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Abstract:

• We establish first an asymptotic expansion for the joint survival function of a bivari-
ate Rayleigh distribution, one of the most popular probabilistic models in engineering.
Furthermore, we show that the component-wise maxima of a Hüsler–Reiss triangu-
lar array scheme of independent perturbed bivariate Rayleigh risks converges to a
bivariate Hüsler–Reiss random vector.
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1. INTRODUCTION

Let (X1, Y1), ..., (XN , YN ) be independent bivariate Gaussian random vec-

tors with N(0, 1) distributed marginals and correlation coefficient ρ ∈ (−1, 1).

We define a bivariate Rayleigh random vector (risk), (Um, Vm), by

Um =
N∑

i=1

(
Xi −

N∑

i=1

Xi/N
)2

, and Vm =
N∑

i=1

(
Yi −

N∑

i=1

Yi/N
)2

,

where m := N − 1. Basic distributional properties of bivariate Rayleigh random

vectors are derived in Nadarajah [23]. In view of equation (3) in Nadarajah [23],

the joint probability density function (pdf) of (Um, Vm), m ≥ 1 is

h(u, v) =
(uv)m/2−1

Γ(m/2) (2˜̺)m/2
exp
(
−u + v

2˜̺
)

·0F1

(
; m/2; ρ2uv/ (2˜̺)2

)
, ∀u, v ∈ (0,∞),(1.1)

where ρ ∈ (−1, 1), ˜̺ := 1 − ρ2 and

0F1 (; a; x) =

∞∑

k=0

1

(a)k

xk

k!

denotes a hypergeometric function, where (e)k = e(e + 1)···(e + k − 1) denotes

the ascending factorial.

The distribution given by the joint pdf (1.1) is known as the bivariate

Rayleigh distribution. It has received widespread applications especially in en-

gineering. Some recent applications have included: statistics of wave groups

measured in the northern North Sea (Stansell et al. [27]); performance analysis

of system with selection combining over correlated Rician fading channels in the

presence of cochannel interference (Panajotović et al. [24]); cochannel interference

effect on bit error probability performance of switch and stay combining receiver

in correlated Rician fading (Panajotović et al. [25]).

The bivariate Rayleigh distribution has also been used to model extreme

values, for example, with respect to depth-limited extreme wave heights in a sea

state (Méndez and Castanedo [21]), reliability assessment of marine structures

(Leira and Myrhaug [17], Leira et al. [18]), and asymptotic capacity analysis in

point-to-multipoint cognitive radio networks (Ji and Chen [14]). But the asymp-

totic distribution of the extreme values of (Um, Vm) has not been known. The

principal aim of this short note is to establish the limiting max-stable distribution

of (Um, Vm).

An important max-stable multivariate distribution related to our results is

the Hüsler–Reiss distribution due to Hüsler and Reiss [13]. In a bivariate setting,
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Hüsler–Reiss distribution has the joint cumulative distribution function (cdf)

Hλ(x, y) = exp

[
− Φ

(
λ +

x − y

2λ

)
exp(−y)

−Φ

(
λ +

y − x

2λ

)
exp(−x)

]
, x, y ∈ R,(1.2)

where Φ(·) denotes the standard normal cdf and λ ∈ (0,∞) is a parameter. For

any λ, the marginal cdf’s of Hλ are the Gumbel cdf’s Λ(x) = exp{− exp(−x)},
x ∈ R.

The parameter λ has a nice representation and comes naturally in the setup

of Gaussian triangular arrays. Roughly speaking, if ρn ∈ (−1, 1) is the correlation

coefficient of a bivariate triangular array, then under the Hüsler–Reiss condition

lim
n→∞

(1 − ρn) lnn = λ2 ∈ (0,∞),

the cdf Hλ appears as the limiting distribution of the normalized maxima.

Hüsler–Reiss distribution has received widespread applications. Hüsler–

Reiss distribution arises not only as the limiting max-stable distribution of the

componentwise maxima of Gaussian random vectors, but it arises also as the

limiting max-stable distribution of the componentwise maxima of random vectors

having chi-square, elliptically symmetric and other distributions, see Hashorva

[10], Frick and Reiss [8] and Hashorva et al. [11].

Some applications of Hüsler–Reiss distribution have included: models for

environmental data (Joe [15]); portfolio risk measurement (Bouyé [2]); extremal

dependence of multivariate catastrophic losses (Lescourret and Robert [19], Haug

et al. [12]); inference for bivariate survival data (Ding and Wang [4]); models for

spatial extremes (Smith and Stephenson [26]); spatial extreme fields (Bacro et al.

[1]); models for extremes observed in space and time (Davis et al. [3]); multivariate

value at risks for operational risk capital computation (Guegan and Hassani [9]);

extremal discriminant analysis (Manjunath et al. [20]); multiasset derivatives

and joint distributions of asset prices (Molchanov and Schmutz [22]). Important

recent contributions and insights concerning the Hüsler–Reiss distribution can be

found in Kabluchko [16] and Engelke et al. [5, 6, 7].

It follows from (1.1) that both Um and Vm are chi-squared random variables

with m degrees of freedom. Let Gm denote the cdf’s of Um and Vm. They belong

to the Gumbel max-domain of attraction with scaling function w(t) = 1/2, i.e.,

lim
x→∞

1 − Gm (x + s/w(x))

1 − Gm(x)
= exp(−s), s ∈ R.

Equivalently,

lim
n→∞

sup
s∈R

∣∣∣(Gm (ans + bn))n − Λ(s)
∣∣∣ = 0
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with constants

an = 2, bn = 2 lnn + (m − 2) ln lnn − 2 ln Γ
(m

2

)
, n > 1.

As in Hüsler and Reiss [13] we shall consider a triangular array setup,

which is of interest when the components are asymptotically independent. In

the Gaussian framework, the asymptotic independence of the components is well

known, i.e.,

lim
u→∞

P (X1 > u, Y1 > u)

P (X1 > u)
= 0

for any ρ ∈ (−1, 1). In view of Hashorva et al. [11], Um and Vm are asymptotically

independent for any ρ ∈ (−1, 1). So, we have

lim
n→∞

nP (Um > x + bn, Vm > y + bn) = 0.(1.3)

Our first result below presented in Theorem 2.1 gives the exact rate of convergence

to zero claimed in (1.3). In the light of the aforementioned paper, the component-

wise maxima of bivariate triangular arrays of Rayleigh risks is attracted to the

Hüsler–Reiss distribution. Indeed, in order to see that let (U ′
m, V ′

m) be another

bivariate random vector defined by the stochastic representation

U ′
m =

m∑

i=1

X2
i , V ′

m =
m∑

i=1

Y 2
i

and further

Um + N
(
XN

)2
= U ′

m+1, Vm + N
(
Y N

)2
= V ′

m+1, N = m + 1.

Moreover, (Um, Vm) is independent of (XN , Y N ), and (
√

NXN ,
√

NY N ) has the

same distribution as (X1, Y1), implying the equality in distribution

(Um, Vm)
d
=
(
U ′

m, V ′
m

)
.

Consequently, in view of Hashorva et al. [11] the asymptotic behavior of the

component-wise maxima of a Hüsler–Reiss triangular array scheme of bivariate

Rayleigh risks is known.

In Section 2, we establish the rate of convergence to zero for the joint sur-

vival function P (Um > x + b, Vm > y + b) as b tends to infinity. Then we consider

a perturbation of Rayleigh risks and derive the limiting distribution of bivariate

maxima of triangular arrays of such risks, which turns out to be the bivariate

Hüsler–Reiss distribution. All of the proofs are provided in Section 3.
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2. MAIN RESULTS

Our first result derives the exact tail asymptotic behavior of the joint sur-

vival function of two bivariate Rayleigh risks, which in particular implies (1.3).

Theorem 2.1. With the notation as in Section 1, for any x, y reals and

ρ ∈ (−1, 1), we have

P (Um > x + b, Vm > y + b) =

√
2|ρ|(1−m)/2 ˜̺3/2

√
π

b(m−3)/2 exp

(
− b

1 + |ρ|

)

·
[
1 + O

(
b−1
)]

as b → ∞.

A direct consequence of Theorem 2.1 is that Um and Vm are asymptotically

independent for any ρ ∈ (−1, 1).

Our second result is concerned with perturbed Rayleigh risks: in order to

motivate the definition of such risks, recall that we can write

Yi
d
= ρXi +

√
1 − ρ2Zi, 1 ≤ i ≤ N

with Xi, Zi, i ≤ N independent N(0, 1) risks. Since in the triangular array frame-

work introduced in Hüsler and Reiss [13] the correlation coefficient ρ = ρn tends

to one as n → ∞, we see that the base risk is Xi, i ≤ N and Zi plays the role

of a perturbation. Since as mentioned in Section 1, the case of Rayleigh risks is

already dealt with in Hashorva et al. [11], we consider the asymptotic distribu-

tion of component-wise maxima for triangular arrays of perturbed independent

Rayleigh risks. Therefore, we introduce next (Xi, Yi), i ≥ 1 with the stochastic

representation

(Xi, Yi)
d
=
(
X, ρX +

√
1 − ρ2Z

)
,(2.1)

where X is a base random variable independent of Z ∼ N(0, 1). Clearly, if X

is also a N(0, 1) random variable, then (Xi, Yi) is a bivariate Rayleigh risk and

ρ is the correlation coefficient. Let now (U (n)
m,i,V

(n)
m,i), 1 ≤ i ≤ n be independent

bivariate random vectors with joint cdf Fmn that coincides with the joint cdf

of (Um, Vm) for some fixed ρn ∈ (−1, 1), where for the definition of (Um, Vm)

we consider the general bivariate random vectors (Xi, Yi) given by (2.1) with ρ

substituted by ρn ∈ (−1, 1). Note that the cdf of Vm depends on n since we use

now ρn. However, the cdf of Um does not depend on n.

Under some restrictions on the marginal distributions Fmn,i, i = 1, 2 of Fmn

we have the following result.
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Theorem 2.2. Suppose that for some positive constants an > 0, bn ∈ R,

n ≥ 1 we have

lim
n→∞

sup
x∈R

∣∣∣(Fmn,i (anx + bn))n − Λ(x)
∣∣∣ = 0, i = 1, 2.

If further the Hüsler–Reiss condition

lim
n→∞

(1 − ρn)
bn

an
= λ2 ∈ [0,∞)(2.2)

holds, then

lim
n→∞

sup
x,y∈R

∣∣∣(Fmn (anx + bn, any + bn))n − Hλ(x, y)
∣∣∣ = 0,(2.3)

where Hλ is given in (1.2).

Remarks:

a) The convergence in (2.3) can be stated equivalently as the joint weak

convergence of
(
maxi≤n U (n)

mi , maxi≤n V(n)
mi

)
as n → ∞.

b) In the case m = 2 and the base risk is X = WI with W having N(0, 1)

distribution and I being a Bernoulli random variable independent of

W , we can check that the assumptions of Theorem 2.2 are fulfilled.

3. PROOFS

Proof of Theorem 2.1: Using the well-known fact that

0F1 (; b, z) ∼ Γ(b)

2
√

π
z(1−2b)/4 exp

(
2
√

z
)

as z → ∞, we have

P (Um > x + b, Vm > y + b)

=
1

Γ(m/2) (2˜̺)m/2

∫ ∞

x+b

∫ ∞

y+b
(uv)m/2−1 exp

(
−u + v

2˜̺
)

·0F1

(
; m/2; ρ2uv/ (2˜̺)2

)
dvdu

∼ |ρ|(1−m)/2

2
√

π (2˜̺)1/2

∫ ∞

x+b

∫ ∞

y+b
(uv)(m−3)/4 exp

( |ρ|√uv

˜̺ − u + v

2˜̺
)
dvdu

=:
|ρ|(1−m)/2

2
√

π (2˜̺)1/2
I (b) .(3.1)
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Since
√

uv ≤ (u + v)/2,

I(b) ≤
∫ ∞

x+b

∫ ∞

y+b
(uv)(m−3)/4 exp

(
− u + v

2(1 + |ρ|)

)
dvdu

=

∫ ∞

x+b
u(m−3)/4 exp

(
− u

2(1 + |ρ|)

)
du

∫ ∞

y+b
v(m−3)/4 exp

(
− v

2(1 + |ρ|)

)
dv

=
1

[2 (1 + |ρ|)](m+1)/2
Γ
(m + 1

4
,

2x + b

2(1 + |ρ|)
)
Γ
(m + 1

4
,

2y + b

2(1 + |ρ|)
)
,

where Γ(s, z) =
∫∞

z ts−1 exp(−t)dt denotes the complementary incomplete gamma

function. Since ∫ ∞

z
ts−1 exp(−At)dt =

Γ(s, Az)

As
, A > 0

and

Γ(s, z) = exp(−z)zs−1
(
1 + O

(
z−1
))

as |z| → ∞, we conclude that for |ρ| < 1

I(b) =

[
exp

(
−x + b/2

1 + |ρ|

)(x + b/2

1 + |ρ|
)m−3

4

]

·
[
exp

(
−y + b/2

1 + |ρ|

)(y + b/2

1 + |ρ|
)m−3

4

](
1 + O

(
b−1
))

= b

m−3

2
exp

 
−

b

1 + |ρ|

!(
1+O(b−1)

)

(3.2)

as b → ∞. The proof follows by combining (3.2) and (3.1).

Proof of Theorem 2.2: Let (Um, Vmn) be a bivariate random vector with

the joint cdf Fmn. By the assumptions on the marginal distributions of Fmn, the

proof follows if we show that

lim
n→∞

nP (Um > anx + bn, Vmn > any + bn) = exp(−x) + exp(−y) − lnHλ(x, y)

=: g(x, y)

holds for any x, y ∈ R. Let Z, Z1, ..., Zn be independent N(0, 1) random variables

and let

(Xi, Yi)
d
=
(
Xi, ρnXi +

√
1 − ρ2

nZi

)
,

assuming further that Xi, Zi, i ≤ n are mutually independent and Xi
d
= X, i ≥ 1.

Hence, we obtain

V 2
mn

d
=

N∑

i=1

(
Yi −

N∑

i=1

Yi/N

)2

d
=

N∑

i=1

(
ρn

(
Xi − XN

)
−
√

1 − ρ2
n

(
Zi − ZN

))2

d
= ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m,
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where

Tm =
N∑

i=1

(
Xi − XN

)
Zi, V ∗

m =
N∑

i=1

(
ZN − Zi

)2
.

By the independence of Xi, Zi, i ≤ n, XN and the fact that Z, Z1, ..., ZN are in-

dependent N(0, 1) random variables, we may further write

Tm =
N∑

i=1

(
Xi − XN

)
Zi

d
= Z1

√√√√
N∑

i=1

(
Xi − XN

)2 d
= Z

√
Um.(3.3)

Hence, as in Hashorva et al. [11], we have for any ε > 0 and any x, y ∈ R

P (Um > anx + bn, Vmn > any + bn)

= P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m > any + bn

)

≤ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m > any + bn,

(
1 − ρ2

n

)
V ∗

m ≤ ε
)

+ P
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)

≤ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any − ε + bn

)

+ P
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)
.

By the assumptions, we have

lim
n→∞

nP (Um > anx + bn) = exp(−x), ∀x ∈ R.

Consequently, for some ε sufficiently small

lim
n→∞

nP
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)

= lim
n→∞

nP (Um > anx + bn) P
((

1 − ρ2
n

)
V ∗

m > ε
)

= 0.

By the fact that V ∗
m is non-negative, we have further

P (Um > anx + bn, Vmn > any + bn)

≥ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

)
.

We have with H the cdf of Um (which does not depend on n)

n [1 − H (bn)] → 1, Hn(x) :=
1 − H (anx + bn)

1 − H (bn)
→ exp(−x), ∀x ∈ R

as n → ∞. Furthermore, by condition (2.2) and the fact that Z
d
= −Z

ln(x, y) := P

(
ρn (anx + bn) − 2ρn

√
1 − ρ2

n

√
anx + bnZ > any + bn

)

→ P
(
4λZ > 2y − 2x + 2λ2

)
, n → ∞
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holds locally uniformly for x ∈ R. Using a conditional argument as in Hashorva

et al. [11] and utilizing further (3.3), we obtain

g(x, y)

= lim
n→∞

n

∫ ∞

anx+bn

P

(
ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

∣∣∣Um = s
)

dH(s)

= lim
n→∞

1

1 − H (bn)

∫ ∞

x
P

(
ρ2

n (ant + bn) − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

∣∣∣

Um = ant + bn

)
dH (ant + bn)

= − lim
n→∞

∫ ∞

x
P

(
ρ2

n (ant + bn) − 2ρn

√
1 − ρ2

n

√
ant + bnZ > any + bn

)
dHn(t)

= − lim
n→∞

∫ ∞

x
ln(t, y)dHn(t)

=

∫ ∞

x
P (Z > (y − t)/(2λ) + λ/2) exp(−t)dt.

Utilizing the explicit expression of g(x, y) derived in Hüsler and Reiss [13] estab-

lishes the proof.
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interference effect on BEP performance of SSC receiver in correlated Rician fad-
ing, Journal of the Franklin Institute — Engineering and Applied Mathematics,
347, 1242–1252.

[26] Smith, E.L. and Stephenson, A.G. (2009). An extended Gaussian max-stable
process model for spatial extremes, Journal of Statistical Planning and Inference,
139, 1266–1275.

[27] Stansell, P.; Wolfram, J. and Linfoot, B. (2002). Statistics of wave groups
measured in the northern North Sea: Comparisons between time series and spec-
tral predictions, Applied Ocean Research, 24, 91–106.


