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1. INTRODUCTION

Due to technological progress, in particular the enlarged capacity of com-

puter memory and the increasing efficiency of data collection devices, there is

a growing number of applied sciences (biometrics, chemometrics, meteorology,

medical sciences...) where collected data are curves which require appropriate

statistical tools. Because of this, functional data analysis has known a quite im-

portant development in the last fifteen years (see, e.g., [26], [27], [14], [7], [16],

[17] and [18] for monographs and collective books on this specific subject). How-

ever, whereas there has been substantial work on the nonparametric estimation of

the probability density function for univariate and multivariate random variables

since the papers of [22] and [28], much less attention has been paid to the infinite-

dimensional case. The extension of the results from the multivariate framework

to the infinite dimensional one is not direct since there is no equivalent of the

Lebesgue measure on an infinite dimensional Hilbert space. In fact, the only lo-

cally finite and translation invariant measure on an infinite dimensional Hilbert

space is the null measure and any locally finite measure µ is even very irregular:

denoting by B(x, r) the ball of center x and radius r, we have that, for any point

x, any arbitrary large M and any arbitrary small r such that µ(B(x, r)) <∞,

there exist (x1, x2) ∈ B(x, r)2 such that µ(B(x1, r/4)) < M ×µ(B(x2, r/4)). For a

coverage of the theme of measures on infinite dimension spaces, we refer to [33],

[34], [8] and [31].

The first consistency result for a kernel estimator of the density function

for infinite dimensional random variables has been obtained in [4] where a rate is

given in the special case when the kernel is an indicator function and the density

is defined with respect to the Wiener measure. Later, different estimators of

the density, based on orthogonal series (see [5]), delta sequences (see [25]) or

wavelets (see [24]), have been proposed but none of them is adaptive. Note that

the estimation of the density probability function is nonetheless itself of intrinsic

interest but it also has a key role in mode estimation and curve clustering (see

[6]).

Contrary to the chronology of studies in the multivariate case, in the func-

tional framework, estimators of the regression function have been proposed before

those of the density. Ferraty and Vieu introduced the first fully nonparametric

estimator of the regression function, at first under the hypothesis that the under-

lying measure has a fractal dimension in [12] and then using only probabilities of

small balls in [13]. However, since these pioneering works, no adaptive estimator

has been proposed.

Considering the density estimation problem from functional data, [24] has

recently developed a new procedure based on the multiresolution approach on

a separable Hilbert space introduced by [19]. This procedure belongs to the
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family of the linear wavelet estimators. As proved in [24, Theorem 3.1], it enjoys

powerful asymptotic properties. However, such a linear wavelet estimator has two

drawbacks: it is not adaptive (i.e., its performances are deeply associated to the

smoothness of the unknown function) and it is not efficient to estimate functions

with complex singularities (the sparsity nature of the wavelet decomposition of

the unknown function is not captured). For these reasons, [24, Page 2 lines 14-

16] states “it would be interesting to investigate the advantage of these wavelet

estimators for functional data by using wavelet thresholding suggested by [11]”.

This perspective motivates our study.

Adopting the multiresolution approach on a separable Hilbert space H of

[19], we construct an adaptive wavelet procedure extending the hard threshold-

ing rule introduced by [11] to a general nonparametric estimation context for

functional data. In order to study its asymptotic properties, we introduce two

different kinds of decomposition spaces expressed in terms of wavelet coefficients

via the new basis (see Section 2). They are related to the maxiset approach

introduced by [3] and of interest as they contain a wide variety of unknown func-

tions, complex or not. Exploring the density model and the regression model for

functional data, we determine the rates of convergence attained by our estimator

under the mean integrated squared error on H and over the intersection of the

two considering decomposition spaces. To the best of our knowledge, this study

is the first one developing a wavelet-based adaptive estimator in the context of

functional data (and studying it theoretically). Let us mention that the new

findings includes several obtained results for H = Lp([a, b]).

The paper is structured as follows. In Section 2, we briefly describe the

wavelet bases on H and we define some decomposition spaces. The density es-

timation problem for functional data via wavelet thresholding is considered in

Section 3. The regression one is developed in Section 4. The proofs are gathered

in Section 5.

2. WAVELET BASES ON H AND DECOMPOSITION SPACES

2.1. Wavelet bases on H

Let us briefly describe the construction of wavelet bases on H introduced

by [19]. Let H be a separable Hilbert space of real- or complex-valued functions

defined on a complete separable metric space or a normed vector space S. SinceH

is separable, it has an orthonormal basis E = {ej ; j ∈ Λ} for some countable index

set Λ. As usual, we denote by 〈., .〉 and ||.|| the inner product and corresponding

norm that H is equipped with.
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Let {Ik; k ≥ 0} be an increasing sequence of finite subsets of Λ such that
⋃

k≥0 Ik = Λ and, for any k ≥ 0, Jk = Ik+1/Ik. For any k ≥ 0, we suppose that

there exist ζk,ℓ ∈ S, ℓ ∈ Ik and ηk,ℓ ∈ S, ℓ ∈ Jk, such that the two matrices

Ak = (ej(ζk,ℓ))(j,ℓ)∈I2

k
, Bk = (ej(ηk,ℓ))(j,ℓ)∈J 2

k
,

satisfy one of the two following conditions:

(A1) A∗
kAk = diag(ck,ℓ)ℓ∈Ik

and B∗
kBk = diag(sk,ℓ)ℓ∈Jk

, where ck,ℓ, sk,ℓ′ ,

for ℓ ∈ Ik and ℓ′ ∈ Jk, are positive constants,

(A2) AkA
∗
k = diag(dk,j)j∈Ik

and BkB
∗
k = diag(tk,j)j∈Jk

, where dk,j , tk,j′

for j ∈ Ik and j′ ∈ Jk, are positive constants.

For any x ∈ S, we set






















φk(x; ζk,ℓ) =
∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x),

ψk(x; ηk,ℓ) =
∑

j∈Jk

1
√

hj,k,ℓ

ej(ηk,ℓ)ej(x),

where

gj,k,ℓ =

{

ck,ℓ if (A1),

dk,j if (A2),
hj,k,ℓ =

{

sk,ℓ if (A1),

tk,j if (A2).

Then the collection

B = {φ0(x; ζ0,ℓ), ℓ ∈ I0; ψk(x; ηk,ℓ), k ≥ 0, ℓ ∈ Jk}

is an orthonormal basis for H (see [19, Theorem 2 (a)]).

Consequently, any f ∈ H can be expressed on B as

f(x) =
∑

ℓ∈I0

α0,ℓφ0(x; ζ0,ℓ) +
∑

k≥0

∑

ℓ∈Jk

βk,ℓψk(x; ηk,ℓ), x ∈ S,

where

α0,ℓ = 〈f, φ0(.; ζ0,ℓ)〉, βk,ℓ = 〈f, ψk(.; ηk,ℓ)〉.(2.1)

We formulate the two following assumptions on E :

• There exists a constant C1 > 0 such that, for any integer k ≥ 0,

∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ C1,

∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2 ≤ C1.(2.2)

This assumption is obviously satisfied under (A1) with C1 = 1. Remark

also that the second example in [19, Section 4] satisfies both (A2) and

(2.2).
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• There exists a constant C2 > 0 such that, for any integer k ≥ 0,

sup
x∈S

∑

j∈Jk

|ej(x)|2 ≤ C2|Jk|.(2.3)

This assumption is satisfied by the three examples in [19] (we have

supx∈S supj∈Jk
|ej(x)| ≤ 1). Remark that it contains [24, (3.16)].

2.2. Decomposition spaces

Let s > 0 and r > 0. From the wavelet coefficients (2.1) of a function f ∈ H,

we define the Besov spaces Bs
∞(H) by

Bs
∞(H) =







f ∈ H; sup
m≥0

|Jm|2s
∑

k≥m

∑

ℓ∈Jk

|βk,ℓ|2 <∞







(2.4)

and the “weak Besov spaces”Wr(H) by

Wr(H) =







f ∈ H; sup
λ>0

λr
∑

k≥0

∑

ℓ∈Jk

1I{|βk,ℓ|≥λ} <∞







,(2.5)

where 1IA is the indicator function on A.

Such kinds of function spaces are extensively used in approximation theory

for the study of non linear procedures such as thresholding and greedy algorithms.

See, e.g., [10] and [30]. From a statistical point of view, they are connected to

the maxiset approach. See, e.g., [3], [21] and [1].

3. DENSITY ESTIMATION FOR FUNCTIONAL DATA

3.1. Problem statement

Let {Ω,F , P} be a probability space and {Xi; i ≥ 1} be i.i.d. random

variables defined on {Ω,F , P} and taking values in a complete separable metric

space or a Hilbert space S associated with the corresponding Borel σ-algebra

B. Let PX be the probability measure induced by X1 on (S,B). Suppose that

there exists a σ-finite measure ν on the measurable space (S,B) such that PX

is dominated by ν. The Radon-Nikodym theorem ensures the existence of a

nonnegative measurable function f such that

PX(B) =

∫

B
f(x)ν(dx), B ∈ B.
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In this context, we aim to estimate f based on n observed functional data

X1, ..., Xn.

We suppose that f ∈ H, where H is a separable Hilbert space of real-valued

functions defined on S and square integrable with respect to the σ-finite measure

ν.

Moreover, we suppose that there exists a known constant Cf > 0 such that

sup
x∈S

f(x) ≤ Cf .(3.1)

The estimation of the density function for functional data has been first

addressed in [4], and the consistency in L2-norm has been established in [5] for

a projection estimator. More recently, [24] established the convergence in mean

square -with rate- of a non adaptive wavelets based estimator. We refer to these

papers for details and applications of the model.

3.2. Estimator

Following the procedure of [11] and adopting the notation of Section 2, we

define the wavelet hard thresholding estimator f̂ by

f̂(x) =
∑

ℓ∈I0

α̂0,ℓφ0(x; ζ0,ℓ) +

mn
∑

k=0

∑

ℓ∈Jk

β̂k,ℓ1I�
|β̂k,ℓ|≥κ

q
ln n
n

�ψk(x; ηk,ℓ),(3.2)

x ∈ S, where

α̂k,ℓ =
1

n

n
∑

i=1

φk(Xi; ζk,ℓ), β̂k,ℓ =
1

n

n
∑

i=1

ψk(Xi; ηk,ℓ),(3.3)

κ is a large enough constant and mn is the integer satisfying

1

2

n

lnn
< |Jmn | ≤

n

lnn
.

The construction of f̂ consists in three steps: firstly, we estimate the un-

known wavelet coefficients (2.1) of f by (3.3), secondly, we select only the “great-

est” β̂k,ℓ via a hard thresholding and thirdly we reconstruct the selected elements

of the initial wavelet basis. The choices of the threshold κ(lnn/n)1/2 (correspond-

ing to the “universal threshold”) and the definition of mn are based on theoretical

considerations (see Theorem 3.1 below).

Note that f̂ is adaptive, i.e., it does not depend on the knowledge of the

smoothness of f . It can be viewed as an adaptive and thresholded version of the

linear wavelet estimator proposed by [24]
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Details on the wavelet hard thresholding estimator for H = Lp([a, b]) and

the standard nonparametric models can be found in [11], [9], [20] and [32].

3.3. Results

Theorem 3.1 below evaluates the performance of f̂ assuming that f belongs

to the decomposition spaces described in Subsection 2.2.

Theorem 3.1. Consider the density estimation problem described in

Subsection 3.1. Suppose that E satisfies (2.2) and (2.3). Let f̂ be given by (3.2).

Suppose that f satisfies (3.1) and, for any θ ∈ (0, 1), f ∈ Bθ/2
∞ (H) ∩W2(1−θ)(H),

where Bθ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)(H) (2.5) with r = 2(1 − θ).

Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)θ

for n large enough.

An immediate consequence is the following upper bound result: if f ∈
Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H) for s > 0, then there exists a constant C > 0 such

that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “standard”

minimax setting (see, e.g., [20]).

Moreover, applying [21, Theorem 3.2], one can prove that Bθ/2
∞ (H) ∩

W2(1−θ)(H) is the “maxiset” associated to f̂ at the rate of convergence (lnn/n)θ,

i.e.,

lim
n→∞

( n

lnn

)θ
E(||f̂ − f ||2) <∞ ⇔ f ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H).

These new theoretical results complete the work of [24] in the sense that

our wavelet-based procedure is adaptive thanks to its term-by-term selection of

the β̂k,ℓ and we prove that it achieves a suitable rate of convergence over a wide

class of functions well adapted to our setting.

The next section considers another statistical problem: the the regression

estimation for functional data. We show how adapt our wavelet methodology to

this problem.
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4. REGRESSION ESTIMATION FOR FUNCTIONAL DATA

4.1. Problem statement

Let {Ω,F , P} be a probability space and {(Xi, Yi); i ≥ 1} be i.i.d. replica of

a couple of random variables (X,Y ) defined on {Ω,F , P}, where Y is real valued

and X takes values in a complete separable metric space or a Hilbert space S

associated with the corresponding Borel σ-algebra B such that

Y = f(X) + ǫ,(4.1)

f denotes an unknown regresion function and ǫ is a random variable independent

of X with ǫ ∼ N (0, 1). We suppose that f ∈ H where H is a separable Hilbert

space of real-valued functions defined on S. Let PX be the probability measure

induced by X1 on (S,B). Suppose that there exists a σ-finite measure ν on the

measurable space (S,B) such that PX is dominated by ν. As a consequence of

the Radon-Nikodym theorem, there exists a nonnegative measurable function g

such that

PX(B) =

∫

B
g(x)ν(dx), B ∈ B.

We suppose that g is known.

In this context, we want to estimate f from (X1, Y1), ..., (Xn, Yn).

The kernel estimator of the regression function for functional data has been

proposed by [13] and the convergence in mean square of that estimator has been

established by [15] with the rate O(h2 + (nP (X ∈ B(x, h))−1) where h is the

bandwidth. Note that the optimal choice of h depends on the underlying unknown

distribution.

We shall suppose that there exist two known constants Cf > 0 and cg > 0

such that

sup
x∈S

f(x) ≤ Cf , inf
x∈S

g(x) ≥ cg.(4.2)

4.2. Results

Theorem 4.1 below explores the performance of f̂ assuming that f belongs

to the decomposition spaces described in Subsection 2.2.
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Theorem 4.1. Consider the regression estimation problem described above.

Suppose that E satisfies (2.2) and (2.3). Let f̂ be as in (3.2) with

α̂k,ℓ =
1

n

n
∑

i=1

Yi

g(Xi)
φk(Xi; ζk,ℓ), β̂k,ℓ =

1

n

n
∑

i=1

Yi

g(Xi)
ψk(Xi; ηk,ℓ),

κ is a large enough constant and mn is the integer satisfying

1

2

n

(lnn)2
< |Jmn | ≤

n

(lnn)2
.

Suppose that f and g satisfy (4.2) and, for any θ∈(0,1), f ∈Bθ/2
∞ (H)∩W2(1−θ)(H),

where Bθ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)(H) (2.5) with r = 2(1 − θ).

Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

(lnn)2

n

)θ

for n large enough.

Again, note that, if f ∈ Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H) for s > 0, then there

exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

(lnn)2

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “standard”

minimax setting (see, e.g., [20]) up to an extra logarithmic term. To the best

of our knowledge, Theorem 4.1 is first one studying an adaptive wavelet-based

estimator for functional data in the nonparametric regression context.

CONCLUSION AND PERSPECTIVES

We construct an efficient and new adaptive estimator for an unknown func-

tion f belonging to a separable Hilbert space H. To reach this goal, we combine

several existing techniques: the wavelet basis on H developed by [19], the hard

thresholding rule introduced by [11] and some elements related to the maxiset

approach proposed by [3]. Rates of convergence are determined under the mean

integrated squared error on H over Bθ/2
∞ (H) ∩W2(1−θ)(H). Perspectives of this

work are

• To determine the optimal lower bounds over the considered spaces,

• To remove the logarithmic term by perhaps considering other thresh-

olding techniques. Thanks to its performances in numerous i.i.d. non-

parametric models, the block thresholding introduced by [2] is a good

candidate.
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• Consider the regression model (4.1) with an unknown g.

These aspects require further investigations that we leave for a future work.

5. PROOFS

In this section, C denotes any constant that does not depend on j, k and

n. Its value may change from one term to another and may depends on φ or ψ.

Proof of Theorem 3.1: The proof of Theorem 3.1 is a consequence of

[21, Theorem 3.1] with c(n) = (lnn/n)1/2, σi = 1, r = 2 and the following propo-

sition.

Proposition 5.1. For any k ∈ {0, ...,mn} and any ℓ ∈ Ik or ℓ ∈ Jk, let

αk,ℓ and βk,ℓ be given by (2.1), and α̂k,ℓ and β̂k,ℓ be given by (3.3). Then

(i) There exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
lnn

n
.

(ii) There exists a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii) For κ > 0 large enough, there exists a constant C > 0 such that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ 2

(

lnn

n

)2

.

Let us now prove (i), (ii) and (iii) of Proposition 5.1 (which corresponds

to [21, (3.1) and (3.2) of Theorem 3.1]).

(i) We have

E(α̂k,ℓ) = E(φk(X1; ζk,ℓ)) =

∫

S
f(x)φk(x; ζk,ℓ)ν(dx) = αk,ℓ.(5.1)

So

E(|α̂k,ℓ − αk,ℓ|2) = V (α̂k,ℓ) =
1

n
V (φk(X1; ζk,ℓ)) ≤

1

n
E
(

|φk(X1; ζk,ℓ)|2
)

.
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It follows from (3.1), the fact that E is an orthonormal basis of H and (2.2) that

E
(

|φk(X1; ζk,ℓ)|2
)

=

∫

S
|φk(x; ζk,ℓ)|2f(x)ν(dx)

≤ Cf

∫

S
|φk(x; ζk,ℓ)|2ν(dx)

= Cf

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= Cf

∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ CfC1.(5.2)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.1), we show that E (ψk(Xi; ηk,ℓ)) = βk,ℓ. Hence

E(|β̂k,ℓ − βk,ℓ|4) =
1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ,(5.3)

where

Ui,k,ℓ = ψk(Xi; ηk,ℓ) − E(ψk(Xi; ηk,ℓ)).

We will bound this last term via the Rosenthal inequality (recalled in the

Appendix).

We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we have

E(|U1,k,ℓ|2) ≤ CE
(

|ψk(X1; ηk,ℓ)|2
)

≤ C.(5.4)

Let us now investigate the bound of E(|U1,k,ℓ|4). Observe that, thanks to the

Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ

|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|2




1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn | ≤ C

√

n

lnn
.(5.5)
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The Hölder inequality, (5.5) and (5.4) yield

E(|U1,k,ℓ|4) ≤ CE
(

|ψk(X1; ηk,ℓ)|4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|2
)

≤ Cn.(5.6)

It follows from the Rosenthal inequality, (5.4) and (5.6) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|4
)

,
(

nE
(

|U1,k,ℓ|2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

.(5.7)

By (5.3) and (5.7), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii) We adopt the same notation as in (ii). Observe that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

.(5.8)

We will bound this probability via the Bernstein inequality (recalled in the

Appendix).

We have E(U1,k,ℓ) = 0.

By (5.5),

|U1,k,ℓ| ≤ C sup
x∈S

|ψk(x; ηk,ℓ)| ≤ C

√

n

lnn
.

Applying (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|U1,k,ℓ|2) ≤
C.

It follows from the Bernstein inequality that

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ 2 exp



− Cn2κ2 ln n
n

n+ nκ
√

ln n
n

√

n
ln n



 ≤ 2n−w(κ),(5.9)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, combining (5.17) and (5.19), and taking κ such that

w(κ) = 2, we have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

The points (i), (ii) and (iii) of Proposition 5.1 are proved. The proof of Theorem

3.1 is complete.
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Proof of Theorem 4.1: As in the proof of Theorem 3.1, we only need to

prove (i), (ii) and (iii) of Proposition 5.1.

(i) Since X1 and ǫ1 are independent and E(ǫ1) = 0, we have

E(α̂k,ℓ) = E

(

Y1

g(X1)
φk(X1; ζk,ℓ)

)

= E

(

f(X1)

g(X1)
φk(X1; ζk,ℓ)

)

=

∫

S

f(x)

g(x)
φk(x; ζk,ℓ)g(x)ν(dx) = αk,ℓ.(5.10)

So

E(|α̂k,ℓ − αk,ℓ|2) = V (α̂k,ℓ) =
1

n
V

(

Y1

g(X1)
φk(X1; ζk,ℓ)

)

≤ 1

n
E

(

∣

∣

∣

∣

Y1

g(X1)
φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

.

It follows from (4.2), |Y1| ≤ Cf + |ǫ1|, g(X1) ≥ cg, the independence between X1

and ǫ1, E(ǫ21) = 1, the fact that E is an orthonormal basis of H and (2.2) that

E

(

∣

∣

∣

∣

Y1

g(X1)
φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

≤ (C2
f + 1)

1

cg
E

(

|φk(X1; ζk,ℓ)|2
1

g(X1)

)

= (C2
f + 1)

1

cg

∫

S
|φk(x; ζk,ℓ)|2

1

g(x)
g(x)ν(dx)

= C

∫

S
|φk(x; ζk,ℓ)|2ν(dx)

= C

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= C
∑

j∈Ik

1

gj,k,ℓ
|ej(ζk,ℓ)|2 ≤ C.(5.11)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|2) ≤ C
1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.10), we show that E (Yiψk(Xi; ηk,ℓ)/g(Xi)) = βk,ℓ.

Set

Ui,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ) − E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)

)

.

and observe that

E(|β̂k,ℓ − βk,ℓ|4) =
1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 .(5.12)

We will bound this last term via the Rosenthal inequality (recalled in the Ap-

pendix).
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We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we obtain

E(|U1,k,ℓ|2) ≤ CE

(

∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

2
)

≤ C.(5.13)

Let us now investigate the bound of E(|U1,k,ℓ|4). Observe that, thanks to the

Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ

|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ
|ej(ηk,ℓ)|2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|2




1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn | ≤ C

√

n

(lnn)2
.(5.14)

The Hölder inequality, (5.14) and (5.13) yield

E(|U1,k,ℓ|4) ≤ CE
(

|ψk(X1; ηk,ℓ)|4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|2
)

≤ Cn.(5.15)

It follows from the Rosenthal inequality, (5.13) and (5.15) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|4
)

,
(

nE
(

|U1,k,ℓ|2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

.(5.16)

By (5.12) and (5.16), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|4) ≤ C

(

lnn

n

)2

.

(iii) We adopt the same notation as in (ii). Since E (Yiψk(Xi; ηk,ℓ)/g(Xi))

= βk,ℓ, we can write

Ui,k,ℓ = Vi,k,ℓ +Wi,k,ℓ,

where

Vi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAi

− E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAi

)

,

Wi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAc

i
− E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAc

i

)

,

Ai =
{

|ǫi| ≥ c∗
√

lnn
}
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and c∗ denotes a constant which will be chosen later.

We have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ I1 + I2,(5.17)

where

I1 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

≥ κ

4

√
n lnn

)

and

I2 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Wi,k,ℓ

∣

∣

∣

∣

∣

≥ κ

4

√
n lnn

)

.

Let us now bound I1 and I2.

Upper bound for I1. The Markov inequality and the Cauchy-Schwarz in-

equality yield

I1 ≤ 4

κ
√
n lnn

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

)

≤ C

√

n

lnn
E(|V1,k,ℓ|)

≤ C

√

n

lnn
E

(∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

1IA1

)

≤ C

√

n

lnn

(

E

(

∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

2
))1/2

(P (A1))
1/2.

Using (5.13), an elementary Gaussian inequality and taking c∗ large enough, we

obtain

I1 ≤ C

√

n

lnn
e−c2

∗
ln n/4 ≤ C

1

n2
.(5.18)

Upper bound for I2. We will bound this probability via the Bernstein in-

equality (recalled in the Appendix).

We have E(W1,k,ℓ) = 0.

Using (4.2) which implies |Y11IAc
1
| ≤ Cf + c∗

√
lnn ≤ C

√
lnn and g(X1) ≥

cg, and (5.14), we obtain

|Wi,k,ℓ| ≤ C
√

lnn sup
x∈S

|ψk(x; ηk,ℓ)| ≤ C
√

lnn

√

n

(lnn)2
= C

√

n

lnn
.

Applying (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|W1,k,ℓ|2) ≤
C.
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It follows from the Bernstein inequality that

I2 ≤ 2 exp



− Cn2κ2 ln n
n

n+ nκ
√

ln n
n

√

n
ln n



 ≤ 2n−w(κ),(5.19)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, taking κ such that w(κ) = 2, we have

I2 ≤ 2
1

n2
.

It follows from (5.17), (5.18) and (5.19) that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

Hence the points (i), (ii) and (iii) of Proposition 5.1 are satisfied by our estima-

tors. The proof of Theorem 4.1 is complete.
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APPENDIX

Here we state the two inequalities that have been used for proving the

results in earlier section.

Lemma A.1 ([29]). Let n be a positive integer, p ≥ 2 and V1, ..., Vn be n

zero mean i.i.d. random variables such that E(|V1|p) <∞. Then there exists a

constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

p)

≤ Cmax
(

nE(|V1|p), np/2
(

E(V 2
1 )
)p/2

)

.

Lemma A.2 ([23]). Let n be a positive integer and V1, ..., Vn be n i.i.d.

zero mean random variables such that there exists a constant M > 0 satisfying

|V1| ≤M <∞. Then, for any υ > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

− υ2

2
(

nE(V 2
1 ) + υM/3

)

)

.
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