
A1— < 1 —8) and A2— <_4 24 >
So,

-5 —10

B = —10I,~A; = (_1 L

10 20
), By =35I, +10A; — Ay + A7 = ( L s )

~

That is, UEs of pus and pspus are ps ,(F), and u3,27n(ﬁ), where

4
pisn(F) = {u5+(—5u5—10u3u2)n1+(10u5+20u3u2)n2}/H(1—i/n)
=1

and
4

p32n(F) = {H3M2+ (—ps —2ppz) nt+ (1154 5 pgpiz) n_Q}/H(l —i/n).
i=1

Example 5.12. Suppose k = s; = 1 and T(F) = g(u2). Set ¢" = g (uz),
and 3, = Mru;r/g. Then
po = pp(z) =x—p, poe=por() = pi—pe, oy = p2,r(T,Y) = —2 iy
by (5.4). By (A.8),
2] = T(1%) = g®p22(1,1) + g p2(1%)
where
p22(1,1) = /:U'%,:v = /u%,x dF(z) = pa — i3 ,
pa(1%) = /M2,z,a: = —2pu2 by (5.6) .
Similarly, by (A.9) to (A.11) and (A.15),
T(1?) = ¢’ p222(1,1,1) + 3¢ p22(1,1%) + g' 2 (1%)
T(1*Y) = g'p2222(1,1,1,1) + 6% u200(1,1,1%)

+ 92{4,&2,2(17 1%) + 3p22(17, 12)}
+ g (1Y)
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T(1%,1%) = g*ua(1,1)* + 93{2;@,2(1, 1) p2(1%) + 4pg.92(ab, a, b)}
+ g' p2(a’b?)
+ 92{4@2(@, ab?®) + p12(12)% + 213 2 (ab, ab)} at a=b=1

4

_ i

= § gai say,
i=2

T(1%,1%) = g°As+ g"'As + ¢°As |
and by (A.16)

6
T(1*,1%,1%) =) ¢'Bi,
where =3
:u2,272(17 17 1) = /M%@ = M6 — 3M4M2 + 2:“’% ,
pi22(1,1%) = /M2,x#2,x,x = —2(pa — 13)
/1'2(13) = /HZx,x,x =0,
p2222(1,1,1,1) = /ué‘,x = pg — dpgpz + 6puap3 — 33
20N 2 _ 3
pop22(1,1,1%) = /Mz,xm,x,x = —2(ue — 2pap + )
M2,2(1713) = :LL2(14) =0,
u272(12’12) = /M%,x,x = 4dpq,
,U2,2(aaab2)a:b:1 = /M2,:Jcﬂ2,a:,y,y =0,
p2,2,2(ab,a,b)g—p=1 = //M2,x,yM2,xM2,y = —243 ,
_ 2 4.2
/’LQ,Q(aba ab)a:b:l - /M2,x,y - 4:“2 ’
M2(a2b2>a:b=l = /,UQ,x,r,y,y =0 )
2
as = 1243, a3 = —4(paps — pd +203) . as = (pa—p3)",
and

Az = 6u2,272(a, ab, b2) + 3/12(&2),[1,2,2(6, b2) + 6#27272(1), ab, ab) at a=b=1
= 3// 2M27IM27$7yM27y7y +M27yu21y7yu21'7:7$ + 2/1’2&“%,1,1/}
= // — o) pops + 12 () uz)uxuy}

12 {2u3 + 3 (paps — u%)}

— 12,3 {28} +361 - 3} ,
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Ay

As

Bs

By

Bs

Bg

So,

Co
C3

// {NQ,x,a:Mg,y + GMQ,m,yN%,y + 3“2,y,yﬂ2,yﬂ%,x}

—2 // {ui (12 = p12)” + 6 propay (12 — p12) (12 — ppa)”

+ 34 (12 — o) ” (2 — Mz)}

—2 {uz (16 — Bpape +2p3) + 63 (15 — 2pzp2) + 3 (pa — u§)2}

— 243 {85 — 381+ 2+ 60(8 — 26) +3(8 - 1)} ,

[[2e0s = [ =10 [

(14— 13) (16 — Bpap + 2413)

3 (B —1) (B — 36 +2)

Bé»]'yk at {a:b:C:LS:M}

/// {M271',$/'L27y7y#27272 + 6“1%"0”%,%2 + 8#2,m7yﬂ2,y,zﬂ2,2,m}
—120433

B gt {a=b=c=1,8= )}

k /// {N%,:CMZ,y,yMZ,z,Z + 2/‘%@“3,%2 +dhgalizyboeybe.z z
+ 8#2,mﬂ2,yﬂ2,x,zﬂ2,y,z}

36 {(u4 — 1315+ 4u§u2}

368 {h—1+403} .

3///{”2,90@”%@; + M2,x,yﬂ2,xﬂ27y} /Jf%,z

-6 {M2(M4 — ) + /‘g} (s = 153)

—6u3 {B—1+ 83} (51— 1) .

///u%,w%,yuiz = (ma—3)” = u§(Bs—1)°.

—gtps + g% (s — 13) /2 ,

G (513/2 — pa) + g°(16/6 — 13 — papin +503/6) + g* (na — 13)%/8

9*na/2 + g*(—pe/2 + Apapin + 23 — 6113)

257

+ g* (18/24 — pepa/3 — psps — p3/2 + 5 paps/2 + 5 pzps — 41u5/24)

+ 0% (1a — 13) (26 — puapir — 33 + 7p3) /24 + 68 (s — 13)° /48
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Ti(F) = S1(F) = —¢*(pa — 113) /2 + 9" 2,
2
To(F) = g* (s — p3)" /8 + g° (16/3 — 13 — Buapin/2 + 7143 /6)
+ 9% (=Bpa/2+443) + 92
6
T53(F) = ZgiT&i ;
i—1
2
So(F) = g*(ta — p3)" /8 + g° (16/3 — 13 — Bpapz/2 + 713 /6)
+9°(—2pa + Tp3/2)
6
S3(F) = 29153,1' ;
i—2
where
Sso = —3pa +9p3/2
S = 3 — 27 puapz/2 — Tus + 13113
S34 = —pig/4 + dpgpa/3 + 2psps + 1105 /8 — 6 paps — Tpzpe + 85u5/24 |
Ss5 = (s — p3) (—4pe + 15puapo + 35 — 1143) /24
S36 —Bg/48 ,
T31 = po,
T2 = —19us/2 +3113/2 ,
Ts3 = 4pue — 18ugps + 3313/2 — 1043
Tsy = —ps/4+ dpepa/3 + 2psps + 75 /4 — 27 paps /4 — Tudps + 47 5/12
T35 = (pa — p3) (—4pe + 15 paps + 3p3 — 1143) /24
T3’6 —36/48 .
Example 5.13. Consider Example 5.12 with T'(F) = pd. Then
= (q)i M2 )
T(12)/u% (@)2(Bs—1) —2q,
T(1%)/pg = (a)3(Bs —3Ba+2) —6(q)2 (81— 1) ,
T(1Y)/ud = (9)a(Bs —4Bs+681—3) —12(q)3 (Bs — 281+ 1) +12(q)284 ,
T(12,12) /% = (q)a (81 — 1) — 4(q)3 (B — 1 +23) + 12(q)2
T(1%,1°) /3 = 12(q)3 (23 + 381 — 3)
—2(q)s {0 — 301 +2+655(85 — 26) +3 (01— 1)}
+(q)5 (81— 1) (Bs —36s +2) ,
T(12,1%,1%) /u§ = —120(q)3 + 36 (q)a (Ba — 1+ 433)

)
—6(q)5 (Bs — 1+ 33) (B4 — 1) + ()6 (Bs — 1)3.
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So, t; =T;(F)/T(F) and s; = S;(F)/T(F) are given by

t1=s1=—(q)2(8—1)/2+q,
ty = (q)a (61 — 1)2/8 + ()3 (B6/3 —3B4/2+7/6) + (¢)2 (=5 6s/2+4) + ¢ ,
s2 = (q)a (81 — 1)2/8d+ (9)3 (B6/3 — B5 —3B4/2+T7/6) + (q)2(—2B1+ + 7/2) ,

6 6
t3 = Z(Q)z 3 53 = Z(Q)z 53
i=1 i—2
for
t31 =1,

ts2 = (31 —1904)/2 ,

t33 = 48 — 1804 — 103 + 33/2 ,

tsa = {—30s+ 160 + 24503 — 8433 + 2137 — 81084 + 47} /12 ,

tss = s35 = (Ba—1) (=486 + 158, — 11+ 363) /24 ,

tse = s36 = —(Ba— 1)3/48,

532 = —3014+9/2,

s33 = 30 — 27P4/2+ 13— 703 ,

s34 = {—68s + 32085 — 13834+ 3337 +85}/24 — 634 — 735 + 2835 .

~

Example 5.14. Consider Example 5.13 with T'(F') = ua, so ET(F)
(1 —n~YHT(F). As a check ¢ =1 above gives T'(12) = —2us, T(13) = T(1%) =
T(12,12) =T(1%,13) =T(12,12,12) = 0,80 t; = to =t3 = 1,51 = 1, 59 = 53 = 0.

Example 5.15. Consider Example 5.13 with T(F) = ué/z =o(F) say.
Putting ¢ = 1/2 gives t; = 51 = (B4 + 3)/8, so an estimate of o(F) of bias O(n~2)
is

o(F) {1 + 0 (Ba(F) + 3)/8} ,

where B4(F) = B4 = papsy 2. To reduce the bias further use

52

(1636 + 2281 + 164 — 1537) /128 ,

s3 = (24005 + 4325 — 2503 B4 + 2817 — 16533
+ 476455 + 31537 — 5603456 -+ 420 8435 — 1920 33/35) /1024 .

Table 3 gives the relative bias of Sn,p(ﬁ ) estimated from simulations for p <2
and F' normal and exponential. The estimates present bias even for n = 100 and
bias-corrected estimates of order n=2 (i.e. p = 2): see Example C.4.
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Table 3: Relative bias of Smp(ﬁ) for T(F) =o.

n="5 n=10 n = 100
p:l p:2 p:l p=2 p:l p=2
N 01 Runl | —0.1578 —0.0265 | —0.0764 —0.0082 | 0.0281 —0.0045
orm (0,1) Run2 | —0.1592 —0.0277 | —0.0745 —0.0080 | 0.0003  0.0031
Exp (1) Runl | —0.2278 —0.1019 | —0.1251 —0.0422 | —0.0158 —0.0029
*P Run2 | —0.2331 —0.1084 | —0.1206 —0.0422 | —0.0176 —0.0004
Number of simulations/run 10,000 30,000 30,000

The usual estimator of o(F) is the sample standard deviation, s.d. =
{nug(ﬁ)/(n - 1)}1/27 with mean o {1 —tin~!' + O(n"?)}, where t§ = t; — 1/2.
So, bias {s.d.}/bias {c(F)} = A1 + O(n~1), where A; = (84 — 1)/(B4 + 3).

For the normal, exponential and gamma (), 34 =3, 9 and 3 +6~1, so
A =1/3,2/3 and (5 + 12)/(6y + 12) and the s.d. improves on o(F'), although
both are first order estimates, that is, both have bias O(n™1).

To see how Sy, 2 (F) improves on the s.d., note that bias {Smg(ﬁ)}/bias {s.d.}
= Xon~ !t +O(n2), where Ay = s9/t}. For the normal, exponential and gamma

(),
Bs = 15, 265 and 1207 2+1307 ' +15,
SO
so = 65/64, 767/32 and N(v)/64
Ao = 65/16 ~ 4.06, 767/32 ~ 24.1 and N(X)(2.5+6A7") "' /64,

where N(v) = 69072 4 788~y~! 4 65.

Example 5.16. Suppose k =s1=1, T(F)=pu/o = ,u,u;lﬁz g, ) =
say. Again set 3, = prpty /2 Then the partial derivatives of g are g1 = gy 1 2,
_ _ —3/2 o =3/2 _ -5/2 o —5/2
G11=0, g2 =—pps"7/2, 1o =—po""7/2, gao = 3ppy /4, G122 =3py " 7/4,
g222 = —15u,u2_7/2/8, and so on. Set Ui(F) = u, Us(F) = pa. Then defining
Uij..(11,17,..) as in (A.12)—(A.14),

U1 (1,1) =/Uix =/ui .

Ui2(1,1) = /Ul,:pUQ,m = /Mmlm,m = 3,

Uz2(1,1) = /U22,x = pa — i3 -
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So, by (A.21),
T(1*) = B3+ B(3Bs +1)/4

Also
Uip2(1,1,1) = /qug,x = 5 — 2p2p3
Ug2(1,1,1) = /Mg,m = 6 — 3papa + 245
Ui(1,1%) = /,U/ac,ulw,ac = —2pu3,
U1(1,1%) = /Mz,xux,x =0,
Usp(1,1%) = /M2 el2pe = —2(pa — p13)
Ui (1%) = /Mm,x,z )
Us(17) = /umm =0.

So, by (A.22)

T(1%)/3 = (385 —2033)/4 + B(—586 + 1181 —6)/8 .

Similarly, at (1,1,12), Uy 21 = 0,

Uipo = —2(us — papa) ,  Usoo = —2(ue — 2pape + p13)
Uij(1,1%) = Us(1") =0,  U12(1%1%) =0, Us(1%,1%) = 4pa ,

so by (A.23),
T(1*) = 3(=587 + 385 — 3/33)/2 + 3B (3585 — 13285 + 24234 — 97) /16 .
Alsoat a =b =1,
Uia(ab,ab) = Uy(a®h?) = Up(a®b®) = 0,  Uza(ab,ab) = / Wy = 415
Uiz2(ab,a,b) = Usa(a, ab? ) = Uia(a, ab® ) = Uz1(a, ab® ) =
Us22(ab, a,b) //sz,yumm,y = —243 .
So, by (A.24)

2
T(1%,1%) = dgi202 p3(pa — p15) + g2.2.22(pa — p3)” — 4 g1.2.2 i3 pi2
- 492,2,2{ (pa — M%),uz + 2#%} +12 g9 115

= —3(581 — 43) B3/8 + 3B(357 + 9084 + 32085 — 77) /16 .
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So,

Si(F) = T\ (F) = —f3/2— (364 +1)/8,

Sy(F) = (48035 — 153403 — 2333) /64
+ B(—80 8 + 446 B4 — 327 + 10537 + 96033) /128 .

Note that T(1%,13), T(1%,1%2,12?) and S3(F) may be calculated similarly using
(A.7).

In the one sample example above p is the mean of X ~ F'. In many cases
X; = h(Y;), where h: Rt — R*® is a given transformation and Y7, ...,Y,, ~ G on R
is the original sample. So, u(F) = [xdF(x) = [h(y)dG(y). Equivalently, we
may replace p(F) = [xdF(x) by p(F) = [h(x)dF(x), so that px = h(x) — p.
Similarly, if s =1 replace p,(F) = [(z—p)"dF(z) by [(h(z) — p) dF(z) so that
(5.4) holds with h; = hy; = h(x;) — p. A similar remark holds for several samples.

The next four examples apply this idea to return times and exceedances.

Example 5.17. Take k=1, h(x)=1(x<a) for some a in R* and
T(F)=p~!. Since p= F(a), T(F) is the return period of the event {X < a},
where X ~ F. But the case T(F) = u~! was dealt with in Example 5.3 in
terms of p,. In this instance p, = u,(Bi(1,p)), where p = F(a), so u2 = pgq,
where ¢ =1 —p, pug = pq(l —2p) and pg = pq(1 — 3pq). So, by Examples 5.6,
5.7 and Proposition 4.2 an estimate of the return period p~! of bias O(n™?) is
Spalp] = Snalp] if p>1or 171 if p< I, where 0 < I < p,

3
Snalp) = p '+ Silpl/(n—1);
i=1

and S;[p] = S;(F) is given by Si[p] =p ' —p~ 2, Sap| = —p ' +p 3, S3[p] =
2p~t4p2—2p3—pL

~

The same formula with p=1— F(a) and p =1 — F(a) gives an estimate
of bias O(n~%) for the return time of the event {X > a}. Similarly, for the event
{x € A} with p=F(A) and p = ﬁ(A) Similarly, we can apply Example 5.4
to obtain estimates of bias O(n~P) for any smooth function ¢(pi,...,px) given
independent n; p; ~ Bi(n;, p;), 1 < i < k. This problem can also be solved by the
parametric method of Withers [27].

Example 5.18. Supposek =1, X ~FonR! and T(F) = Er(X) | (X €A),
where A C R" is a measurable set, F(4) >0 and 7: R — R is a given function.
Then T(F) = 1 /p2 = u(F) /u2(F), where p;(F) = [hi(x) dF(x), h(x) =7 (x) [(x€A)
and ha(x) = I(x€A). So, {T;,Si, 1 <i<3} are given in Example 5.2 in terms
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of the moments of (5.1) in which z;, now needs to be replaced by hj,(x). Set
p=FA), q=1-p, I =/A(7“(X)—M1)idF(X) :
So, u[27] = u;(Bi(1,p)) is given for 2 < j < 4 in Example 5.17 and
pl1' 2] = Lig + (—pm)' (-p)q -
Using I; = 0 simplification yields
Sna(F) = mp {1= @7 (n=1) + ¢*p Y (n—1)2 + ¢*p*(2p ~1)/(n—1)s } .

Unlike Example 5.17, one does not need to know a lower bound for p, since p; =0
if p = 0; so, if p = 0 one interprets Sn,4(]$ ) as an arbitrary constant. This shows,
surprisingly that the bias reduction problem for T'(F') = u1/p can be treated as
a parametric problem, the parameters being (11, p). The more general problem
of T(F) = g(p1,p) does not reduce to a finite parameter problem as it involves
{[,rdF, i >1}.

Example 5.19. The conditional distribution of exceedances is
Fuz) = P(X-u<z|X—u>0)
— (Fl+u) - F@}/ {1 - Fw)

for z > 0. This is p1/pe with A = {y: y > u} = (u,00), B—{y: x+u >y >u} =
(u,z+u) and r(y) =I(y € B). So, Example 5.18 applies with p; = F(x +u) — F(u),
po =1— F(u).

(5.22)

Example 5.20. The mean conditional exceedance is

u(F) = / rdFy(z) = /s
for
» :/<x—u>+dF<x> L m=1-F(u),

where

x, if >0,
Ty =
0, if x<0.

So, 7(y) = (y — u)+ and Example 5.18 applies.

The central moments of F, of (5.22) are not covered by Example 5.18
and are probably best dealt with by writing them as functions of the noncentral
moments and applying Example 5.1 with u = {f(m —u)t dF(z), i > O}. A more
direct approach is given by the following example.
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Example 5.21. Suppose T(F) = S(F,) for F, of (5.22). Set CY(F) =
F.(y). Then

CY((1—€e)F +€8,) = Fu(y) + e Ch(x) + O(?) ,
and

T((1-e)F +ed;) = S(Fu(-) + eCi(z) + O(e?))
_l’_

_ S(F) e/SFu(y) CU(z)dy + O(?) |

where C¥%(z) = py ' T(u <z <u+y) — p1p5 21 (u < x). So,

(5.23) Tr(e) = [ Sulo) Ch@)dy = 13" Sr o).

Higher derivatives can be calculated from (5.23).

Now let us apply the previous note with s =1, ¢t = r, h(y) = a'y, where a

lies in R". Set u = EY. Then the joint central moment p;,, = E(Y — p)1 -

-+ (Y — ), is the coefficient of ay--- a,/r! in p,.(a”Y), so the same relation is true

of their derivatives. The same is also true of the cumulants. This device allows us

to derive results for multivariate moments and cumulants from their univariate
analogs.

For example, from Example 5.6, for a univariate random variable, ps(z) =
(x — p)? — p2 and po(xy,x2) = —2(x1 — p) (w2 — p). So, for a bivariate random
variable, p1 2(x) = (x—p)1 (x—p)2—pi1,2 and 1 2(x1,X2) = —2(x1—p)1 (X2 — p)2.

We illustrate this device further with the problems of estimating multivari-
ate moments and the correlation of a bivariate distribution and its square.

Example 5.22. Suppose k=1, s =2 and T(F') = p; 2. From Example 5.6
and the previous remark, an UE of ;9 is p12/(1 —n~ Dyat F= F.

Similarly, we have

Example 5.23. Suppose k=1, s =3 and T(F) = p1123. An UE of p1 23
is p1os/{(1—n"1)(1—2n"2)}at F=F.

Example 5.24. Suppose k =1, s =2, and T(F) = m,g{ul,lug,g}_l/z,
the correlation of a bivariate sample. So, (A.1) of Appendix A holds with
S(F) = (p1,2, 11, ft22) and g(S) = S1(S2595)~1/2. We shall apply (A.8). Set
Vm, = i, (piipj; - N2 So, T(F) =1 2. Now S1(1%) = [S1xx = —2 1.2,
S2(12) = [ Soxx = —2 1,1 and S3(12) = [ S5xx = —2 p22. Also g1 = (p1,1 f12,2)” 1/2,
g2 = —1/1’2/,[“71, g3 = —U1 Q/MQ 2. So, ¢;95; (12) T(F) ( 241+ ].) = 0. Simi-
larly, Sl,x = (X — [,1,)1( [1,)2 — M1,2, SO Sl 1 1 1 fSl x — M1,122 — u%g, and
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similarly S12(1,1) = p1,1,1,2— p1, 1M1 2, 51.3(1,1) = p1222—p12 42,2, S22(1,1) =
10,0 — 3 1, S33(1,1) = p2222—p5 9, and Sa3(1,1) = p1122— 1,1 p22. SO, an
estimate of bias O(n=2) is T(F)—T(1%)/(2n) or T(F)—T(1?)/(2n—2) at F = F,
where by (A.8), T(12) = 112(3v1,1,11 + 312222 + 2v1,122) /4 — V1112 — V1222

Example 5.25. Suppose k=1, s =2 and T(F) = pj Q{Ml Lp2a} t=17 25
the square of the correlation of a bivariate sample. Again (A. 1) holds with S(F') =
(11,2, 11,1, pi2.2) but now g(S) = 57(5293) 7%, s0 g1 =2T(F) S, go=—T(F)5; ",
g3 = —T(F) S‘;l, Gii= 2 T(F) S;Z, g12= —2 T(F) (5152)_1, g1,3= —2 T(F) (5183)_1,
and go.3 = T(F)(S253) 1. Again ¢;5;(12) = T(F)(—4+2+2) = 0. So, an estimate
of bias O(n2) is T(F) — T(12)/(2n) or T(F) —T(12)/(2n —2) at F = F, where
by (A.8), T(1?) =2 V12,2(V1,1,1,1 + 199990+ 2V1122 — 201112 —2V1,22,2)-

6. ESTIMATING COVARIANCES OF ESTIMATES

In this section, we give an estimate of bias O(n=3) for V,,(F), the covariance
of T(F'), where now T(F') is a ¢x1 vector with components {T*(F'), 1 < a < q}.
After Example 6.1, we estimate the covariance of more general estimates of T(F).

From the formulas for {K' 1 on pages 66 and 67 in Withers [24],
(6.1) VaA(F) = covar(T*(F) Zn K&A(F)

where

KPAE) = ks = Yo, [ [13(2) T2(5) diateon)

(6.2) = Z)\aTa’ﬁ(a, a),
K$P(F) = 22:75“ IRk /2 4 <Zt”ktl + 1010 >k”k“/2
-3 A i/STg(M) Tﬁ( )d/ia(x Y, 2)/2
3 b / {ZTF(JZ;Z) (%)
(6.3)

+ TF< “b> Tﬁ(“ b) } dke(w, z) dky(y, 2)/2
= Z)\a ZTQ’ﬁ(aQ,a)/2
2
+> Ak {Z T%P(a®b,b) + T*(ab, ab) } /2
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2
Zfa,ﬁ = fa,ﬁ+fﬁ,a7

o a,0) = [T3(2)TH(4) dFu(a)

(6.4) 782, q) = / TF(M)Tﬁ( )dF( ),

(6.5) e = [[13(32) () dFu(o) dFity)
and

(6.6) TP (ab, ab) //TF ab Tﬁ ab dF( ) dFy(y) .

Also, setting V43(F) = K} » (F) and differentiating, we have

Vﬁ’ﬂ(é‘é)/ka = TF< )Tﬁ( ) T7°%a,a +Z/TF aa Tﬁ dF( ),

and
ved(se) e = 3 | {e(es) - 7a(e) pri(s) + me(es) 7i(e)
- [re(e)Ti(s) aratw) + [7(e) 12(25) aBaw

+ [{r(as) - 72(25) b i5) am |

so that

CL (VP F) = > AV (a?

=3 Z{T“ﬁa a) + T%(a2b, b)/z}

+ 2T%P(ab, ab) — T*?(a, a)

b=a

So, nﬁleﬂ(ﬁ) given by (6.2) estimates V;>*(F) with bias O(n~2) and nﬁle’ﬁ(ﬁ)
+ n 2L*A(F) estimates V;(F) with bias O(n™3), where

LH(F) = K3*O(F) = C1(VP, F)
2
=Y (Aa—22) > T*%(d? a)/2
2
+ ) Ay {Z T%B(a?b, b) + TP(ab, ab) } /2

2
-> N {Z T°%a?b,b) /2 + 2T%(ab, ab) — T*(a, a)}

b=a
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If k =1 this reduces to

(6.7) LYB(F) = T%P(a,a) — 3T%"(ab, ab)/2

at a =b =1, so that

(6.8) (n—1)"tT%(a,a) — 3n"2T%P(ab, ab) /2

at {F:ﬁ, a=b=1} estimates V&P(F) with bias O(n~3), where at a = b =1,

7°%a,0) = [T3) Tw)dF (@)
and

T ab,ab) = [ [ T(a) T(e.) AP (@) dF ()

One may prefer to use n=* —n~2 instead of (n—1)"! in (6.8). Remarkably, unlike
the case k > 1, the estimate (6.8) does not depend on T%%(a?, a) or T%P(a2b,b)
ata=0=1

We now show how to estimate
(6.9) W, (F) = covar T,)(F) ,

where

T(n) = infiTi
=0

~

is ¢x1 and To = T. Clearly, T, (F) estimates T(F'). Now
W, (F) = ) n "I W, (T, T;)
1,j=0
where

~

W,,(T;, T;) = covar(T;(F), T;(

=)

has («, 3) element
Wnaﬂ(TiaTj) = Wn(T’za’TY]ﬂ) =V,

of (6.1) with (T, T?) = (T¢, T)). So,

Wel(F) =3 n ' KMPF)
=1

where

EMPIF) = Y Kn(T2,T))
i+jtk=l
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and

Ki(TY,T?) = K;*(F) of (6.1).
So,

K{P[F] = K\ (T°,7%) = K{(F)
of (6.2), and

K3[F) = K32(F) + %7,
where
2
AP =N K (T, 1Y)

and

Ey(T,7) = KPP (F)
of (6.2) at TP=T7.

So, n 1KY ﬂ( F) and n ' K®?(F)+n"2L%3(F) estimate W’(F) with bias
O(n~2%) and O(n~3), respectively, where

(6.10) LYP[F) = KSP[F) — Ci (VP F) = LY3(F) + AP

Alternatively, for k = 1, the sum of (6.8) and n=2A%F at F = F estimates W2’ (F)
with bias O(n~?). Now for p > 2, T, , of (1.3) has the form T, of (6.9) with T}
given by (4.1), so that

T (2) = —Aa{Tﬁ(gi) - T9a?) + / T(50) dFa<y>}/2 ,

and so

KT, 1) = = 32 {17 (0%, 0) + T(a,a) } /2 |

(6.11) A% = —3 N2 Z{T‘“ﬂa a) + Taﬂ(a?b,b)} /2,

b=a

E3P[F] = > (Aa—22) ZT""B (a%h,0)/2 — Y A2 ZTQ’B (a®b, b)p—a /2
+3 Ay {Z T%P(a®b, b) + TP(ab, ab) } /2,
2
LYPIF] =) " (Aa/2-22) > T*(a?, a)
2
+D A {Z T%P(a®b,b) + T*(ab, ab)} /2

2
-Yox { > 1B (a?h,b) + 2T°F(ab, ab) — T*(a, a)}

b=a
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For k =1, at a = b =1, this gives

2
0B _Z{Taﬂ(a?,a) + TP (a®, b)}/2,
(6.12) K3°[F] = T*F(ab,ab)/2 ,

covar(T,fjp(ﬁ), Tﬁp(ﬁ)) = n 1T a,a) + n~ 2T (ab, ab) /2 + O(n~3)

which, remarkably, does not depend on T'(a?,a) or T(a?b,b) to this accuracy —
whereas L*P[F] does.

Example 6.1. Consider again Example 5.1, that is k =1, T(F) = g(u),
where now g may be a vector {g*}. By (A.17)—-(A.20) at a=b=1
Klaﬂ(F) = Ta,ﬁ(CL?a) = g?gf,u[i,j] )
T°5(ab,ab) = g2; gy, pli. K] plj, 1] ,
Taﬂ(a27 CL) = g;)j] 95 )u[Z?]’ k] 9
Taﬁ(a2b7 b) = gzo,[_y,k glﬁﬂ[ld] ,U,[k, l] )
and K$°(F), L*A(F), KSP[F), L%F[F) are given by (6.3), (6.7), (6.10), (6.11),

(6.12). Note that L** depends only on the first and second moments of F, even
though K3’ # depends on the third moments!

Example 6.2. Consider Example 6.1 with g(p) = &’u/B8'nw = N/ D, say,
— that is, Example 5.2. Since ¢ = 1 we drop suffixes «, 3. Define p[-] and §; as
in (5.1) and (5.3). Thenata=5b=1

K\(F) = T(a,a) = D™ ?uy[6,0] ,

(ab? ab) = 2/’52[57/6]2—’_2”2[575] M?[ﬂ7ﬂ] )
T(a%a) = —2D3u3[8,6,3] ,
T(a?b,b) = 2D~ *{2 a8, B + p2[6, 6] 2B, B1} ,

N

where (8, 8] = 0; B uli, j| and psle, B,v] = «; B vk plt, j, k]. In particular, for
g(p) = p1/p2, at a =b =1 setting v; ;. = p(3, J, ...) ,ui_l,uj_lm, we have

(6.13) Ki(F) = T(a,a) = (/u//m)2 (71— 2712 +722)
T(ab,ab) = 2 (p1/p2)” (V1722 — 4712922 + 275,),
(6.14) T(a* a) = —2(u1/u2)2 (V1,2 — 271,22 +72,22) 5
T(a?b,b) = 2(u1/p2)” (2932 — 5112722 + 3932 + 711 722) -

Note that (6.13) is in agreement with equation (10.17) of Kendall and Stuart [15].
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Example 6.3. Consider Example 6.1 with g(u) = NP, where N = o/p,
that is, we consider Example 5.3. In the notation there, with a = b =1

K\(F) = T(a,a) = PP N o) ,
2
T (ab,ab) = pQ(p— 1) N2pa%2) ,
T(a*a) =p*(p—1) N’ ,
T(a?b,b) = (p)spN*ad,,
In particular, for s = 1 and g(u) = pP, witha=5b=1

_ 2 _
T(a,a) = p° 2 py ., T(ab,ab) = p*(p— 1) ™ *pj
b,

T(a?,a) = p*(p— 1) p®2us,  T(a®b,b) = (p)spp® 13 .

For example, var{fi '} or (if Proposition 4.2 needs to be applied), var{z —I(|fi| >1)},
where [ > 0 is a known lower bound for |u|, can be estimated by

~

Tz = (n—1)" i fiz — 60 2 13
or by
TooI(J >1)

with bias O(n=3), where (I, fiz) is (i, p2) at F = F. Alternatively, replacing n 2

in T, 2 by (n —1)72 and setting s> = fiy n/(n—1), the UE of us, we obtain
Tro=n"'n*s"—6n 20 %", w2 I(1>1)

as estimates with bias O(n=3).

7. ESTIMATING THE COVARIANCE OF AN ESTIMATE OF BIAS

The emphasis of this paper has been to reduce bias, not estimate it. How-
ever, a number of papers have given methods for estimating the variance of an es-
timate of bias for the case k =1. See, for example, Efron [7] and Davison et al. [6].
These papers provide bootstrap and jackknife methods of an order of magnitude
less efficient computationally than the Taylor series method (also called the delta
method or the infinitesimal jackknife when p = 2) used here.

Suppose then T(F) is a ¢ x 1 functional. Note that T/(F) has bias n B (F)/2
+ O(n=2), where B(F) = [2| = Y. A\, T(a?). Its estimate n~'B(F)/2 has covari-
ance n 2V (F)/4+ O(n™3), where

o = S fs() e -
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DL { Jre(ae)To(se) - 1) )

5 ) + e )

and dF,(z), dF,(y), dF,(z) are implicit in the integrals. Finally, n~2V(F)/4
estimates covar{n~'B(F)/2} with bias O(n™3).

The same is true if we replace B(ﬁ) by Bn,p(ﬁ). If desired, one could apply
Section 6 to reduce this bias to O(n=%).

In equation (2.6) of Davison et al. [6] and the following line a factor 1/2
should be inserted. So, the usual bootstrap and the usual jackknife estimates of
bias as well as our estimate n~'B(F)/2, all have bias O(n~2).

APPENDIX A

Here, we note and illustrate the following chain rule for the partial deriva-
tives of

(A.1) T(F) = g(S(F)) ,
where S(F') is ¢ x1 and g: R? — R.

First, suppose k =1, that is, F'is a single d.f. Givenr >1, let s(y): R"—R?
be an arbitrary function. Set 9; = 9/dy;. Then

(A.2) Tr(X1y...nXp) = almarg(s(y)) )

evaluated with s(y) replaced by S(F'), and 0;---0,s(y) replaced by Sp(x1, ..., X;).
So, setting

TI,...,T = TF(Xlu "'7X7’) )

Sit,..r = Sip(X1,..,Xp)

with 0; = 0/0s; at s = S(F'), we have

(A3) Ty =¢Si1, Ti2=9i;S152+3Si12,
3
(Ad)  Tios = gijkSi1SiaSks + gij ¥ Si12593 + gi Sin23
6
T1234 = 9ijkiSi15,253514 + Gijk Z Si15j25k3.4

4 3
+ i (Z Si1852,34 + Z Sij2 Sj,3,4> + 9i 5i1,2,34 5

(A.5)
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where summation over repeated suffixes 4, 7, ... is implicit, and by the multivariate
version of Faa de Bruno’s chain rule given in Withers [26], for r > 1,

T m(n)
(A.6) Th,.»r = Zgzlzk (S(F)) Z Z Sy S s
k=1 n

where ™™ sums over all m(n) = r!/ [T;_, (@™ n;!) partitions (my,...,mg) of
1,...,r giving distinct terms with n; of the n’s of length ¢, and ), sums over
{neN" Y7 nij=k > _ in;=r}. For example,

3
E Si12834 = 8i125j34+ 513524+ 5i145523 -

The reader can derive 1123 from 779 using equation (2.6) of Withers [25] to
appreciate the labor-saving this rule gives.

By equation [4c] of Comtet [5] the general term can be written in terms of
the multivariate exponential Bell polynomials, { B, 1 (S)i,....q\ }:

'
(A.7) Ty, , = Zguzk Bk (S)ir,..ix -
k=1

This is a much easier form to use than (A.6) as these polynomials are immedi-
ately derived from the univariate polynomials By, (S) tabled on pages 307-308 of
Comtet [5]. For example, the table gives

By 1(S) = Sy,

Byo(S) = 48153 +3853,
By3(S) = 6575,
Bua(8) = S,

SO
By1(S)i, = Siy1234

4 3
By2(S)iy i = E Siy18iy234 + E Si11,2 565,34

6
Bus(S)irinis = > 8i1.155.2 Si5.3.4
Bya(S)ir,..ias = Siy1 Siga s

and (A.7) for r < 4 reduces to (A.3)—(A.5).

Now suppose F' consists of k d.f.s: the only change is to replace (xy, ..., X,)
by (x1::7%.) wherever it occurs. So, in the notation of (3.1), (A.3)—(A.5) imply

(A.8)  T(a®) = gi;Sij(a,a)+ g;Si(a?),
(A.9)  T(a®) = gijxSijk(a,a,a)+3gi;Si;(a,a®) + g;Si(a’) ,



Nonparametric Estimates of Low Bias 273

T(a*) = gijriSijri(a,a,a,a) +6g;xSijrla,a,a?)
(A.10) ; s o .

+ i {4 Sij(a,a”) +385;;(a”,a )} + ¢ Si(a”),
T(a®,0%) = gijxiSij(a,a)Ski(b,b)

o 9ik { S (0, @) Sy(b%) + Si(b,b) Skl(a?) + 4.5 (ab,a,b)}

(A.11)
+ Gij {2 Si,j (a, abz) +2 Si,j(b, a2b)
+ Si(a2) S;(b?) + 2 Si ;(ab, ab)}
+ g; Si(a2b2) ,
where

(A.12) ivjy__(al,a‘], ) = /S,F<g§> S]F(gj> o dFy(x)

S
(A.13) (;ﬁ) = 9% with [ columns ,

/ /SZF gﬁyz{f"“ S F(gﬁayL7-')dF( )de(y)7

and so on. Similarly, from (A.7) at r = 5 we obtain

(A.15) T(a?,b) Zgzl, i Al

where

At = 8;(a®b3) ,

Ai’j = 2 SZ'J‘(G,, ab3) + 3 Si’j(b, a2b2) + Si(a2) Sj(bg)
+ 65 j(ab,ab®) + 3 S; j(b?, aD) ,

AVIF =8 (a,a) Sk(b*) + 3 S;jk(b, b,a®b)
+6 Si,j,k(a> b, ab2) +6 Si7j7k(a, ab, b2)
+ 38 1(b,b%) S;(a®) + 6 S jx (b, ab, ab) ,

Ai7j7k7l = SZ (a2) Sj,k,l(ba ba b) +6 Si,j,k,l(a‘ba a, b: b) +3 Si,l(b2> b)Sj,k‘(aa CL) 5
Altts — 11,02 (av a) Si37i4,i5 (ba b, b) )

and from (A.7) at r = 6 we obtain

(A.16) T(a® b%, ¢ Zg“’ i, Bt
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where
Bt = S;j(a*V*?)
BY = By + By + By’ |
Bi’j =2 zg:Sij (a,ab*c?) ,
B;"j:ZS S;(b%c?) +4ZS”ab abc?) |
Bé’j =2 ZS@j(aQb, bc?) + 4.8 j(abe, abe)
Bk = By* 4 BYF 4 BYR
Bi’j’k = isij (a,a) Sp(b*c®) + 4 isijk (a,b,abc?) |
B;’j’k:2zszkaac (b2 +4ZSZJkaabbc)

+82S”ka be, abe)

Bé’j’k _ S?,( )S(b2 Sk _1_225’ ]k: bC bc)—FSSZ]k(CLb bC C(L) 5

Bihjvkul — B:il»jvkvl +B;9]9k7l ,
6
By7™ = 2378, i(a%b,b) Sku(c, ¢) + 8Sijralabe,a,b,c)

Bk — i{si,j(a, a) Si(b%) Sy(c?) + 2 Si j(a, a) Sy.(be, be)
+45; k(a,b,ab) Si(?) +8 Sijki(a,b,ac, bc)} ,
3
Bt = 3L, (0%) iy (0,5) Siain (€36) + S iaia (ab, 4,8) Siy i e,0) |
Bie = G i (a,a) Sig.is () Sis g (¢, )

and > is interpreted in the obvious manner by permuting a, b, c. For example,

3
Z S; i(a,ab*c?) = S; j(a,ab*c®) + S; j(b,bc*a®) + S j(c, ca®b?) .

Similarly, if we now allow T and g to be r-vectors with components {7} and
{g®}, then by (A.3), T*5(a,a) of (6.2) is given by

(A.17) 7% (a,a,..) = gf‘glﬁ Sij..(a,a,...)
and T%°(ab, ab) of (6.6) satisfies

2
T%5(ab, ab) = g5 gﬁl Sik(a,a)S;(b,b) + Z g7 gﬁk S jk(ab,a,b)

A.18 a,p
( ) + gf‘gfsm(ab, ab) ,
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where

Sy in(aby a,b) = / / 50r(28) (1) Sir(h) dFu(e) dEi()
Similarly, (6.4), (6.5) yield

(A19) 7% a) = {g7; Sizula,a,a) + g7 Sinla® 0) } g
and

T8 (a2b,b) = {gf"jyk Sii(a,a) Ska(b,b) + ¢ [Si(a?) S;1(b,b) + 2 Si ji(ab, a,b)]

(A.20)
+ g2 i,l(Qvab)}glﬁ-

Similarly,
«a, 3,0 _ o a Q. B &
T (aba a, b) - {gid Si,j,k,l(aa b,a, b) +9; Sl,k,l (aba a, b)} 991 -

We now consider the case, where S(F) is bivariate, that is ¢ =2. Since S; ;(a’ a”) =
S;i(a’,al), (A.8)~(A.11) can be written as

(A.21) T(a*) = {91,1 S11+2912512+ 92,2 52,2}(%@) + {9151 + g2 52}(a2) )

T(a3) = {91,1,1 S111+391,125112+3391,2251 22+ 92,22 527272}(a7a,a)
(A.22) +3 {9171 S11+ 91,2 (51,2 + 52,1) + 92,2 52,2} (a,a?)

+ {9151 + 9252} (a®),

4
T(a") = {91,1,1,1 S1111+4911,1251,1,12+609112251,1,2,2
+49122251,222+ 92222 52,2,2,2} (a,a,a,a)

+6 {91,1,1 S111+ 91125112 +201,215 2,1
(A.23) + 92215221 +29122S5122+ 9222 52,2,2} (a,a,a?)

+ 4{9171 Sia+912(S12 4+ S21) + 92,2 52,2} (a,a®)
+3 {91,1 S11+2012512+ 92,2 52,2} (a*,a®)

+ {9151 + g2 52} (a*),
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T(a®b%) = {9171,1,1 51,151,101 +291,1,1251,1512 + 91,122 51,1522
+20121,151,251,1 +491,21251251,2 +291,22251,2 522

14ty

+9221,1522511+26221,2522512+ 92222522 52,2} (a,a) (b,b)

+ {91,1,1 511514+ 26912151,251 + 922152251 + 91,12 51,152
+ 291225125 + 92,22 522 52} {(G, a)(b%) + (b, b)(GQ)}

+4 {91,1,1 S1,1,1+391,1251,12+309122 5122+ 9222 52,2,2} (ab,a,b)
+ Q{gl,l Si1+ g12(S12+52,1) + 92,2 5272} {(a,ab2) + (b,azb)}
+{0118181 + 912(515+9281) + 922 5252 } (0) (1)

+ 2 {g1,1 S11+2g12512+ g2,2 52,2} (ab, ab)

+ {9151 + 92 52} (a®b?) .

(A.24)

The convention here is that

(ngm + ) (al,...) = ngm(aI,...) ,
(g1 Sy Sima =) (al, o) (6 2) = gy S (@) S (b7,.) -

Similarly, for ¢ = 2, splitting the third term in (A.15), g; jx A%P*, into the six
components corresponding to Ai’j’k, the first is

Gijk Sijk = {91,1,k Stk +2912% 512k + 922,k S2,2,k}

at (a,a,b3) and similarly for the second and sixth components. Similarly, for the
three components of the fourth term, the first being

2
Giro 0 Syl = { > " G Siggg + 39112 Si112 + gi22 Sz‘,l,m}
j=1

at (a?,b,b,b), and for the fifth term

it eonsis it s =
= (91,1-S1,1- +2g12- S12- + g2.2-S22-)
X (g-1,1,15-111 +39-1,1,25-112+39-1225-122+ 9g—2225-222)

at (a,a,b,b,b), where gr_ Sx_ g_S_n is interpreted as g /Sy .
Similarly, for ¢ = 2, the term Bf in (A.16) has the component
2

49gijSij =4 Z!JH Sii +871,251,2
i—1
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at (abc, abc). The sixth component is

(911-5S1,1— +2g12- S12- + g2,2- S22-) X
X (g-1,1-5—11- +29-12-S_12- + g-22-S_22-) X
X (g-1,15-11+29g-125-12+ 9-225-22)

at (a,a,b,b,c,c), where gr,— Srx,— gy S—ry— §—my S—ry interpreted as g o s
St w73, and so on.

APPENDIX B

The nonparametric analogs of the terms for t5 and equation (D.1) of With-
ers [27] needed for T5 and T3 — apart from those given in (3.3)-(3.5) are as
follows. Summation over a, b, ¢ is implicit, where they occur. These terms are
listed both for the purpose of checking and for application to other problems.
Note that Tb requires

22 22
‘ 10 ‘ = |3 and ’20 ‘ = 2222,
and that T5 requires

23| [222] 5 4_22}
10’_'110‘_)‘“{T(“) Ty
20’——2)\QT(6L),
222 222

= |23, = 2)2\, T(a*V?)
100 200,
222 599 222

= —2X3T(a?,a?), 120‘: —2X3T(a®) for 1<i<3,
020, i 1210
222 2

= 4N T(a?), - /\S{T(a4) - 3T(a2,a2)},

10 a
220
32
oo | = 613l -
Also,
53 222 222
030 040
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since k4 (1, 2), being quadratic in Fy, has functional derivatives higher than two
equal to zero. To illustrate the proof,

1,22 y1,y2 21,22
Y1,21 Rz k th175’527y2

222
210 |,

/)\ Moo dxUr(,, ) dyVi( 5, ) die(r, 20) T L0t )

where U(F) = k*1"2 = Kq(x1,22) and V(F) = kYY2 = kp(y1, y2). Note that

VF<§2> -0

UF(Q?:;) =0

unless ¢ = b and

unless b = ¢ = a. Also

2

Ur(22,) = = 3 A1) Day(w2) |

1,22

and

VF(Z) = Az(y1 N y2) ZA (y1) Fa(y2)

Y1,Y2

where Ay (z) = (Fu(2))y = I(y <z) — F,(z). Integrate first with respect to x =
(21, x2): since columns in TF( ) are interchangeable we may replace Z by 2.
Since

(B.1) [ re(2is,) dFa) = 0

for i = 1,2, and

T1,2L2

dx{ I < @) Iz S a0) | = 8(a1 = y1) 8wz — 1) day dy

with § the Dirac delta function,

2
/d UF<y1 z1> TF(xf,’gé?yz) = _2TF<yﬁZZal7312> :
So,

‘ 222

10|, o /4d/£a(zl,zQ)TF<y1 a Zl)d VF( )

Integrate with respect to y = (y1,y2): (B.1) implies the contribution from the
last two out of the three terms in Vp(g) is zero. Also,

AN Ay2) = 1(z<y1) [(z<y2) — Fa(y1 AN y2) »
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SO
dy AL (y1 N y2) = 6(y1— 2) 6(y2 — 2) dy1 dy2 — 5(y1 — y2) dy2 dFu(y2) -

So,

2
[ e ) avi(s) = me(ome,) - [re( e, ) b

Now integrate with respect to z = (z1, z2): by (B.1) the second out of two terms
from drq(z1, 22) contributes zero. So, putting

L= /dFa(ZQ)TF<yﬁ’y“1’flz2) — 0,

we obtain
222 3 2 a,a,a a,a,a
210 = —2 )\a dFa(Zl /\ 22) TF< zz,%27,z1) — TF< yly;’Jl’7z1) dFa(yl)
1

R Ag{/Tp(zfggva> dFy(2) — /dFa(yl)L} = 23 T(d?) .

APPENDIX C

Here, we show how to estimate N, the number of simulated samples needed
to estimate the bias to within a given relative error e.

Note that Tn,p(ﬁ) has bias —n P T,(F) + O(n"P~!) and that Sn,p(ﬁ) has
bias —(n—1),15,(F)+0(n?~1) = —n"?S,(F)+O(n"P~!). Suppose we estimate
the bias of ¥ = S, ,(F) by Z=Y—T(F), where Y= N"' 3"V |V}, ¥} = S, ,(F})
and ﬁj is the empirical d.f. of the j* simulated sample. Then EZ = ESmp(ﬁ) —
T(F) is the true bias of Y and we can write Z = EZ+(v,/N)"2{N(0,1)+0,(1))}
as N — oo, where v, = var Y] = Vpn~! + O(n2) as n — oo, and Vp = Vp(F) =
> AT (a,a) with T(a,a) = [Tr(%)?dF,(z). So, if S, = S,(F) # 0, the relative
error in the estimate of bias,

(bias estimate — bias)/bias ~ —(v,/N)Y2N(0,1) nP S,(F)
~ —Vp(F)Y28,(F)"tnP~Y2N"12N(0,1)

is bounded by a given number € with probability greater than 0.975 + Op(n_l/ 2)
if

2V (F)2S,(F) tnP 2N"Y2 < ¢ |
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that is, if
N > Ne,p,n = 6_2 n2p_1¢p >

where ¢, = 4V (F)S,(F)~2. This implies that for € = 0.1 and n large, say
n = 100, it is not practical to carry out enough simulations to give meaning-
ful estimates of bias unless p = 1. This is reflected by the poor estimates of bias
in the tables for the case p = 2 obtained for n = 100 using N = 10,000.

Consider the following one sample examples. Set 3, = i, 1o 22 For F=
N(O> 1)1 pa =3, pe = 15, pg =105 and for F' = exp(l), pe =1, p3 =2, pg =9,
ps = 44, pe = 305, ug = 14,833.

Example C.1. Consider T(F) = pz. Then Vp = puy — u%, S1= 2, o1 =
4(B4 — 1). So, for a normal sample ¢; = 8 and 12 = po(F') needs

80,000 n simulations for € = 0.01,

N>N.1, =8c?n=
” 800 n simulations for e=0.1.

For an exponential sample ¢; = 32, so one needs four times as many simulations.

Since S2(F') = 0, ¢2 is not defined.

Example C.2. Consider T(F) = p3. Then Vp =43 (us — p3) and by
Example 5.8, S1 = —pq + pu3, So = —4p4+ 7u3 so for a unit normal, Vi =8,
Sp = -2, ¢1 =8, So = —29, ¢po = 0.1522 50 No.1,1,n = 8007 and No 12, =152n3
and for exp(1), Vp = 14,048, S = 30, ¢1 = 62.44, Sy = 87, ¢ = 7.424, 50 No.1,1,n
=6,244n and Ng12, = 74.24 ns.

Example C.3. Consider T(F) = uy. Then Vp = ug — pu? — 8 us 3, and
by Example 5.6 or 5.10, S; = 2(2pu4 — 3 u3), So = 3(4 g — 7p3), so for a unit
normal, VT = 96, 51 = 6, ¢1 = 32/3, SQ = 15, (252 = 128/75, SO NO-LLR =1067n
and No.12,=171n3 and for exp(1), Vi = 14,048, S1 = 30, ¢ = 62.44, Sy = 87,
QZ)Q = 7424, SO NO.]_J’n == 6,24472 and NO.1,2,n =74.24 n3.

Example C.4. Consider T'(F) =0 = ,u%ﬂ. Then Vi = pa(Bs — 1)/4, so

by Example 5.15, for a unit normal, Vi =1/2, S1 =3/4, ¢1 = 32/9, So = 1/32,
¢ = 2048, s0 No1.1n=356n and Ny 12, = 204,800n> and for exp(1), Vr = 2,
S1=3/2, ¢1=32/9, Sy =213/8 = 26.625, by = 0.01129, 50 No.11.n = 356 and
No,2,, =1.129n3.
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APPENDIX D

Here, we list the non-zero derivatives fi,.12. . p = pr, (21, ..., 2p) for 2<p <
r < 6. They are obtained from (5.4) in terms of h; = p,, where p, = = — p, the
first derivative of u:

pi21 = hi—p2 ,
p212 = —2hihy,

piz1 = b} — pz — 3hips
pa12 = —3(hi—p2)hy —3hi(h3—pa)
p3.1,2,3 = 12hihahs

a1 = hi—pa —4hps

oo = 12hihaps —4(h3 — pug)ho — 4hy(h3 — p3) |

paa23 = 12(hf—p2)hohg + 12 hy(h3 — p2) hg + 12 hiho (h3 — p2) |
pa1234 = —72hihohshy ,

ps1 = h] — ps —5hips
pis1,2 = 20hihapus — 5(ht — pua)hy — 5ha(hy — pa) |
5123 = —60hihohg g + 20 (h3 — us)hahg + 20hy (h3 — u3)hs
+20h1ho(h3 —p3) |
51934 = —60(hT — p2)hohshy — 60hy(h3 — p2)hgha — 60 hyha(hi — p2)hy
— 60h1hohs(h3 — p2)
p51,2,3,45 = 480hi1hahzhahs

pe1 = hS — pg — 6hyps
pig12 = 30hihgpg — 6(h] — ps)he — 6hy(hs — ps) |
pi6.1.23 = —120h1hahgus + 30 (hT — pa) hahs + 30h1 (hs — pa) b3
+ 30hyha(hs—pua)
1161.2.34/120 = 3hihohshyps — (B} — p3)hahshg — hy(h3 — p3)hahy
—hyhy (h3 — p3)ha — hihohs(hi — p3)
116.1,2,3,4,5/360 = (R} — po)hohshyhs + hi(h3 — o) hahahs + hiho (R — o) ha hs
+ hihahg(hi — p2) hs + hiha haha(hE — p2) -

Note that

.
prag.r = (=)= by
and =t

r—1

fra2,. -1 = (=1)"(r!/2) Z(h% — ) hg - he_1 |

where S sums over all r — 1 like terms.
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