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Abstract:

• A common measure of tail dependence is the so-called tail-dependence coefficient.
We present a nonparametric estimator of the tail-dependence coefficient and prove
its strong consistency and asymptotic normality in the case of known marginal dis-
tribution functions. The finite-sample behavior as well as robustness will be assessed
through simulation. Although it has a good performance, it is sensitive to the extreme
value dependence assumption. We shall see that a block maxima procedure might im-
prove the estimation. This will be illustrated through simulation. An application to
financial data shall be presented at the end.
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1. INTRODUCTION

Modern risk management is highly interested in assessing the amount of tail

dependence. Many minimum-variance portfolio models are based on correlation,

but correlation itself is not enough to describe a tail dependence structure and

often results in misleading interpretations (Embrechts et al., [7]). Multivariate

extreme value theory (EVT) is the natural tool to measure and model such ex-

tremal dependence. The importance of this issue has led to several developments

and applications in literature, e.g., Sibuya ([25]), Tiago de Oliveira ([27]), Joe

([16]), Coles et al. ([5]), Embrechts et al. ([8]), Frahm et al. ([11]), Schmidt and

Stadtmüller ([23]), Ferreira and Ferreira ([9]); see de Carvalho and Ramos ([6])

for a recent survey.

The tail-dependence coefficient (TDC) measures the probability of occur-

ring extreme values for one random variable (r.v.) given that another assumes

an extreme value too. More precisely, it is defined as

λ = lim
t→∞

P
(
F1(X1) > 1 − 1/t | F2(X2) > 1 − 1/t

)
,(1.1)

where F1 and F2 are the distribution functions (d.f.’s) of r.v.’s X1 and X2, re-

spectively. Observe that it can be formulated as

λ = lim
α→0

P
(
X1 > VaR1−α(X1) | X2 > VaR1−α(X2)

)
,

where VaR1−α(Xi) (i = 1, 2) is the Value-at-Risk of Xi at probability level 1− α

given by the quantile function evaluated at 1 − α, F−1
i (1 − α) = inf{x : Fi(x) ≥

1 − α} (see e.g., Schmidt and Stadtmüller, [23]). The TDC can also be defined

via the notion of copula, introduced by Sklar ([26]). A copula C is a cumulative

distribution function whose margins are uniformly distributed on [0, 1]. If C is

the copula of (X1, X2) having joint d.f. F , i.e., F (x1, x2) = C
(
F1(x1), F2(x2)

)
,

observe that

λ = 2 − lim
t→∞

tP
(
F1(X1) > 1 − 1/t or F2(X2) > 1 − 1/t

)

= 2 − lim
t→∞

t
{

1 − C
(
1 − 1/t, 1 − 1/t

)}
.

(1.2)

The TDC was the first tail dependence concept appearing in literature in a

Sibuya’s paper, where it was shown that, no matter how high we choose the

correlation of normal random pairs, if we go far enough into the tail, extreme

events tend to occur independently in each margin (Sibuya, [25]). It character-

izes the dependence in the tail of a random pair (X1, X2), in the sense that,

λ > 0 corresponds to tail dependence whose degree is measured by the value of λ,

whereas λ = 0 means tail independence. The well-known bivariate t-distribution

presents tail dependence, whereas the above mentioned bivariate normal is an

example of tail independent model.
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The conventional multivariate extreme value theory has emphasized the

asymptotically dependent class resulting in its wide use. However, if the series are

truly asymptotically independent, i.e., λ = 0, an overestimation of extreme value

dependence, and consequently of the risk, will take place (see, e.g., Poon et al.,

[21]; for further details about asymptotically independent class and respective

models and coefficients, see also Ledford and Tawn, [19, 20]). Therefore, it is

important to conclude whether (X1, X2) is tail dependent or not. In practice,

this is not an easy task and one must be careful by inferring tail dependence

from a finite random sample. Tests for tail independence can be seen in, e.g.,

Zhang ([28]), Hüsler and Li ([15]) and references therein. Frahm et al. ([11])

presents illustrations of misidentifications of the dependence structure. The bad

performance of several nonparametric TDC estimators under tail independence

was also shown in this latter paper through simulation. We remark that the

examples that were used only concern models whose dependence function is not

of the extreme value type. Here we present a nonparametric estimator for the

TDC derived from Ferreira and Ferreira ([10]) and thus under an extreme value

dependence, which we denote λ̂(FF). Strong consistency and asymptotic normality

are proved (this latter in the case of known marginal d.f.’s). The finite-sample

behavior and robustness are analyzed through simulation. We also compare with

other existing methods. The simulation studies reveal some sensitivity to an

extreme value dependence assumption and a large bias problem in the particular

case of tail independence. In practice this may be overcome by taking block

maxima, but one must be careful with a bias-variance trade-off arising from the

number of block maxima to be considered: the larger this number the smaller

the variance but the larger the bias (Frahm et al., [11]). The simulation studies

present improvements in estimates in some cases and allow to conclude the best

block length choice. We end with an application to financial data.

2. EVT AND TAIL DEPENDENCE

Let
{(

X
(n)
1 , X

(n)
2

)}
n≥1

be i.i.d. copies of 2-dimensional random vector,

(X1, X2), with common d.f. F, and let M
(n)
j = max1≤i≤n X

(i)
j , j = 1, 2, be the

partial maxima for each marginal. If there exist sequences of constants a
(n)
j > 0,

b
(n)
j ∈ R, for j = 1, 2, and a distribution function G with non-degenerate margins,

such that

P
(
M

(n)
1 ≤ a

(n)
1 x1 + b

(n)
1 , M

(n)
2 ≤ a

(n)
2 x2 + b

(n)
2

)
=

= Fn
(
a

(n)
1 x1 + b

(n)
1 , a

(n)
2 x2 + b

(n)
2

)
−→
n→∞

G(x1, x2) ,
(2.1)
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for all continuity points of G(x1, x2), then it must be a bivariate extreme value

distribution, given by

(2.2) G(x1, x2) = exp
[
−l
{
− log G1(x1), − log G2(x2)

}]
,

for some bivariate function l, where Gj , j = 1, 2, is the marginal d.f. of G.

We also say that F belongs to the max-domain of attraction of G, in short,

F ∈ D(G). The function l in (2.2) is called stable tail dependence function,

sometimes denoted extreme value dependence. It can be verified that l is con-

vex, is homogeneous of order 1, and that max(x1, x2) ≤ l(x1, x2) ≤ x1 + x2 for all

(x1, x2) ∈ [0,∞)2, where the upper bound is due to the positive dependence of

extreme value models and corresponds to independence whilst the lower bound

means complete dependence (see, e.g. Beirlant et al. [1], Section 8.2.2). These

properties also hold in the d-variate case, with d > 2. The statement in (2.1) has

a similar formulation for the respective copulas, say CX and C:

Cn
X(u

1/n
1 , u

1/n
2 ) −→

n→∞
C(u1, u2) ,(2.3)

where

(2.4) C(u1, u2) = exp
{
−l
(
− log u1, − log u2

)}

is called a bivariate extreme value copula. In the sequel it will be denoted BEV

copula and we will also refer the extreme value dependence context as a BEV

dependence. The defining feature of a BEV copula is the max-stability property,

i.e., C(u1, u2) = C(u
1/m
1 , u

1/m
2 )m for every integer m ≥ 1, ∀ (u1, u2) ∈ [0, 1]2. The

max-domain of attraction condition (2.1) implies (2.3) but the reciprocal is not

true since it must also be imposed that each marginal belongs to some max-

domain of attraction. Since we have

lim
t→∞

t P
(
F1(X1) > 1 − 1/t, F2(X2) > 1 − 1/t

)
=

= 2 − lim
t→∞

t
{

1 − C
(
1 − 1/t, 1 − 1/t

)}

= 2 − lim
t→∞

log Ct
(
1 − 1/t, 1 − 1/t

)

= 2 − lim
t→∞

log C
(
(1 − 1/t)t, (1 − 1/t)t

)

= 2 − l(1, 1) ,

(2.5)

the TDC of a BEV copula can be obtained through the function l as

(2.6) λ = 2 − l(1, 1) .

In the following we list some examples of stable tail dependence functions

of BEV copulas and respective tail dependence:

• Logistic: l(v1, v2) = (v
1/r
1 + v

1/r
2 )r, with vj ≥ 0 and parameter 0 < r ≤ 1;

complete dependence is obtained in the limit as r → 0 and independence

when r = 1.
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• Asymmetric Logistic: l(v1, v2) = (1 − t1)v1 + (1 − t2)v2 +
{
(t1v1)

1/r +

(t2v2)
1/r
}r

, with vj ≥ 0 and parameters 0 < r≤ 1 and 0≤ tj ≤ 1, j = 1, 2;

when t1 = t2 = 1 the asymmetric logistic model is equivalent to the logis-

tic model; independence is obtained when either r = 1, t1 = 0 or t2 = 0.

Complete dependence is obtained in the limit when t1 = t2 = 1 and

r approaches zero.

• Hüsler–Reiss: l(v1, v2) = v1Φ
(
r−1 + 1

2 r log(v1/v2)
)

+ v2Φ
(
r−1 + 1

2 r ·
log(v2/v1)

)
, with parameter r > 0 and where Φ is the standard nor-

mal d.f.; complete dependence is obtained as r → ∞ and independence

as r → 0.

Non-BEV copulas cannot be obtained in the limit in (2.3), i.e., do not

satisfy max-stability and cannot be expressed through formulation (2.4) based

on the extreme value dependence function l with the given properties.

Examples of non-BEV copulas correspond, for instance, to the class of

elliptical ones. The bivariate normal and the symmetric generalized hyperbolic

distributions are tail independent models within this class. On the other hand,

the bivariate t-distribution presents tail dependence with TDC,

λ = 2Ftν+1

{
−
√

(ν + 1) (1 − ρ)/(1 + ρ)
}

,

where ρ > −1 and Ftν+1 is the d.f. of the one dimensional tν+1 distribution. See,

e.g., Schmidt ([22]) and Frahm et al. ([11]).

Bivariate Archimedean copulas are another wide class that includes some

tail independent non-BEV copulas such as Clayton, C(u1,u2)=(u−θ
1 +u−θ

2 −1)−1/θ

with θ ≥ 0. Another special type which do not belong to either one of the three

classes above is the tail independent Plackett-copula

C(u1, u2) =
1 + (θ−1)(u1+u2) −

[{
1+(θ−1)(u1+u2)

}2 − 4u1u2θ(θ−1)
]1/2

2 (θ−1)
,

with parameter θ ∈ R
+\{1}, and C(u1, u2) = u1u2, if θ = 1. For more details,

see Joe ([16]).

3. ESTIMATION

The use of (semi)parametric estimators bears a model risk and may lead

to wrong interpretations of the dependence structure. Nonparametric procedures

avoid this type of misspecification but usually come along with a larger vari-

ance. Frahm et al. ([11]) confirms this assertion and shows that (semi)parametric

estimators may have disastrous performances under wrong model assumptions.
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So, in practice, if we are not sure about the type of model underlying data,

nonparametric approach can be an alternative. Here we focus on nonparametric

methods.

Huang ([14]), considered an estimator derived from the definition in (1.2)

by plugging-in the respective empirical counterparts:

(3.1) λ̂(H) = 2 − 1

kn

n∑

i=1

1{ bF1(X
(i)
1 )>1− kn

n
or bF2(X

(i)
2 )>1− kn

n

} ,

where F̂j is the empirical d.f. of Fj , j = 1, 2. Concerning estimation accuracy,

some modifications of this latter may be used, like replacing the denominator n

by n + 1, i.e., considering

F̂j(u) =
1

n + 1

n∑

i=1

1{
X

(i)
j ≤u

}

(Beirlant et al. [1], Section 9.4.1). A similar procedure was considered in Schimdt

and Stadtmüler ([23]). For asymptotic properties, see the more recent results in

Bücher and Dette ([2]). The consistency and asymptotic normality of the estima-

tor λ̂(H) are derived with the asymptotics holding for an intermediate sequence

{kn}, kn → ∞ and kn/n → 0, as n → ∞. The choice of k ≡ kn that allows for the

‘best’ bias–variance tradeoff is of major difficulty, since small values of k come

along with a large variance whenever an increasing k results in a strong bias. A

similar problem exists for univariate tail index estimations of heavy tailed dis-

tributions, for estimators of the stable tail dependence function l (Krajina, [18])

and other TDC estimators (e.g., Frahm et al. [11] and Schmidt and Stadtmüller

[23]).

Under a BEV copula assumption, i.e., a copula with formulation (2.4), and

given (2.6), estimators for the TDC can be obtained through the ones of the

stable tail dependence function l. Within this context and motivated in Capéraà

et al. ([4]), Frahm et al. ([11]) presented the estimator

2 − 2 exp

[
1

n

n∑

i=1

log

(√
log

1

F̂1(X
(i)
1 )

log
1

F̂2(X
(i)
2 )

/
log

1

max
{
F̂1(X

(i)
1 ), F̂2(X

(i)
2 )
}2

)]
.

This rank-based estimator was shown to have the best performance among all

nonparametric estimators considered in Frahm et al. ([11]). Optimally corrected

versions can be seen in Genest and Segers ([12]) and alternative estimators are

presented in Bücher et al. ([3]). In the sequel, we shall use a corrected version

satisfying the boundary condition l(1, 0) = l(0, 1) = 1 considered in Genest and

Segers ([12]), and here denoted λ̂(CFG-C).

Our approach is motivated by Ferreira and Ferreira ([10]) and has the same

assumption of a BEV copula dependence structure. More precisely, it is based
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on the following representation of the stable tail dependence function:

(3.2) l(x1, x2) =
E
[
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}]

1 − E
[
max

{
F1(X1)1/x1 , F2(X2)1/x2

}] ,

where the expected values are estimated using sample means. Observe that the

d.f. of max
(
F1(X1)

1/x1 , F2(X2)
1/x2

)
is given by

P
(
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}
≤ u

)
= C

(
ux1 , ux2

)

= exp
(
−l
(
− log ux1 ,− log ux2

))

= exp
(
−
(
− log u

)
l
(
x1, x2

))

= ul(x1,x2) ,

(3.3)

where the penultimate step is due to the first order homogeneity property of

function l. Hence

E
[
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}]
=

l(x1, x2)

1 + l(x1, x2)
.

Therefore, based on (2.6) and (3.2), we propose the estimator

λ̂(FF) = 3 −
[
1− max

{
F̂1(X1), F̂2(X2)

} ]−1
,(3.4)

where max
{
F̂1(X1), F̂2(X2)

}
is the sample mean of max

{
F̂1(X1), F̂2(X2)

}
, i.e.,

max
{
F̂1(X1), F̂2(X2)

}
=

1

n

n∑

i=1

max
{
F̂1(X

(i)
1 ), F̂2(X

(i)
2 )
}

.

Proposition 3.1. The estimator λ̂(FF) in (3.4) is strongly consistent.

Proof: Observe that
∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
F̂j

(
X

(i)
j

)}
− E

[
max

j∈{1,2}

{
Fj

(
Xj

)}]
∣∣∣∣∣ ≤

≤
∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
F̂j

(
X

(i)
j

)}
− 1

n

n∑

i=1

max
j∈{1,2}

{
Fj

(
X

(i)
j

)}
∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
Fj

(
X

(i)
j

)}
− E

[
max

j∈{1,2}

{
Fj

(
Xj

)}]
∣∣∣∣∣ ,

(3.5)

where the second term converges almost surely to zero by the Strong Law of

Large Numbers (by (3.3), maxj∈{1,2}

{
Fj(Xj)

}
∼ Beta

(
l(1, 1), 1

)
, 1 ≤ l(1, 1) ≤ 2,

and all the moments exist).
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The first term in (3.5) is upper bounded by

1

n

n∑

i=1

∑

j∈{1,2}

∣∣∣F̂j

(
X

(i)
j

)
− Fj

(
X

(i)
j

)∣∣∣ ,

which converges almost surely to zero according to Gilat and Hill ([13]; Theorem

1.1). See also Ferreira and Ferreira ([10], Proposition 3.7).

The asymptotic normality in case the marginal d.f.’s are known is derived

from Ferreira and Ferreira ([10], Proposition 3.3) and the delta method. More

precisely, denoting this version as λ̂
(FF)
∗ , we have

√
n
(
λ̂

(FF)
∗ −λ

)
→ N(0, σ2) ,

where

σ2 =
l(1, 1)

(
1 + l(1, 1)

)2

2 + l(1, 1)
.

In the case of unknown marginals, we believe that the asymptotic normality of√
n
(
λ̂(FF) −λ

)
may be derived from the weak convergence of the empirical copula

process (Segers, [24]). This will be addressed in a future work.

Observe that estimators λ̂(FF) and λ̂(CFG-C) are obtained under the more

restrictive assumption of an extreme value dependence but have a convergence

rate of
√

n. On the other hand, estimator λ̂(H) has no restrictive assumptions

but has to pay the price of a slower convergence rate
√

kn, since only the largest

kn = o(n) observations can be taken into account.

4. SIMULATION STUDY

In this section we analyze the finite-sample behavior of our estimator.

We simulate 1000 independent random samples of sizes n = 50, 100, 500, 1000

from three BEV copulas with stable tail dependence functions: logistic, asym-

metric logistic and Hüsler–Reiss. We consider the two types of dependence:

tail dependence (Table 1) and tail independence (Table 2). The results ob-

tained from the logistic and asymmetric logistic under tail independence are

quite similar and thus we omit the latter case. In order to assess robustness

we also analyze the case of non-BEV copulas, by considering, for tail depen-

dence, a bivariate t-distribution with ν = 1.5 degrees of freedom and, for tail

independence, a BSGH distribution (Table 3). In both cases we take a correla-

tion parameter of ρ = 0.5. Since the t-distribution is somewhat ‘close’ to being

an extreme value copula (see Bücher, Dette and Volgushev [3], Section 2), we

also consider a convex combination of a rotated Clayton copula (correspond-

ing to negative dependence) and a t-distribution, more precisely, Cα(u1, u2) =

α
(
u2 − CClayton(1 − u1, u2)

)
+ (1 − α)Ctν (u1, u2). For comparison, we compute

estimator λ̂(CFG-C) which works under the same assumptions (i.e, an extreme
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value dependence) and the more general estimator λ̂(H) which has no model re-

strictions (the required choice of k to balance the variance-bias problem is based

on an heuristic procedure in Frahm et al. [11]). Absolute empirical bias and

the root mean-squared error (rmse) for all implemented TDC estimations are in

Tables 1, 2 and 3.

Table 1: Tail dependent (λ > 0) BEV copulas with stable tail depen-
dence functions: Logistic and Asym. Logistic with r = 0.4 and
Hüsler–Reiss with r = 3.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0.6805 Logistic

(n = 50) 0.0019 (0.0994) 0.0050 (0.0556) 0.0395 (0.1962)
(n = 100) 0.0052 (0.0711) 0.0044 (0.0395) 0.0389 (0.1412)
(n = 500) 0.0006 (0.0330) 0.0005 (0.0180) 0.0216 (0.0883)
(n = 1000) 0.0002 (0.0232) 0.0004 (0.0122) 0.0099 (0.1379)

λ = 0.3402 Asym. Logistic

(n = 50) 0.0085 (0.1147) 0.0332 (0.1122) 0.0527 (0.1836)
(n = 100) 0.0053 (0.0824) 0.0203 (0.0754) 0.0635 (0.1363)
(n = 500) 0.0020 (0.0389) 0.0045 (0.0355) 0.0335 (0.0847)
(n = 1000) 0.0014 (0.0287) 0.0031 (0.0245) 0.0038 (0.1193)

λ = 0.7389 Hüsler–Reiss

(n = 50) 0.0040 (0.0484) 0.0057 (0.0462) 0.0202 (0.1697)
(n = 100) 0.0003 (0.0331) 0.0020 (0.0323) 0.0075 (0.1094)
(n = 500) 0.0002 (0.0152) 0.0007 (0.0140) 0.0011 (0.0655)
(n = 1000) 0.0002 (0.0292) 0.0005 (0.0097) 0.0103 (0.0342)

Table 2: Tail independent (λ = 0) BEV copulas with stable tail dependence
functions: Logistic with r = 1 and Hüsler–Reiss with r = 0.03.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0 Logistic

(n = 50) 0.0230 (0.1284) 0.0900 (0.1389) 0.1040 (0.1644)
(n = 100) 0.0062 (0.0956) 0.0467 (0.0952) 0.1004 (0.1348)
(n = 500) 0.0036 (0.0415) 0.0140 (0.0361) 0.0492 (0.0650)
(n = 1000) 0.0017 (0.0296) 0.0077 (0.0257) 0.0502 (0.0578)

λ ≈ 0 Hüsler–Reiss

(n = 50) 0.0254 (0.1370) 0.0875 (0.1353) 0.1002 (0.1660)
(n = 100) 0.0084 (0.0966) 0.0412 (0.0883) 0.0991 (0.1336)
(n = 500) 0.0009 (0.0415) 0.0100 (0.0361) 0.0492 (0.0653)
(n = 1000) 0.0003 (0.0299) 0.0061 (0.0265) 0.0081 (0.0298)
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Table 3: Non-BEV tail dependent case: tν with ν = 1.5 and ρ = 0.5
and a convex combination of a rotated Clayton and tν (RC&T),
C0.5(u1, u2) = 0.5

(
u2 − CClayton(1 − u1, u2)

)
+ 0.5Ctν

(u1, u2);
non-BEV tail independent case: BSGH distribution with ρ = 0.5.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0.4406 t-distribution

(n = 50) 0.0099 (0.1043) 0.0318 (0.1022) 0.0084 (0.1970)
(n = 100) 0.0087 (0.0711) 0.0213 (0.0743) 0.0094 (0.1393)
(n = 500) 0.0124 (0.0339) 0.0130 (0.0348) 0.0044 (0.0884)
(n = 1000) 0.0122 (0.0267) 0.0123 (0.0266) 0.0120 (0.1403)

λ = 0.3669 RC&T

(n = 50) 0.4396 (0.6562) 0.2832 (0.4736) 0.2990 (0.3064)
(n = 100) 0.4052 (0.6440) 0.2879 (0.4282) 0.1371 (0.2779)
(n = 500) 0.3800 (0.6411) 0.2793 (0.4681) 0.1350 (0.2772)
(n = 1000) 0.3791 (0.6342) 0.2650 (0.4571) 0.1314 (0.2743)

λ = 0 BSGH

(n = 50) 0.4288 (0.4396) 0.4305 (0.4544) 0.3730 (0.4238)
(n = 100) 0.4287 (0.4346) 0.4239 (0.4294) 0.3704 (0.3926)
(n = 500) 0.4248 (0.4259) 0.4030 (0.4052) 0.3130 (0.3232)
(n = 1000) 0.4238 (0.4243) 0.4001 (0.4008) 0.2188 (0.2489)

Estimators λ̂(FF) and λ̂(CFG-C) behave well within BEV copulas (or ‘close’

of being BEV as t-distribution). Yet, they performed poorly on a non-BEV de-

pendence context (see Table 3). Estimator λ̂(H) tends to present a slight larger

bias but performs better under non extreme value dependence. This is consistent

with a slower rate of convergence and the fact that it holds in a general frame-

work, as discussed in the previous section. All estimators also performed poorly

on tail independent non-BEV copulas. Our results do not contradict however the

ones in Frahm et al. ([11]), where the misbehavior of nonparametric estimation

concerned tail independence within non-BEV copulas. By considering a block

maxima procedure, i.e., divide n-length data into m blocks of size b = ⌊n/m⌋
(⌊x⌋ denotes the largest integer not exceeding x) and take only the maximum

observation within each block, we obtain a sample of maximum, which is more

consistent with an extreme values model and thus a BEV copula. This method-

ology involves a bias–variance tradeoff arising from the number of block maxima

(block length) to be considered: the larger (smaller) this number the smaller

the variance but the larger the bias (Frahm et al., [11]). It requires not too

small sample sizes to also provide not too small maxima samples. A simulation

study to find the value(s) of b that better accommodates this compromise will be

implemented in the next section.
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4.1. Block maxima procedure for non-BEV dependence

We consider 1000 independent random samples of sizes n = 500, 1000, 1500,

2000, 5000 generated from the tail independent and non-BEV copulas: bivariate

normal (BN), BSGH and Plackett-copula (BPC). We estimate the TDC through

a block maxima procedure for block lengths b = 15, 30, 60, 90. The absolute em-

pirical bias and the rmse of all implemented TDC estimations are presented in

Tables 4 and 5, for BN and BPC, respectively. The results obtained for the BSGH

case (omitted here) were not good in all the three estimators and, in practice,

Table 4: Block maxima samples with given length b of BN model with ρ = 0.5
(the case b = 1 correspond to the whole sample).

BN λ̂(FF) λ̂(CFG-C) λ̂(H)

(n = 500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4025 (0.4036) 0.3702 (0.3733) 0.3244 (0.3294)
(b = 15) 0.2319 (0.2578) 0.2520 (0.2966) 0.1986 (0.2594)
(b = 30) 0.2081 (0.2924) 0.2958 (0.3351) 0.2241 (0.3825)
(b = 60) 0.2798 (0.4187) 0.3703 (0.4486) 0.1900 (0.4594)
(b = 90) 0.2887 (0.4275) 0.3734 (0.4937) 0.3816 (0.7975)

(n = 1000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4023 (0.4029) 0.3587 (0.3692) 0.3238 (0.3262)
(b = 15) 0.2046 (0.2297) 0.2201 (0.2438) 0.2037 (0.2498)
(b = 30) 0.1941 (0.2428) 0.2251 (0.2720) 0.2185 (0.3012)
(b = 60) 0.1724 (0.2695) 0.2625 (0.3234) 0.2000 (0.3578)
(b = 90) 0.2888 (0.3582) 0.3692 (0.4259) 0.3625 (0.5874)

(n = 1500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4024 (0.4028) 0.3562 (0.3663) 0.3236 (0.3253)
(b = 15) 0.2011 (0.2180) 0.2114 (0.2242) 0.1848 (0.2165)
(b = 30) 0.1612 (0.2015) 0.2001 (0.2328) 0.1682 (0.2309)
(b = 60) 0.1546 (0.2311) 0.2310 (0.2760) 0.2064 (0.3200)
(b = 90) 0.1708 (0.2696) 0.2674 (0.3093) 0.1964 (0.3480)

(n = 2000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.3230 (0.3243) 0.3559 (0.3661) 0.3230 (0.3243)
(b = 15) 0.2012 (0.2141) 0.2013 (0.2155) 0.2054 (0.2312)
(b = 30) 0.1601 (0.1912) 0.1628 (0.2116) 0.1810 (0.2293)
(b = 60) 0.1600 (0.2172) 0.1600 (0.2111) 0.2047 (0.2887)
(b = 90) 0.1829 (0.2535) 0.2029 (0.2986) 0.2269 (0.3489)

(n = 5000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4024 (0.4025) 0.3603 (0.3644) 0.3234 (0.3240)
(b = 15) 0.1936 (0.1988) 0.1801 (0.1884) 0.1973 (0.2068)
(b = 30) 0.1595 (0.1730) 0.1519 (0.1717) 0.1762 (0.1952)
(b = 60) 0.1348 (0.1648) 0.1550 (0.1846) 0.1701 (0.2093)
(b = 90) 0.1283 (0.1744) 0.1677 (0.1948) 0.1742 (0.2288)
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Table 5: Block maxima samples with given length b of BPC (Plackett-copula)
with θ = 2 (the case b = 1 correspond to the whole sample).

BPC λ̂(FF) λ̂(CFG-C) λ̂(H)

(n = 500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2028 (0.2062) 0.1766 (0.1805) 0.1676 (0.1741)
(b = 15) 0.0894 (0.1779) 0.1592 (0.2026) 0.1555 (0.2462)
(b = 30) 0.0801 (0.2341) 0.1954 (0.2565) 0.1329 (0.2833)
(b = 60) 0.1981 (0.3407) 0.3397 (0.3913) 0.1244 (0.3718)
(b = 90) 0.2189 (0.3892) 0.2695 (0.4624) 0.3942 (0.4507)

(n = 1000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2012 (0.2030) 0.1708 (0.1733) 0.1684 (0.1720)
(b = 15) 0.0538 (0.1249) 0.0906 (0.1313) 0.1134 (0.1613)
(b = 30) 0.0701 (0.1668) 0.1457 (0.1880) 0.1579 (0.2459)
(b = 60) 0.0955 (0.2315) 0.2122 (0.2623) 0.1517 (0.3090)
(b = 90) 0.2262 (0.3168) 0.3295 (0.3714) 0.3000 (0.5177)

(n = 1500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2019 (0.2031) 0.1695 (0.1705) 0.1684 (0.1708)
(b = 15) 0.0547 (0.1081) 0.0798 (0.1089) 0.1053 (0.1408)
(b = 30) 0.0514 (0.1389) 0.1068 (0.1452) 0.1042 (0.1667)
(b = 60) 0.0545 (0.1943) 0.1504 (0.2077) 0.1480 (0.2647)
(b = 90) 0.1000 (0.2250) 0.2077 (0.2610) 0.1535 (0.3084)

(n = 2000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2012 (0.2021) 0.1684 (0.1692) 0.1695 (0.1712)
(b = 15) 0.0539 (0.0967) 0.0713 (0.0971) 0.1141 (0.1141)
(b = 30) 0.0384 (0.1175) 0.0887 (0.1252) 0.1135 (0.1613)
(b = 60) 0.0642 (0.1728) 0.1390 (0.1831) 0.1405 (0.2262)
(b = 90) 0.0953 (0.2072) 0.1819 (0.1861) 0.1678 (0.2942)

(n = 5000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2015 (0.2018) 0.1665 (0.1669) 0.1697 (0.1704)
(b = 15) 0.0430 (0.0671) 0.0404 (0.0641) 0.1108 (0.1215)
(b = 30) 0.0345 (0.0807) 0.0495 (0.0781) 0.1065 (0.1283)
(b = 60) 0.0366 (0.1079) 0.0729 (0.1065) 0.1210 (0.1629)
(b = 90) 0.0397 (0.1376) 0.0895 (0.1323) 0.0970 (0.1407)

may lead to wrongly infer tail dependence. If this is an adequate model for data,

then (semi)parametric estimators considered in Frahm [11]) are a more sensible

choice. We have also implemented a block maxima procedure for the non-BEV

case of the convex combination copula considered in Table 3 with similar results

of the BPC and thus omitted. Observe that block maxima procedure improves

estimates in some cases, in particular for estimators λ̂(FF) and λ̂(CFG-C). The

adequate choices for block-length b in sample sizes ranging from, approximately,

500 and 1000, are b = 15, 30, while for sample sizes between 1000 and 2000 we

can choose b = 30, 60, and for larger sample sizes (ranging from 2000 to 5000)

a block-length b = 60, 90 seems appropriate.



14 Marta Ferreira

4.2. Application to financial data

We consider the negative log-returns of Dow Jones (USA) and FTSE100

(UK) indexes for the time period 1994–2004. The corresponding scatter plot

and TDC estimate plot of λ̂(H) for various k (Figure 1) show the presence of

tail dependence and the order of magnitude of the tail-dependence coefficient.
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Figure 1: Scatter plot of Dow Jones versus FTSE100 negative log-returns
(n = 2529 data points) and the corresponding TDC estimates λ̂H

for various k/n.

Moreover, the typical variance-bias problem for various threshold values k can

be observed, too. In particular, a small k induces a large variance, whereas an

increasing k generates a strong bias of the TDC estimate. The threshold choosing

procedure of k leads to a TDC estimate of λ̂(H) = 0.3397 and from our estimator

we derive λ̂(FF) = 0.3622. In computing λ̂(CFG-C) we obtain 0.354. The results

from the three considered estimators are quite close, leading to a tail-dependence

estimate that should be approximately 0.35.

5. DISCUSSION

One must be careful by inferring tail dependence/independence from a finite

random sample and (semi)parametric and nonparametric procedures have pros

and cons. Thus, the message is that there is no perfect strategy and the best way

to protect against errors is the application of several methods to the same data set.

A test of tail independence is advised (see, e.g., Zhang [28], Hüsler and Li [15] and

references therein). The proposed estimator has revealed good performance even
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in the independent case. However the simulation results showed sensitivity to the

assumption of an extreme value dependence structure and we recommend to test

in advance for this hypothesis. See Kojadinovic, Yan and Segers ([17]) or Bücher,

Dette and Volgushev ([3]) and references therein. A block maxima procedure

may improve the estimates. A study focused on the asymptotic properties will

be addressed in a future work.
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