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limit. This class is based on the PORT methodology, with PORT standing for peaks
over random thresholds. Asymptotic normality of such estimators is achieved under a
third-order condition on the right-tail of the underlying model F’ and for suitable large
intermediate ranks. An illustration of the finite sample behaviour of the estimators is
provided through a small-scale Monte-Carlo simulation study.
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1. INTRODUCTION AND MOTIVATION

Let X, = (Xi,..., X,) denote a random sample of n independent, identi-
cally distributed (i.i.d.) random variables (r.v.’s) with distribution function (d.f.)
F. We are interested in heavy-tailed models, i.e. in d.f.’s with a regularly varying
right-tail. This means that, for £ > 0, the right tail-function

F:=1—-F
is such that

(1.1) tlim F(tz)/F(t) = =~ Y¢  forall z > 0.

We then say that F is of regular variation at infinity with an index equal to —1/¢,
and define

(1.2) Ge(z -:{eXp(_(1+5$)_1/§)7 14+€x>0,if €40

exp(—exp(—x)), z€R, if £€=0,

the general extreme-value (EV) distribution function. If (1.1) holds, we are in the
domain of attraction for maxima of G¢, with £ > 0, and we write F' € Da(Geso),
meaning that it is possible to find sequences of real constants {a,, > 0} and {b,, €
R} such that the maximum X,., := max(Xj,..., X,), linearly normalized, i.e.
(Xnm — bn)/an, converges in distribution to a non-degenerate r.v. with d.f. G¢(z),
in (1.2), with £ > 0. This type of heavy-tailed models arises often in practice, in
fields like telecommunication traffic, finance, insurance, economics, ecology and
biometry, among others. The parameter £, in (1.2), is the extreme-value index
(EVI), one of the primary parameters of extreme events.

Let F~ denote the generalised inverse function of F', defined by
(1.3) F=(t) :==inf{z: F(x) > t},
and let U be the associated (reciprocal) quantile function, defined as

(1.4) Ut):=F—(1-1/t), t>1.

1.1. First and second-order conditions for heavy-tailed models

In a heavy-tailed framework, i.e. if (1.1) holds, with the usual notation RV,
for the class of regularly varying functions at infinity with an index a € R, and on
the basis of the results in Gnedenko (1943), for the right-tail function FF =1 — F,
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and in de Haan (1984), for U in (1.4), the following first-order conditions are
equivalent,

(1.5) F eDy(Geso) <= FeRV.,, <= UEecRV.

Now we need to say something about the rate of convergence in (1.5), and assume
that the following limiting relation holds for every x > 0,

(1.6)

zP—1
fp<O
. InU(tz)-InU@{)—Elnz _ » 1L p
lim (tz) A(t)() _{ P

t—00 Inz, if p=0,

where |A| must then be in RV, (Geluk and de Haan, 1987). The second-order
parameter p < 0 rules the rate of convergence provided by (1.6), which increases
with |p|. Note further that in the scope of applications, the most common models
depend on a location or shift parameter s € R, not necessarily null, i.e. F(z) =
Fs(x) = Fo(x —s). Then, U(t) = Uy(t) = Uy(t) + s and also both A and p depend
obviously on s, i.e. A = A and p = ps, with

(1.7) ps::{_éaif§+p0<0 As#0

Pos otherwise.

Among the literature specifically devoted to the estimation of the second-
order parameter p, in (1.6), we mention Gomes et al. (2002), Fraga Alves et
al. (2003a), and the more recent articles by Goegebeur et al. (2008; 2010), Ciu-
perca and Mercadier (2010) and Caeiro and Gomes (2012a,b). Indeed, most of
the research devised to improve the classical EVI-estimators tries to reduce the
dominant component of their asymptotic bias, deals with second-order reduced-
bias (SORB) EVI-estimators, and an adequate estimation of p is needed, for an
adequate reduction of the bias. Some of the pioneering papers in the area of
SORB-estimation are the ones by Beirlant et al. (1999), Feuerverger and Hall
(1999), Gomes et al. (2000) and Gomes and Martins (2001; 2002). More recently,
the minimum-variance reduced-bias (MVRB) EVI-estimators, studied in Caeiro
et al. (2005), Gomes et al. (2007) and Gomes et al. (2008¢c), among others, also
call for an adequate estimation of p. An overview of the subject can be found in
Chapter 6 of the book by Reiss and Thomas (2007). See also Gomes et al. (2008a)
and Beirlant et al. (2012) in this respect. However, despite of scale-invariant, all
these MVRB EVlI-estimators are not location-invariant.

1.2. The PORT methodology

Let Xin, 1 <i < n, be the 0.s.’s associated with the random sample X, =
(X1, ..., Xp,) with common d.f. Fy. The class of estimators suggested here is a
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function of the sample of excesses over a random threshold X, .,, with ng, =
|ng| + 1, where |z | stands for the integer part of 2. Such a sample is denoted by

(18) K(f{) = (Xn:n - an:na anl:n - an:na ey an+1:n - an:n) )
where, we can have

e 0<q<1,forany Fy € Dyp(Geso) (the random threshold, Xy, .p, is an
empirical quantile);

e ¢ =0, for d.f.’s with a finite left endpoint =, := inf{x : Fy(z) > 0}, (the
random threshold is the minimum, Xi.,).

Any statistical inference methodology based on the sample of excesses X (nq), in
(1.8), will be called a PORT-methodology, with PORT standing for peaks over
random thresholds, a term coined by Araijo Santos et al. (2006). This method-
ology enabled the introduction and study of classical location/scale invariant
EVI-estimators, like the PORT-Hill and the PORT-Moment estimators, studied
for finite-samples in Gomes et al. (2008b). This methodology was also applied in
the estimation of high quantiles in Henriques-Rodrigues and Gomes (2009).

Such a methodology leads to location-invariant estimation, where the un-
shifted model Fy thus plays a central role. In what follows, we use the notation
Xq for the g-quantile of the d.f. Fp, i.e. the value

(1.9) Xq = Fy (q)

(by convention xo := x,, the left endpoint of Fp), with F*(-) defined in (1.3).
Since ng/n — ¢, as n — 0o, we then know that the o.s. X, ., associated with
a sample from Fp, is a consistent estimator for Fj(¢) (Mosteller, 1946, under
stronger assumptions on F'; van der Vaart, 1998, p.308), i.e. we have the following
convergence in probability:

(1.10) Xngm n%;o Xq=Fy (q), for 0<g<1 (XO = :UF).

1.3. Scope of the paper

We shall make use of the above-mentioned PORT methodology for heavy
tails. Henceforth £ > 0 denotes the first-order parameter of the model under-
lying the available data, pg < 0 is the second-order parameter of the associated
unshifted model, and x, has been provided in the limit of (1.10), in order to
introduce a class of location-invariant semi-parametric estimators of the so-called
PORT-p second-order parameter,

, __{—f, if §4+p0 <0 A xg#0
q =

(1.11) )
00, otherwise.
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Note that when applying the PORT-methodology, we are working with the sample
of excesses in (1.8), and we can assume that we are dealing with an unshifted
d.f. Fy underlying the r.v. Xy, to which we are inducing a random shift, strictly
related to x4, in (1.9). More precisely, we have a shift s = —x4, i.e. we are working
with X, := Xo — x4, and use the simpler notation p, for p_,,, with ps defined in
(1.7). Hence py = —& # po if and only if x4 # 0 and the underlying model is such
that £ + po < 0, just as written in (1.11), i.e. p; # po if and only if s =0, x4 # 0
and £ + pg < 0.

The main motivation for a class of estimators of the shape second-order
parameter pg, in (1.11), is related to its possible use, concomitantly with a class
of PORT estimators of the functional A, in (1.6), or at least of an adequate
location-invariant estimator of the scale parameter of such a A-function, in the
building of second-order PORT-MVRB EVI-estimators, invariant for changes in
location. The study of the asymptotic behaviour of such EVI-estimators is a
challenging theoretical open subject, out of the scope of this paper, but already
dealt with by Monte-Carlo simulation, in Gomes et al. (2011, 2013).

The building block of our estimators of the shape second-order parameter
pq, defined in (1.11) are of the same kind as the statistics used in Dekkers et al.
(1989), Gomes et al. (2002), Fraga Alves et al. (2003a) and Caeiro and Gomes
(2006), among others, i.e. for & > 0 we consider the moment statistics

k
(1.12) M%) = m) =13 (X1 — 10 X gen)®,
=1
but now applied to the sample of excesses X (ﬂ), 0<g<1, in (1.8). For an
intermediate k-sequence, i.e. a sequence k = k,, of positive integers such that

(1.13) k=k,—o0 and k=o(n) as n— oo,

we shall thus consider the location and scale-invariant statistics,

k
(1.14) Mﬁf‘k"n = Mr(lak) = %Z ( M)a’

KXn—kin ann
=1

defined for k < n — ng, with MT(LQIC)(X”) given in (1.12), a > 0.

Regarding the tuning parameters 7, € R, o, 61,602 € R, 61,05 # 1 and 61 <
f2, we shall consider the PORT-versions of the statistics used in Fraga Alves et
al. (2003a) for the estimation of p, in (1.6), i.e

M(a q) M(a91 ,q) 7q/01
r +1 -\r 6’ +1 a,1,01,7q,
T(a 01,02,74,q9) .__ (a ) (a 1+ . D;,k 1 q)(E)

1.15 =:
( ) n, k ( Mi‘”flm ) 7q/01 ( M’,(la:%w ) Tq/02 D’Elo,c;cﬁl,GQ,Tq,q)(g) )

INCUES) T(abz11)
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with I'(¢) denoting the complete Gamma function. As detailed in Section 3.1,
under adequate conditions upon the growth of k = k,,, Téo;g’al’%’fq’q) converges in
probability to

— g 01 1D)(1=pg)**2 =01 (1=pg)*(2 = - (1—pg) %2 =01)
(116) ta,91,92 (Pq) T 02 (92,9:{)(17@1)0402 752(1,pq)a(02—01()1+91 .

Remark 1.1. Note that the function ¢, g, 9,(pq), defined for p, <0, & > 0,
61,02 € RT\ {1}, 61 < 62, is a decreasing function of p, if 61,602 > 1 or 61,6, < 1
and increasing otherwise. Since t, g, .0,(pq) is always monotone continuous then
it is invertible. Moreover,
_ 62(61-1) 0,—1

m_ta0.,0,(pq) = =5, and  lim tag,0,(pg) = 5,5,

Pq Pa

The general class of consistent pg-estimators, invariant for changes in lo-
cation, already introduced and validated under a second-order framework in
Henriques-Rodrigues and Gomes (2012), and named PORT-p class of estimators,
it is now written as

/\(0179 79 5T 7q) P
(1.17) n,klil“ 27 =

— (T(a:91,9277'q,f1)> ‘ )

a,01,02 n,k
. 01,0 . .
with TT(LO;C’ 102709) oiven in (1.15).

The simplest choice of tuning control parameters suggested in Fraga Alves
et al. (2003a) for the classical p-estimators, (o, 01, 62) = (1,2,3), gives rise to an
explicit p-estimator, denoted ﬁ{kﬂ
a simpler class of PORT-p estimators of the shape second-order parameter pg,
because it only depends on the tuning parameter 7,. With p, defined in (1.11),

we have that

in the aforementioned paper, and leads us to

3(1+8) .
3(1—pq , &+ po <0 Axq#0,
t(pq) - t1,2,3(pq) = (3_p,0q) = { 3(31+—§po) 7

500 otherwise.

Thus the PORT-p estimator associated with (a,01,62) = (1,2,3) is explicitly
given by

(1,2,3,7¢,9)
(rad) _ 123700 |3(T8 1)
(118) Pk‘l = Pn,k\T B = — W 5
,
where ,
p23ma _ (M) - (M0 /2)
n,k (Mvi?l;q)/Q) Tq/2_ (My(fl,;;)/ﬁ) Tq/3)

for any 7, € R, with Méak’Q) given in (1.14). The notation a®™ = blna is used for

T4 = 0.
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In Section 2 of this paper we present preliminary asymptotic results related
to the PORT-methodology. In Section 3 we justify the class of PORT-p estima-
tors of the shape second-order parameter pg, in (1.11), addressing the possibility
of shifted heavy-tailed models, and refer the conditions required for their con-
sistency and asymptotic normality. In Section 4, we illustrate the finite sample
behaviour of the new estimators through a small-scale Monte-Carlo simulation
study. Finally, in Section 5, we present the proofs of the results in Section 3.

2. TECHNICAL RESULTS RELATED TO THE
PORT-METHODOLOGY

2.1. The second-order PORT-framework for heavy-tailed models

Under the aforementioned set-up in Section 1.3, the transformed r.v.,
X4 = X0 — Xg¢, has an associated quantile function given by U,(t) = Up(t) — x4
The second-order condition in (1.6) translates as

(2.1) lim

t—o00

Pqg_—_1 .
InUq(tz)—InUg(t)—Elnz _ { “ 0q if Pq < 0

Aq() Inz, if p, =0,

for all 2 > 0. Moreover, |A,| € RV, , p, <0, and A, relates to Ag according to
the following lemma.

Lemma 2.1. Assume Uy € RV; satisfies the second order condition in
(1.6) with p = pg and A = Ag. Then Uy(t) = Up(t) — x4, with x4 defined in (1.9),
is such that U, € RV, and (2.1) holds with pq given in (1.11) and

Exq/Uo(1), if §4+po <0 A xqg#0
(2.2) Ay(t) =< Ao(t), ifE+po >0V xg=0
Ao(t) +Exq/Uo(t), if §+po=0 A xq #0.

2.2. Third-order framework and asymptotic behaviour of auxiliary
statistics

Next, we present the asymptotic behaviour of the statistics Méa,;Q) defined

in (1.14), based on the sample of excesses g(;{), 0 < ¢ < 1, defined in (1.8). This
requires a third-order framework because we further need to know the rate of con-
vergence in (1.6). It is common to assume a third-order condition that rules such
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a rate of convergence through the shape third-order parameter p’ < 0, assuming
that for all z > 0,

mU(tz)-InU@#)—€lnz zr—1

. A(t) o xrte 1

with [A] € RV, and |B| € RV,;. For technical simplicity, we shall assume that
p, P/ <0, ie. we assume to be working in a class H of heavy-tailed models, such
that, as t — oo,

(24) U(t) = Ctt {1 + Dyt + DotP™? + o(tp“’/)} ,

where C' > 0. Details on the third-order condition in (2.3) can be found in Fraga
Alves et al. (2003b, 2006) and more generally in Wang and Cheng (2005).

Note that the statistics MTS i ), (1.14), depend on ¢ through x,, in (1.9)
(see also (1.10)), but are obv10usly independent on any shift s imposed to the
data. We can thus assume throughout that s = 0.

Let E and Var denote the mean value and variance operators, respectively,
and let E denote a unit exponential random variable. For any real a > 0, with
&> 0 and p <0, let us define

(25) (@) == E(B%e ) = flelh, pl = pD(0) = T(a+ 1),

(2.6) o) = /Var(E®) = VT(2a + 1) —T2(a + 1),

2 o a—1 —¢E ( pE _ (o) (A+)*—(1+E—p)*
H&)(fup) = E(E e (e” _1)/P) = T(W)’

uB(p) = pP(0,p) = @(Tﬁ;{’f),

@(p) = \/Var(Ea_l(epE \/,U(3) (P))27

= E(E*2 (% = 1)/(=9)) (" =1)/p))

1+£ (14+6A—-p) ; —
ng , if a=1

1 1 1 .
fp a= 1) AHe—pn 1~ @401 {=pp T T 1}, if o1,
and

= EB(B*2 (" = 1)/p)*)

% , if =1

F(a) 1 2 .
PP lo- 1) 2paT ~ Tpe 1t 1}, if a#1.
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Let us further introduce the notations:

A ) @
(2.7) Eg)(P) = “(1](1();))7 J=2,3, ES)?(&? ) = B ((15)71)):
Ho Ha
®)
(2:8) (€ p) = S,
. ey _ o2
(2.9) 7 = ﬁ7 7 (p) == Mglgp)’

and for any 61, 65 > 0, define

(2.10) Qo102 (0) = T, (0) — oty ().
(1)

Recall that E;, ¢ > 1, are i.i.d. unit exponential r.v.’s, and, with o5’ given in
(2.6), define the asymptotically standard normal r.v.’s

k
(211) 2 = VE(EY B =T+ 1)) /ol).
i=1
Now, together with (2.9), we can combine these as follows:
(212) Wéa’91’92) Pp— E(g) 0191 /0 _ (9) aeg)/e
abq Oé

Finally, for 7 € R, o, 6 > 0, and with (& (2 )( ) g)({,p)) and na (f p) d
fined in (2.7) and (2.8), respectively, we define

(213)  canr(p) = (a0 — 1)) (p) + alr — 0) (g ()%,
(2.14) gap,r(E:p) = AL (E p) + (0 — DT (E, p) + alr — 0L (p)Tig (=),
(215)  hagr(6) = 282 (~26) + (ad — DEE)(-6) + ol — 0) (A3(-6)) .

We first state Proposition 2.1, related to the behaviour of Méak), in (1.12),
now needed only for s =0 (p = py), proved in Gomes et al. (2002), also under a
third-order framework.

Proposition 2.1 (Gomes et al., 2002). Under the third-order condition
(2.3), with pg, pj < 0, for intermediate sequences k = ky,, i.e. sequences of positive
integers such that (1.13) holds, and with Mr(lak), #&), ,u(()f)(p)7 j=2,3, ES) and

7\ defined in (1.12), (2.5), (2.7), (2.9) and (2.11), respectively,

n

M O‘k) L ey (1){1 +7V % + ¢ 718 (po) Ao(n/k)
+ (5 71D (p0) A3 /k) + 2 7D (o0 + ) Ao/ k) Bo(n/k) ) (1 + 0,(1)) }.

We next provide, under the third-order framework in (2.3), the behaviour
of M\* in (1.14).
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Proposition 2.2. Let us assume that (1.13) holds, as well as the third-
order condition in (2.3), with po, ply < 0. We then get for M'%? in (1.14), a > 0,

k <n—nq, with x4 and Méak) (for s = 0), given in (1.10) and (1.12), respectively,

ug) and (. (2)( ),ﬁg) ({,p),ﬁg{ (p)) and 7 na (5, p) respectively given in (2.5), (2.7)
and (2.8), the distributional representation,

« d (67 @
(216) MG7 L )+i‘”50é‘n/£§q{u&2><—s>

4 B po>+(a5 1) 76" (§.00) Ao(n/k) (1 + o0p(1))

+ o (B2 (-26) + 2590 (-9)) (1 + 0,(1) }.

3. ASYMPTOTIC BEHAVIOUR OF THE PORT-p ESTIMATORS

3.1. Consistency of the PORT-p estimators

For o > 0, let us consider the statistics MTS?‘,;Q) = MT(ZOC,C) (X,(Iq)), in (1.14),
defined for k <n —ng, with X 7({1) the sample of excesses in (1.8). Under the
third-order framework in (2.3), if (1.13) holds, on the basis of the results in
Propositions 2.1 and 2.2, similarly to the developments in Fraga Alves et al.
(2003a), and for real tuning parameters 7, € R and 6 # 0,

(3.1)
a0\ Ta/0 J =) 0 @) (VA Tk @ (_¢
( :Elfe) > 2 ga’rq <1 + jg Z(a ) ATq Hog (ﬂgO) O(n/ ) + QATq 53(57’5)( )

atq ¢ ar, T2 /
{4 ) ST g0/ 1) B /1) |1+ 0,(1)

aTq 2
+{ 2 o 0.7, (€ P0) TR + T hQ,Q’Tq(g)Ug(}z/k:)}(l +0P(1))>'

i.e.
a 0 o 0
M'SL,:,(H Tq/ i M:L,]f) Tq/ N aTgE9a X, ﬁ( )( f)
/189) #5119) Uo(n/k) af

a,0,7q (§:P0) Pea,0,74 (€)
+ SIS Ao (n k) (1 + 0p(1)) + M= s (14 op(l))},

with MG?, 1, 7 (o), 5= 2.3, 38, Z(), canr(p), 9a0r(8:p) and hag,r(€)
given in (1 14), (2.5), (2.7), (2.9), (2.11), (2.13), (2.14) and (2.15), respectively.
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Let us next introduce the notations,

(3.2) Ua 01,057 (P) = {Ca01,7(P) — Carpar(p) }/(2€),

(3.3)  Va,0,,0,(pP) —Magl(p+p) T, (0 + ) = daoios(p+0),
(34)  wa0,.007(&P) = {9001.7(§, ) = Ga00.7(§5 P)} /S,

(3.5) Y1600, (€) = {ha g, 7 (§) = hag,r(£)}/2,

with da.g,.0,(0)s Ca,0.7(P)s Ga,0,- (&, p) and hq g -(§) defined in (2.10), (2.13), (2.14)
and (2.15), respectively. On the basis of (3.1), using the notation Wéa’el’(h) in
(2.12), and with D79 (¢) defined in (1.15), we can write

(3:6) Dyt (g) £ 5( w<a9h@2>+W{daﬁl,@<m>

+ o616, (p0) Ao (n/k) (1 + 0p(1)) + va.9, .6, (P0, p0) Bo(n/ k) (1 + Op(l))}

+ UO([)7(—;11>;%) {daﬂh@z (_5) + wa701,92,T(£7 pO)AO(n/k)(l + Op(l))
4 Xq y(}l(;?:l,;lijﬂ'(é) (1 T 0;,(1))}),

i.e.
a,01,02,7q, d a,01,02,7 aT, T
Dl d(e) L Dl (¢) 4 St t {da,el,ez(—ﬁ)

o,01,0,7(§
FWa,01,00,7 (&5 po) Ao(n/k) (1 + 0,(1)) + %jﬁ)()(l + Op(l))}-

The dominant component of the right hand-side of (3.6) depends on the
relative behaviour of the functions Ag(¢) and 1/Uy(t). We shall thus consider
three different regions related to xg, in (1.9), and the vector (&, po) of the unshifted
model Fy associated with the available data:

o Ri:={Fp:&+po<0Axq#0},
o Ro:={Fp:&{+po>0Vx,=0},
° Rg::{Foig—l-po:O/\Xq#O}.

We now state the following:

Theorem 3.1 (Henriques-Rodrigues and Gomes, 2013, Theorem 1). Under
the validity of the second-order condition in (1.6), with p = py < 0, p, defined in

(1.11), ﬁflal;?lT’OQ’Tq’q) defined in (1.17), and with an explicit expression given in

(1.18) for the particular case («, 61,602) = (1,2,3), is consistent for the estimation

of py, i.e.
~a,01,02,74,9) P
P k|T — Pqg;

n—oo
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for any real a >0, 74 € R, 01,0, e RT\{1}, 6 <6y and 0 < g<1 or g=0 if
X0 = T, the left endpoint of the underlying parent, is finite, provided that k is
an intermediate sequence, and moreover, with A, defined in (2.2),

(3.7) VEA (n/k) — oo, asn — oo,

Remark 3.1. Note that when we consider models Fy € Ry, Ag(t) =
o(1/Up(t)) and with Ay(t) = &xq/Un(t), by (2.2), condition (3.7) corresponds
to Vk/Uo(n/k) — 0o, as n — oo. For models Fy € Ra, 1/Uy(t) = o(Ao(t)) and
since A,(t) = Ag(t), condition (3.7) is equivalent to vkAg(n/k) — oo, as n —
oo. Finally, for models Fy € R3, 1/Up(t) = O(Ap(t)) and since A4(t) = Ao(t) +
€x4/Uo(t), condition (3.7) is equivalent to vk Ag(n/k) — oo or Vk/Up(n/k) — oo,

as n — OoQ.

3.2. Non-degenerate asymptotic behaviour of the PORT-p estimators

In this section, and under a third-order framework, we derive the non-
degenerate asymptotic properties of the PORT-p classes of estimators introduced
with all the generality in (1.17), and particularised in (1.18). We first state the
following result:

Proposition 3.1 (Fraga Alves et al., 2003). Under the validity of the
second-order condition in (1.6), with p < 0, if (1.13) holds and VkA(n/k) — oo,
as n — oo, the asymptotic variance of Wéaﬂlﬁ?), in (2.12), is

2( (2001 | I(2a6s) (91+02)F(a(91+92))) B (1 B L)2’

(3.8) o2 =2 —
’ Wie,01,02 — o\ 8302(af;) ' 6372(ab2) 02637 (af1)T (ab2)

and the asymptotic covariance of (Wéa’l’el), nga’el’(b)) is given by

l((91+1)F(a(91+1)) (02+1

(3.9) OWla1,01.00 = = _ EF (62+1))  20'(2061)

(a
62T (a)T(ab1) 02T ()T(af2)  63T2(aby)

gt ) — (1) (0 - a)

Note that 7, . 4,(p) = dta,0,,6,(p)/dp, With ts 0, 0,(pg) defined in (1.16), is
given by

(310) ha,.0,(p)(1—p) (62— 02)(1 = )°* — 831 — p)* @) 1.,

= ab 6> {01(6’2 —1)(1 — p)a®2=b) (1 +(1- p)a(erelﬂ))
_ (92 _ 91)(1 _ p)a(92—91) (1 4 (1 o p)a(92—01—1))

= 0201 = )(1 = )% (14 (1= p)o=0D) |
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Let us further use the notations,

(a,01,02,7) — Yo1.01,7(8) 710 .01,0,(P)Yar,01,05,7 ()
(3.11) yp (& p) = ' da,oll,ej(p) - ’

0 ()

(00,01,02,7) Yr
yp|T (Ea ) = t; 01, Oz(p) )

61,0 do 1, to, £)da.0,.
(3.12) 2P, p) 1= detn?) gdaealleezg(( ol

(@,01,00) 200192 (¢ p)
gir " (60) = T

(313) u§?791702,7) (p) . ua,l,Ql,T(p)_ta,91,92(p)u&,Ql,GQ,T(p)

- da,67,05 (P) ’
P ul 01027 ()
p|T ’ t;yglng(p) ’
(a,91,92) A Ua,1,81(/)7/7/)—ta,91,02(P)Ua,el,eg(ﬂvﬂl)
(3.14) vy (p,p) == Do 0y,65 (P )
«,07,0
’U(aﬂh%)(p P/) — v(T b 2)(/0»/’)
plT ’ ' tr ,01,05 (0)

(,01,02) §1da,1,01 (—8)—ta, (p)da, (=)
(3.15) FE (e, p) i Lty i 3

f (a,01,02) (f ) . f<a o1 62)(570)

p|T ta 91792(P) ’

(a 61,02,7) _ Wa,1,07,7(&0)~ta 01,00 (P)Wa 01,00, (&:0)
(316) (57 ) da,811,92(ﬂ) 1 9

9(079179% (&, p) = g(a 10027 (¢ p)
P|T P ta,91792 (P) ’

with ta,91,92 (/0)7 da,91792 (/0)7 Ua,01,02,7 (P), Va,01,02,7 (p> pl)> Wa,6,,02,7 (5? p)v Ya,01,02,7 (5)
and t, 4 4,(p) given in (1.16), (2.10), (3.2), (3.3), (3.4), (3.5) and (3.10), respec-

tively.

We can finally derive the non-degenerate asymptotic behaviour of the class
of PORT-p estimators, in (1.17).

Theorem 3.2. Let us assume that the third-order condition in (2.3)
holds, with pg, py < 0 and consider the PORT-p class of estimators, ﬁ(ak?IT’HQ’Tq’q),
defined in (1.17), with p, given in (1.11). Then, with 6, < 09, real numbers dif-
ferent from 1, « >0, 7, € R and 0 < ¢ <1 or ¢ =0 provided that xo = x, is
finite, and intermediate sequences of positive integers k = k,, as in (1.13), such

that (3.7) holds, we have:
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i)

ii)

In Ry, let us consider the regions Ri1 := {po < —2{ A xq # 0}, Ri2 :=
{po = =26 AN xq # 0} and Ry3 := {—2¢ < pg < —{ A xq # 0} If we fur-
ther assume that lim VkAg(n/k) = X and lim Vk/U3(n/k) = \,, we
get

,01,02,7, ) 2
\/E /\(&,91,92,771,(]) a 1L,Y2,7q,9)  ®
Totn/B) \Prk —pg) == N (ipgir T ol 00162, )

n—0oo

with
(e,01,02,79) .
Xq )‘pro‘T 2 (57 5)7 m Rll
61,6 a,01,09,T
o (0,01,02,7,0) A 200002 (e po) i Ay T (g g)
— “pql £ol R
Hoo|T X , 1N /X12
(c,01,62)
Az (&:p0)
T ’ .
eol < , in Ris,

yf,?fel’%’ (&, p) and z(a 61.02) (§ p) defined in (3.11) and (3.12), respec-

tively. Moreover,

.2 .2 [ ] 2
_ o /
Tpo|T,c01,02,a = 9 polT,o01,00 = {UT\0,91,92/t06791,92(75)} )

where
(;.2 _ 1 2 Var W(a’lyel) o t (7§)W(a791702)
Tlef1.02 — \ axqda,o,,05(—€) k 0,01,02 k

2 2 2
UW|0¢,1,91 +ta,91,92 (7£)UW‘O£,91,92 72t0‘701!92 (75)0W“1»1,91 102
2
(@Xqda.0,.05(~))

Y

with 012/[/|a 01,0, OWla,1,01,0, and t;791792(p) given in (3.8), (3.9) and
(3.10), respectively.

In Ra, let us consider the regions Ray := {—§ < pp < —g A xq # 0},
Rog := {p(): —g/\xq#()} and Rogz := {%<p0<0\/(€> —po/\XqZO)}.
If we further assume that lim VkAZ(n/k)=A4, lim VkAg(n/k)Bo(n/k)

= \p and lim Vk/Uy(n/k) = N, we get

~,01,02,7¢,9) d (a,01,02,74,9) 2
Vk Ao<n/k>( R pq) — N (up0|£ o aapoma,el,ez,q)a

n—oo

(04791702’7—61) R (01791:02,Tq)(p0)>\A 4 ,U(OZ,HLGQ)

where with p po|T (po, py) A, and

polT T ZpolT
S (), 0D (o, g1 and £ (€, p) given in (3.13), (3.14)
and (3.15), respectively,
76 ?9 .
XqA/fp(Z]Tl 2)(57100)7 in Roy
79 70 sTq> 79 79 ’ 70 79 o
“EJ?ITl el '“E:Z|Tl 27) "‘Xt;r)‘/fp(oa\T1 2)(57100), in Raoo
(a»9179277'q)

po|T s m Rgg.
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Additionally,

2 2 2
Gp0|T,a,€1,92,q = Upo\T,a,Ql,Gz = {O-T|04791792/t/a,91,02 (pO)} )

. 2 .
with O 01,0, S1VED by

2
2 _ |17(a)179 ) (O{,0 79 )
OT|o,01,00 = (ada,efﬁz (m)) Var ( k Y- ta,01,0,(po) W k o )

2 2 2 2
(3 17) _ 3 (UW\a,l,Ol+ta,91,02(pO)UW|a,01,62_2taa91»92 (,UO)UW|Q,1,91,92)
. - 2 9
(O‘daﬂlﬂz (po))

0"2/V|a,91792 and oyy|q,1,9,,9, defined in (3.8) and (3.9), respectively.
iii) In Rg, if we further assume that lim VEAZ(n/k) = A4,
n—oo

lim VkAy(n/k)Bo(n/k) = Ap and Tim VEAo(n/k) /Us(n/k) = Aav,
we get

’\(ave 79 T 7q) d N(aig 79 T 7q) ~2
\/EAO(n/k) (pn,k et — pq) n:oN<MPOIT1 o ’Upo\T,aﬂlﬂz,tI) ’

where, with A = lim 1/(Ao(n/k)Us(n/k)) #0, w0027

plT
a,01,6 Y (a,01,02,7 a,01,02,7 a,01,6
a5 p) + xa X ¥ T E ), T ), g (6 p)

and a%‘aﬂh% defined in (3.11), (3.16) and (3.17), respectively,

(ev,01,02,7q) 01,02)

) (x,07,02,7q)
~(O¢,91,927Tq,q) . uPo\T (pO)AA"’Uiz‘T (p07p6)AB+£qup0‘Tl 2ra Aav

polT 14+EXxq ’

2
&’2 _ gQ o Jpo‘T,a,91,92 _ UT|a,01,62
po|T,a,01,02,q po|T,a,01,02 (14+EXxq)2 (14+8AXq) T, 9, 0, (P0)

We finally present the non-degenerate behaviour of the PORT-p estimators,
in (1.18).

Corollary 3.1. Under the validity of the third-order condition in (2.3),
with p = po, p' =py <0, and for the particular case (c,01,02) = (1,2,3), we
have the validity of the following asymptotic distributional representation for the
PORT-p estimator, ﬁg‘]’Q), in (1.18).

i) In R4, and with the same notation as before for Ri1, Ri2 and Ris,

~N71q,9) 4 5 g R
P = Pt Tt V-
XYt (1 4 0,(1)), in Ry
z ,00)Ao(n/k)Up(n/k .
+ ( 0017 (£:P0) )0(((1 /k)Uo(n/k) i thljé/&oﬁ\/z];gi)) (1+0p(1))’ in R

25017 (€:P0) Ao (n/k)Uo(n/k) (

Xq 1 +Op(1)), in ng,
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where W,fl is asymptotically standard normal,

_6E(—4+€(—13+26(—3+26(2+€)?) ) ) —€(3+€) (1+26)3 (3+26)T
Yoo (§) = T2(1+€)2(1+26)° ’

3
2poir (6, po) = — L oep)

and 5, = (1+€)° (262 +2¢ +1) /(Exo)>

ii) In R, and again with the same notation as before for Ro1, Roo and

R237
’\(T El ) d (o s R
S Pt T W
JooIT (&:P0) .
(%) (1 +0p(1)), in Roy
Xq.fpo |7 (&:P0) .
* (mﬂov/’6|T + m> (1+0p(1)), in Rag
mPOvP()‘T(l + Op(l))v in Rgg,

where Mpp'|T = up|T(p)A0(n/k) + Up|T(p7 p’)B(](TL/k), with up\T(p) =
u,(1 = 74) and vyp(p, p') = vy, given by

(3.18)
. _ p(p(42-457)+p% (96—447)+8 p* (1—3)+9 742 p? (37 7—60))
Up = UP(T) - 125(1—304—202)2
and
3
(319) vy =100 (p+0)/{p L=p—¢)"},

respectively. Moreover, W,fz is asymptotically standard normal,

Tog = oy = (1= p0)° (205 — 2p0 + 1) /po®,
_ E2(1—po)®(&+po)
fpo\T(gaPO) = W.

iii) InRs, and with A = lim 1/(Ao(n/k)Us(n/k)) = (£6oC)~" # 0, with
C given in (2.4),

~1q,q) d 0. Rs
Pk = pgt \/EAO(n/k)Wk

- ~ 7 +XqA T,
+ (upo|TAo<n/k> + T g Bo (k) + Exg LT ') (1+0,(1)),

where W,f‘B is an asymptotically standard normal r.v., uyp = u,(T = 74)
and v, 7 = v,,, defined in (3.18) and (3.19), respectively, u,p =
upIT/Q TEMXq): Vo = Vo 7/ (L +EAXg), and e, = e¢ 7/
(14 &Xxq), with e = g,y, with

9e,p0|T = 9—po,polT = Ypo|T

_ 6(4+p0(=13+2p0(342p0(2—p0)?) ) ) +(3—=p0) (3—2p0) (1—2p0)*T
6(1—p0)*(1—2p0)3 )
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_ 3—p0)(1—po)?3
Ye,polT = Y=po,polT = Ypo|T = %b(poﬂ')?

—2)2(7-2 T— 2(1—
o) = i + o~ (et T e

(1-p)p{ —(p+3)(Bp(p+3)+12)(20+1)37—6(6+p(3+2p) (4p°+24p* +4203+ 312+ 14p+9)) }
12(3—p)(1+p)%(1+2p)?

+

and 5207(1 =(1—pp)® (2 po® — 2 po + 1)/(1 — qu pg)z.

3.3. A few comments and conclusions

e We consider that the class of PORT-p estimators introduced and stud-
ied in this article is, from a theoretical point of view, a nice alternative
to the classical p-estimators whenever, in a real data analysis, we are
led to a bad performance of the classical estimators. Such a bad perfor-
mance is usually due to the existence of a location s # 0 in the available
data, associated with unshifted models with & 4 pg < 0, a quite common
situation in practical applications.

e Concomitantly, the development and the theoretical study of a new class
of PORT-estimators of the functional A, in (1.6), can lead us to SORB
EVlI-estimators, invariant for changes in location and MVRB for an
adequate choice of ¢, i.e. EVI-estimators of the type of the ones in
Caeiro et al. (2005), Gomes et al. (2007) and Gomes et al. (2008c),
but invariant for changes in location, the so-called PORT-MVRB EVI-
estimators. Note that these PORT-MVRB EVI-estimators have already
been studied for finite samples in Gomes et al. (2011, 2012), and exhibit
a quite interesting performance.

4. A SMALL-SCALE MONTE-CARLO SIMULATION

We next present in Figures 1 and 2, respectively the mean values (E) and

A(

the root mean squared errors (RMSE), of the classical estimator pko) and the

PORT-p estimators {:55907(1) , as defined in Eq. (1.18), as a function of

}q:0,0.1,0.25
the sample fraction k/n, for sample sizes n = 5000 and n = 10000. The results

are associated with the output of a small-scale simulation, of size 5000, related to
underlying Fréchet parents Fy(z) = exp(—z~/¢),z > 0, with £ = 0.25, and the
shifted model Fy(z) = exp (—(z — s)*l/f) , x> s, with s = 1.
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Figure 1: Mean values of the estimators under consideration for Fréchet
unshifted (s = 0) and shifted (s = 1) parents, with £ = 0.25,
and sample size n = 5000 (left) and n = 10000 (right).
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(0,0.1)
k
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Figure 2: RMSEs of the estimators under consideration for Fréchet un-
shifted (s = 0) and shifted (s = 1) parents, with £ = 0.25, and
sample size n = 5000 (left) and n = 10000 (right).

There is indeed only a light improvement in all estimators as the sample size
increases, and a high volatility of the classical p-estimators for shifted models, as
can be seen, in either Figure 1 or in Figure 2, where the RMSE of such estimator
is above 2, even for n = 10000. For smaller values of n, the sample paths of all
estimators are even more volatile, particularly for small sample fractions k/n. But
if we consider a much larger sample size, n = 100000, there is a clear improvement
only in the classical p-estimators for shifted models, as can be seen, in Figure 3.
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Figure 3: Mean values (left) and RMSEs ( right) of the estimators under
consideration for Fréchet unshifted (s = 0) and shifted (s = 1)
parents, with & = 0.25, and sample size n = 100000.

We now would like to emphasise the following points:

e The stability of the classical p-estimators around the ‘target’ for large k
can be fictitious or even non-existent, unless the model is an unshifted
model. As can be seen in Figures 1 and 3, left, the classical p-estimator
associated with the unshifted model, ﬁko)]s = 0 is close to —1 for large
values of k, as expected, but the p-estimator associated with the shifted
model, ﬁ§§0)|s = 1, that should converge to —0.25, exhibits no stability

in the sample paths.

e We are in the region £ + pg < 0 (£ = 0.25, pg = —1). Consequently, the
PORT-p estimator should converge to —§ = —0.25 for x, # 0 and to
po = —1 for x4, = 0. Unfortunately, the pattern of the PORT-p estima-
tors does not depend strongly on x,. If we decide for a large value of
k, we obtain a value close to —1 if x, = 0, but a value not a long way
from —1 when x4, # 0. But if we look at the region of k/n close to
0.2, the PORT-p estimators associated with x, # 0 are reasonably close
to —¢ = —0.25, with a not too large RMSE. We shall thus be again
confronted with an adequate choice of the threshold k.

e This means that for shifted models or PORT-p estimators associated
with x4 # 0, the optimal level is clearly attained for not very large £,
as can be seen in Figures 2 and 3, right, when we look at the minimal
RMSE.

e For x4, = 0, the PORT-p estimator is able to beat the classical one re-
garding minimum RMSE, even for very large sample sizes.

e Similar comments apply to other simulated underlying models.
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e The choice of the tuning parameters 7 and 7, is also crucial. We have
here used 7, = 7 = 0. The choice 7 = 0 has been heuristically suggested
and used before for the p-estimation and the region |p| < 1, but it is
possibly not the most adequate choice for the PORT-p estimation. This
is another interesting topic out of the scope of this paper.

5. PROOFS

Proof: [Lemma 2.1]. We begin by writing

Xq
Up(tx)— Uo(tx 1_ﬁ
InUy(tx) —InUy(t) = In m - ln< l?o(ét)) 1(}% ))>
0

= {lnx—i—ln( _§U0(€%)> +1H<1 - W) - ln<1 - U?é))'

Using Taylor’s expansion of In(1 + ), as  — 0, we obtain
_ —£Uo(tz)
InUy(t2) ~ InUy(t) = &z + (250} — ey oy o 1)
_ —¢ Uo(tz) _ be(® 1
= glnm+ln<m 0] ) + Uo(t) (1 Uoo(m)) + O(Uo(t)>

as t — 0o. Since Up(tz) ~ 2¢Uy(t), t — oo, we thus have that

InUy(tx) —InUy(t) — EInz
—¢Up(tx — Uo(t -
= (o €Ll 1 e ) - e (I € o),

(
Now, condition (1.6) with U, A and p replaced with Uy, Ay and pg, respectively,

ascertains

InUy(tz) —InUy(t) — {Ina = Ap(t) wﬂgo_l + XE‘ o) (1—27%)

Uo(t)
~ oty (e — %) +o(emtmy) +o(Ao():
The precise result thus follows by noting that 1/Uy € RV_¢ (hence x,/Uy is also

in RV_¢) and that 25Uy(t)/Up(tz) — 1 divided by Ag(t) has the same limit as in
(1.6), with the same second order parameter py (cf. Proposition 6 and Corollary

7 of Neves, 2009). This result confirms a similar one for the rate of convergence
of U,(tx)/U,(t) to 2° as obtained in Aratjo Santos et al. (2006, Lemma 2.1). O

Proof: [Proposition 2.2]. Using the same arguments as in Fraga Alves
et al. (2009), bearing in mind the unshifted model (s = 0), we can write the PORT
log-excesses of the observations over the random quantile Xy, ., i.6. Xy 110 —
KXngm, for e = 1,..., k, in terms of the POT log-excesses, X, ;1.0 — Xg, OVer xq :=
Fy(q) = Up(1/(1 — q)), as follows:

In (Xn—i+1:n - an:n) =In (Xn—i-l—l:n - Xq) +In (1 - M) :

Xn—z+1:n Xq
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Now for the second term holds the inequality
(1 e ) < (1 fpunme)

Xn7i+1:n7Xq n:n—Xgq
. . p . . .
Since we are assuming £ > 0 we have that X,,.,, —x, — 00, which in conjunc-
n—oo

tion with the asymptotical normality of the empirical quantile y/n (Xn g = Xq) =
O, (1) ascertains

Vin (1= 3} = A 4 o,1) = Vo, (Vi Xayn — o))
= 0p (\/%) 2.0,

n—oo

Then it is easily seen that, for any a > 0, the PORT-moment statistics M (a ’Q) pro-
vided in (1.14) are asymptotically identically distributed to their POT- moment

counterparts
k
(O{ Q) 1 ani 1:n—X @
ank E Z <1n anzzn*qu) ’
i=1
In fact, M, M ’q) differs from Mn E= % ZZ 1 ( L:l") by a deterministic shift

—Xq = —Uo(l/(l —¢)) in the observations X;, 1 <i <n. Then the asymptotic
results for M( a) — % k <ln )’(‘71“") can be obtained in view of the shifted

n—k:n

observations from X := X4 = Xo — Xxg¢, with associated Uy (t) = Up(t) —

Let us begin with the first moment of the log-excesses. With {Y;}i=1, . »
i.i.d. unit Pareto r.v.’s, we have the equality in distribution

{)?n—i-I—l:n}?:l = {Xn—i—l-l:n - Xq}? 1= {U ( n—i+1: 'ﬂ)}z 1>

and we can write,
k ~ ~
(51) M(LQ) % Z lan—i—l-l:n —In X, g
i=1

4

=

k
Z n 1+1: n) In Uq(Ynfk:n)-

We note that
InUy(tz) — InUy(t) — (InUp(tz) — InUp(t))

Uo(tac)_ Xg
= In -2ol)_Tol) _ (1 Uy (tz) — InUp(t))

17U02-{15)

_ —¢ Uo(tz) - —¢ Uo(tz) X
_ln<(x elolle) _ 1) — g6 Xa +1) —]n(( elolle) 1) 4 1) —In(1 - 2%).
Next, we deal with the first two terms in the above. Towards this end, we define
for each z > 0,

—¢Up(tz —

Y1 (t) = (.’E 67[070((“) — 1) — X 57(%(?1&)’
—¢Up(tz

yQ(t) = ¢ lOTO(Ett)) 17
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with y1(t) and yo(t) converging to zero as t — oo (see text in the end of the
proof of lemma 2.1). MacLaurin’s expansion of the logarithm, i.e. In(1+y) =
y —y?/2 + o(y?), applied to both yi () and yo(t) now yields

InUy(tz) — InUy(t) — (InUp(tz) — InUp(t))
_ Ly 2 _ a; _
= —x éUZ(E’t) - 5(:15 gUif?t)) (1+o0(1) + (= 57({?0(&)) — 1)z 5%&’t)(l +0(1))

~in(1- 2%).

In order to have a grasp at the remainder o(1)-terms, we require the following
uniform bounds, which arise in connection with the third-order framework in
(2.3) and Remark B.3.12 of de Haan and Ferreira (2006): for any e, § > 0, there
exists a tg = to(e, d) such that for ¢t > tg, x > 1,

Uo(t:l?)
—¢ _
z U()(t) P00 —1 ,
Aot)  po zPOTPO—1 +ph+6
_ < POTPYTO
Bo(t) potefy | =0

Furthermore, since 0 < —In(1 —v) —v —v?/2 <v3/(3(1 —v)), v € (0, 1), we can
set v = x4/Up in order to establish the upper bound

InUy(tz) — InUy(t) — (InUp(tz) — InUp(t))

- 26 2 _eppo_ A
- (=55 ity — €5 () - o ()

2 q -1 —£ z’ +0) Ao(t An(t _ s
< S (TR0 y)) +o by, (o Bo(t) +e] fo8d Bo(t) o E T,

We can also establish a similar lower bound. In this development, and with
respect to the right hand-side of (5.1), assuming k = k,, an intermediate sequence
of positive integers, i.e. such that (1.13) holds, then taking average across i =
1,2, ..., k, for arbitrary e, § > 0, the weak law of large numbers ensures that

(La) 1 _ 3 3 Ao (n/k)
M =Myl = gt (ke + it 0+ o (D) + argite L (1 +op(1)).
We are then led to (2.16) for a = 1 where

(2 (2 (2
1%5 = fﬂg )(—5), m = Mg )(§>PO) and 145725 = fﬂg )(—25)-

Let us next consider a general «. Similarly as before, we can write

(ln Ug(tz) —In Uq(t))a — <ln Up(tz) —In Uo(t)>a = a(ggloiw (mlx (w‘_’ié—1)
w1 (i (5) +im (555) (=) A0
s i ((52) + 5% (=2)°) ) ot
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Considering again k = k,, as an intermediate sequence of integers, i.e. (1.13) holds,
the same type of arguments of the previous case (o = 1), and the weak law of
large numbers enable us to write (2.16) for any a > 0. O

Proof: [Theorem 3.2]. (i) In the region Ry, Ao(t) = o(1/Us(t)), as
t — oo, the third and last term of the right-hand side of (3.6) is the domi-
nant one, and the r.v.’s Dq(f‘,;el’ez’m’w (€)/(1/Uy(n/k)) converge in probability to
o T,£971x, da g, 0,(—€) provided that (3.7) holds, i.e. if Vk/Uy(n/k) — oo, as
n — oo (see Remark 3.1). Moreover, we get

(a,01,02,7¢,9) (0,61 ,69)
Dy, © d Wi 2 U (n/k)
e =& (a TaXq o010, (=€) + “——7

+ o, { da,91,92<po>Ao(n/l?Uo(n/kaop(l)) N nga,el,el%r(q ,ff,iél“’p“” }) ‘

For levels k such that (1.13) holds, with Wéa’el’@) given in (2.12), and with

TT(LOZQI’GQ’T"’C’) defined in (1.15), we can say that if (3.7) holds,

_ «,l,0 «,01,0
(da,07,05(=5)) I(W;i 1)*1‘/04,01,92(*5)”/;5 ! 2))

,01,02,74, d
T(O;c 1,02,7¢ q) £ ta,01,62(*§)+

n axqVk/Uo(n/k)
+ 200192) (¢ p0) Ao (n/k)Uo (n/k) (140, (1)) n Xy 10270 (¢ —€) (140, (1))
Xq Uo(n/k) .

For sequences of positive intermediate integers k =k, such that k, = o(n),
VE/Uy(n/k) — oo, VEkAg(n/k) — X\ and Vk/UZ(n/k) — X\,, as n — oo, let us
consider the following cases:

o if &+ py<—¢and xy #0, then

,01,02,7¢, d
T Te) Loy o 0,(=6)

_ ,1,0 ,01,0
(daoy.00 ()Wt o 0, (WL 0102))

+ axavVie/Uo(n/k)
L xar " PT0(E —6) (1o (1))
Uo(n/k) )
and
01,02,74, d . o2
UOE{LE/]C) (Téao;f e Te) o ta’el’GQ(_g)) njo>o N(NT‘avolv‘ngqu’ O-T|a791792)’
o ,01,02,7, . ,01,02,
where HT),01,02,79,0 = )‘Uqu’g“a o q)(€7 _5)7 with yg"a ' 2T)(€7p) de-

fined in (3.11).
o if £+ po=—& and x4 # 0, then

(a,01,02,7¢,9) d
Tn,k ! - ta,ehez(_g)
(daoy 05 ()L (WEHH —t4 6, 0y (W10
axqVE/Uo(n/k)

202 (€p0) Ao(n/B)Uo(n/K)(1top(1)) | xq w57 (6,8 (1 +op(1))
Xa To(n/F) ;

+

_l’_
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and

01,02,74, o2
E{:/k) (T(a 1:02,7:0) toz,91,92(_‘5)) — N(MT\a 01,02,7¢,9> JT|oz 91792)

n—oo

Az{80102) (¢ p) (0,01,02,7)

where HT|a,01,02,Tq,q = Xq + )\UquT (57 _5)7 with
y;a’el’QQ’T) (&, p) and z(Ta’Gl’QQ)(ﬁ,p) defined in (3.11) and (3.12), respec-
tively.

o if &4 po > —¢& and x4 # 0, then

(e,01,02,7¢,q) d
Tn,k ! = taﬁlﬂz(_f)
(da,el,eg(—f))_l(Wéa’l’el)—ta,el,e@(—ﬁ)Wéa’gl’%))
axqVk/Uo(n/k)

n A0 (¢ po) Ao (n/k)Uo (n/k) (1+0,(1)
Xq ’

_|_

k (,01,02,74,9) o2
Uoznf/k) (Tn,k et — ta791,92(_§)> — N(:“’T\a 01,02,7q, q?UT|a 91,92)

n—oo

. (@,01,02)
where (171,60, 02,70, = /\ZTX—(I(é’pO), with z(Ta’el’ez)(f, p) defined in (3.12).

(i) In the region £ + po > 0, where 1/Up(t) = 0(Ao(t)), as t — oo, or more
generally in the region Rg, the second term of the right-hand side of (3.6) is
the dominant one. In Ro, Ay(t) = Ao(t), so condition (3.7) can be rewritten as
VEAg(n/k) — oo, as n — oo and if we assume that this condition holds,

a,01,02,7q,
D;,k 1-Y2,7q q) (g) i gaTq ary da,91,92 (,00) + W(Oz 01, 92)
Ao(n/k) - 3 \fA(n/k)

+ Uq 01,02, (P0) Ao (/) (1 + 0,(1)) + Va 61,6, (P0, p0) Bo(n/k)(1 + 0,(1))
+ zwﬁff’zmda,em(—f)).

If € > —po or (£ < —po, xqg =0), and (3.7) holds,

_ a,l1,0 «,01,60
€(da,1,05(p0)) "L (WDt 61 0, (o) WL 7172))

a,01,02,74,q) d
T?E,k 1,02,74,9) 4 ta,0,.0,(p0) + avEAg(/k)
(T (09) Ag (/) + 0 (o, ) Bo(n/R) ) (1 + 0,(1)

(04 61,62)
Xq (&,p0)
+ STk (Lt 0p(1)).

For sequences of positive intermediate integers k =k, such that k, = o(n),

VEAg(n/k) — oo, VEAL(n/k) — X, VEAo(n/k)Bo(n/k) — A, and Vk/Uy(n/k)
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— )N, as n — oo, let us consider the following cases:

o if0 <&+ po< —poand iy, #0, then

_ ,1,0 ,01,0:
T(arelve?vTQ7Q) t 0 0 (,0 )+§(da,01,92(P0)) 1(W1£a 1)_ta,61,92(PO)W15a 1 2))
n,k 0,801,602 \F0 avkAo(n/k)

(a,01,02)
Xq (&,p0)
+ Ao(n/k)Uo(n/F; (14 0p(1)),

Il

and
VEAo(n/k) (TN 009 g LN 2
O(n/ ) «,01,02 (PO) njo; (/“LT‘OZ,Ql,GQ,TQ7q7 UT|0¢,01,02 )’

where HT|e,04, = Xq }a701702)(§7p0)A/7 with f’j(“a’glﬂﬂ(gap) and

02 Tq,q

U%Iaﬂl,@z defined in (3.15) and (3.17), respectively.

if £ 4 po = —po and x4 # 0, then

_ 1,0 01,0
T(a,91,92,7'q,q) d ' (o )+§(da,91,92(po)) 1(nga 1)_ta,91,92(P0)W]ia 1 2))
n.k ,01,02\P0 avkAg(n/k)

+ (u§?791,92ﬁq)( 0)Ao(n/k) + vToc 91’02)(p0,PB)B0(n/k)) (1+0,(1))
(c,01,62)
(&,p0)
+ et (L + op(1),
and

9 70 b bl
fAO(n/k) ( o01,02,70,4) —ta 91,02(P0)> — N(MT\& 91,9277q7q70T|a 01,92)

,01,02, 01,0
where latn o = U (p0)Aa + 5 (oo, ph)Ap +
01,62) 01,02, 01,6 61,0
J FEBI e )X, BT ), o0 1 NI, ) ang

a%|a’91792 defined in (3.13), (3.14), (3.15) and (3.17), respectlvely.

if €+ po > —po or (£ + po >0 A xqy =0), then

_ «,l,0 «,01,0
T(a 91,92,711,(1) d ¢ (IO ) + E(da,el,eg (PO)) 1(W}£ 1>_ta,61,92 (pO)ng ! 2))
n,k 01,02 \PO avkAo(n/k)

(w7 (o0) Ao/ k) + o) (0o, 95) Bo(n/ ) ) (1 + 0, (1),

and
\/>A k OC 9179277—Q7q) t d N 2
on/k) (T 01,02 (P0) o (KT )0,01.02,74:0> O T (0,601,025

(a,01,02,7¢) (a,01,02) ’
where HT\a,01,02,74,a—HT|c,01,02,7q = UT “(po)Aa +UT (o, PO)AB,

(a, 01’02’TQ)(p) and v(a 0102) (5 51) defined in (3.13) and (3.14), re-
spectlvely, and O'%‘a 9,.0, is defined in (3.17).

with g,
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(iii) In the region Rg3, Ap(t) and 1/Uy(t) are of the same order, i.e. the
dominant terms of the right-hand side of (3.6) are the second and the third.
In Rs, Agy(t) = Ao(t) +&xq/Uo(t), so condition (3.7) can be rewritten as
VEAy(n/k) — 0o, as m — co. If we assume that this condition holds with
X = limy 00 1/(Ao(n/k)Us(n/k)) # 0, then

a,01,02,7q,

Ao(n/k) = {7 (agq{ da ;.0 (po) +¢& Xquaﬂth(_f)} + m
225 L1 o0 A0 )1+ 04(1) + 0 ) B/ 1)1+ 0,(1) |

+ ety { Wa 0y 03,74 (€2 P0) + Y1 02,7 (€)AXq (1 + op(1))}>,

If £+ po = 0 and x4 # 0, if we consider levels £ such that (1.13) and (3.7) hold,

T(a791,9277'q7(1) i y ( ) n §(da,91,92 (po))71 (W]ga,lﬂl)_ta 01,09 (,OO)W(Q 01, @2))
ok 01,0200 a(11Exxg)VEAo (n/k)
(a,91,92,7'q) (c,01,02) /
Ur (po)Ao(n/k)+vT (pozpo)BO (Tb/k‘)
v Lok (14 0p(1)
(c,01,09, Tq) (c,01,09,7q)
qu 9t (67,00) qu )‘ Y (5 PO) 1 1
" { (ematoe/l) T trematee LT o)

with v 7 p), w7 p), o p) and gt PTE, p) defined

n (3.11), (3.13), (3.14) and (3.16), respectlvely. The proof of the theorem
follows for sequences of positive intermediate integers k = k, such that
kn = o(n), VkAo(n/k) — oo, VEAZ(n/k) — X, VkAo(n/k)By(n/k) — A\, and
VEAy(n/k)/Uy(n/k) — Aay, as n — oo. O
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