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1. INTRODUCTION

In this note, we investigate spatio-temporal trends in health disparities,

expressed by infant mortality, through an empirical example. We deal with geo-

graphical health pattern in Italy from 1991 to 2010, starting from data available

at the provincial level and assessing the existent disparity among macro-regions

(the conventional Northern, Central and Southern macro-regions). The evalu-

ation of the temporal evolution of inequality requires the adoption of suitable

indicators that, along with their decomposition, help in answering a couple of

main questions: is inequality between small geographical units decreasing dur-

ing the study period? Which is the trend of the inequality share explained by

grouping the smaller geographical units in macro-regions? As in recent years

spatial disparities are being investigated in depth, the above research questions

are more and more crucial. Answers to such questions are critical to improve and

implement better public policies.

As a matter of fact, persistent health inequalities in modern welfare states

represent a great disappointment in public health, with widening disparities re-

ported in many Western European countries (Mackenbach, 2012). Since health

inequality could persist within the same country among different regions, ap-

propriate statistical methods to describe the spatio-temporal evolution of this

phenomenon are desirable. In this study, we propose suitable decompositions of

inequality indices equipped with uncertainty measures as the mean to evaluate

the temporal evolution of health inequality in Italy along a twenty-years period.

In particular, we focus on infant mortality, that is one of the main indicators to

measure the general health level. Health disparities can be described by means

of a variety of statistical measures, such as dispersions measures or inequality

indices (Wagstaff et al., 1991). In order to assess the presence of geographic dis-

parities in morbidity and mortality, various authors suggested measuring health

inequality by means of the Generalized Entropy and Gini indices.

In the Italian case, despite a general declining trend, some studies found

high dispersion in Infant Mortality Rates (IMRs) at provincial level, revealing

evident and persisting geographical disparity in infant mortality. This persisting

disparity was mainly related to differences in socio-economic and health care

standards among Northern, Central and Southern Italian macro-regions (Fantini

et al., 2005; Lauria and De Stavola, 2003).

When studying provincial-level infant mortality, IMRs show large random

fluctuations giving rise to relevant methodological issues concerning the evalu-

ation and decomposition of health disparities: more precisely, because of the

low birth counts observed in the provinces and because of the rarity of infant

deaths, Italian provinces have to be considered as small areas and direct esti-

mates (i.e. IMRs) are subject to high sampling variability that we will tackle
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by means of a model-based approach. The consequences of sampling variabil-

ity on the measurement and decomposition of appropriate inequality measures

constitute the main methodological focus of the paper. Literature concerning

sampling variability of Gini index and Generalised Entropy measures are centred

on the classical case where available data constitute a sample from a larger pop-

ulation, but individual values of the study variable are considered as measured

without error. Instead, due to the peculiarities of the motivating example, we

address the situation where the whole population has been observed (i.e. data

concerning birth and death counts are available for each province), but individual

values of the study variable need to be estimated. In this situation, the sampling

properties of inequality indices estimators depend on the sampling properties

of individual-level estimators. According to our knowledge, this topic has been

neglected in the literature concerning health inequalities. Proper smoothing tech-

niques need to be used in order to limit potential biases due to sample variability

(Congdon et al., 2001; Congdon, 2010). Adopting a popular approach to spatio-

temporal disease mapping (Kim and Lim, 2010; Knorr-Held, 2000; Blangiardo

et al., 2013), we estimate a Bayesian smoothing model exploiting spatial associ-

ation of provincial IMRs and temporal correlation. The model allows reciprocal

borrowing strength for area-level data, with the least reliable rates (based on the

smallest birth counts) being mostly smoothed. Model fitting is performed via

Integrated Nested Laplace Approximations (INLA, Rue and Martino, 2009).

The outline of this paper is as follows. Section 2 provides a brief description

of the data concerning Italian infant mortality. Section 3 introduces inequality

measures and their decomposition. A simulation study is discussed for high-

lighting some relevant features of inequality estimators. Section 4 describes the

Bayesian spatio-temporal model adopted for smoothing mortality rates: compu-

tational details are provided. In Section 5, model-based inequality decomposition

is presented. In the concluding section, evidences of persisting disparity in in-

fant mortality are briefly discussed, illustrating the contribution of the differences

among macro-regions.

2. MOTIVATING EXAMPLE

Yearly data about infant mortality, in our study referred to 95 provinces

along 20 years (1991–2010), are published by the Italian Institute of Statistics

(ISTAT). At each year t = 1, ..., T , province s = 1, ..., S, and macro-region k =

1, ...,K, infant death counts yskt and birth counts Pskt are available. For each

year, province and macro-region, the Infant Mortality Rate (IMR):

(2.1) θ̂skt =
yskt
Pskt

, s = 1, ..., S, k = 1, ...,K, t = 1, ..., T ,
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is a quick measure of the infant mortality intensity. In particular, θ̂skt is the

maximum likelihood estimator of the true mortality rate θskt according to the

model

(2.2) yskt|θskt ∼ Poisson(θsktPskt) , s = 1, ..., S, k = 1, ...,K, t = 1, ..., T .

Estimator (2.1) is unbiased and its sampling variance is inversely propor-

tional to the birth count Pskt, in fact V (θ̂skt|θskt) = θskt/Pskt. It turns out that

estimates referred to provinces with low birth counts are affected by huge sam-

pling variability, while estimates based on high birth counts are more stable.

This well-known feature of mortality rates gave rise to an extensive literature

concerning spatial and spatio-temporal disease mapping, aiming at smoothing

observed rates (Kim and Lim, 2010; Knorr-Held, 2000; Blangiardo et al., 2013).

The consequences of sampling variability on the measurement and decomposi-

tion of appropriate inequality measures are discussed in the following section and

constitute the main methodological focus of the paper.

Figure 1 plots the IMRs series of all Italian provinces during the study

period (reported in gray). Black lines refer to IMRs observed in the Northern,

Central and Southern macro-regions. A general decline of the mortality level is

observed along the study period in all the macro-regions, reflecting the general

trend at the provincial level. At the national level, IMR declines from 0.008 to

0.003, but a general decline in the mortality intensity does not imply a decline in

territorial inequalities.
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Figure 1: Temporal trend of IMRs at provincial and macro-region level.
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Figure 2 reports the spatial distribution of IMRs classifying each province

according to the octiles identified for the selected years 1991, 1994, 1998, 2002,

2006 and 2010. A persistent spatial trend occurs since southern provinces system-

atically register higher infant mortality with respect to northern provinces. In the

following of this paper, we discuss how this territorial disparity can be evaluated

focusing on both the overall inequality and the share of inequality explained by

grouping provinces in macro-regions.

1991 1994 1998

2002 2006 2010

1st 2nd 3rd 4th 5th 6th 7th 8th

Figure 2: Octiles of the IMRs spatial distribution in selected years.

3. INEQUALITY MEASURES AND THEIR DECOMPOSITION

The theory concerning the measurement of inequalities has a long history

and has been developed essentially in the framework of income distribution (Dal-

ton, 1920; Atkinson, 1970; Dreher and Gaston, 2008). The same theory has

been subsequently turned to the study of health inequalities at several spatial

and temporal levels of aggregation. A popular approach defines health inequal-

ity as the uneven distribution of health across all units in a population and in

population subgroups (see e.g., Gakidou and King, 2002; Pradhan et al., 2003).

In this section, following this approach, we consider a framework where population
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units are constituted by small geographical areas grouped in macro-regions and

discuss some crucial statistical properties of inequality measures estimators when

small area rates are involved. In particular, we focus on two popular inequality

indicators: the Generalised Entropy class of indicators and the Gini coefficient.

For simplifying notation, we drop the temporal subscript in what follows.

Given a population of S areas organised in K groups, the number of ar-

eas belonging to the k-th group is denoted as Sk, such that
∑K

k=1
Sk = S. Let

θk = (θ1k, ..., θsk, ..., θSkk) and Pk = (P1k, ..., Psk, ..., PSkk) denote respectively the

“true”mortality rates and the number of births referred to group k. Group-specific

rates are weighted averages of area-specific rates denoted as θ̄k =
∑Sk

s=1
Pskθsk/Pk,

where Pk =
∑Sk

s=1
Psk.

The Generalised Entropy is defined as:

(3.1) GE(θ;α) =
1

α(α− 1)

K∑

k=1

Sk∑

s=1

Psk
P

((
θsk
θ̄

)α

− 1

)
, α 6= 0, 1 ,

where α controls the weight assigned to the distance between mortality rates at

different parts of the rates distribution: for negative/positive values of α, GE is

more sensitive to changes in the lower/upper tail of the distribution. The GE

class of inequality measures includes as special cases, among others, the Theil

index (α = 0) and the Coefficient of Variation (α = 2, where the GE is equivalent

to half times the squared coefficient of variation, or relative variance). The GE

class of inequality measures is easily decomposable in the between and within

group components. Namely, the between component is expressed as:

GEB(θ;α) =
1

α(α− 1)

K∑

k=1

Pk
P

((
θ̄k
θ̄

)α

− 1

)
,

a weighted average of the distances between the group means and the overall

mean. The within component is expressed as a linear combination of the GEs in

each sub-group

GEW (θ;α) =
K∑

k=1

Pk
P

(
θ̄k
θ̄

)α

GEWk ,

where GEWk is the GE in the k-th group:

GEWk = GE(θk;α) =
1

α(α− 1)

Sk∑

s=1

Psk
Pk

((
θsk
θ̄k

)α

− 1

)
.

Eventually, GE is decomposed in the between and within components as:

GE(θ;α) = GEB(θ;α) +GEW (θ;α)

and the contribution of grouping to the global inequality can be evaluated as the

ratio:

(3.2) GEB(θ;α)/GE(θ;α) .
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As pointed out in Dagum (1997), the decomposition of GE-type inequality

measures is essentially based on the hypotheses underlying one-way analysis of

variance, neglecting differences in variances and asymmetry characterising sub-

groups, and delivering the between component from comparisons between group

means. A nicer and more detailed picture of inequality decomposition can be

obtained starting from the Gini index defined as:

(3.3) G(θ) =
1

2θ̄

K∑

h=1

K∑

k=1

Sh∑

s=1

Sk∑

v=1

Psh
P

Pvk
P

|θsh − θvk|

according to the proposal of Dagum (1997). This decomposition considers three

components measuring respectively within-group inequality, net between-group

inequality and transvariation (i.e. overlapping) between groups. The component

due to transvariation represents one strong peculiarity of Gini’s index with re-

spect to the GE decomposition. For simplifying notation, it is assumed that the

group means are ordered as θ̄1 ≤ ... ≤ θ̄k ≤ ... ≤ θ̄K . The decomposition starts

by defining the Gini index between the couple of groups h and k as:

(3.4) Ghk =
1

θ̄h + θ̄k

Sh∑

s=1

Sk∑

v=1

Psh
Ph

Pvk
Pk

|θsh − θvk| .

For h = k, expression (3.4) corresponds to the Gini index of the k-th group.

It immediately turns out that (3.3) can be written as a function of (3.4) as:

(3.5) G(θ) =
K∑

h=1

K∑

k=1

Ph
P

(
Pkθ̄k
P θ̄

)
Ghk =

K∑

h=1

K∑

k=1

qhrkGhk ,

where qh = Ph/P is the population share of the h-th group and rk = (Pkθ̄k)/(P θ̄)

can be interpreted as the share of expected death counts in the k-th group. Since∑K
h=1

∑K
k=1

qhrk = 1, the Gini index can be expressed as a weighted average of

the between groups Gini indices Ghk; on the contrary, it is not possible to express

GE-based decompositions as weighted averages, since the weights do not sum up

to one. Coefficients Ghk, properly combined with weights qh and rk, allow to

decompose the Gini index in three components. The first one is

(3.6) GW (θ) =
K∑

k=1

qkrkGkk ,

which measures the contribution of within group inequality. The following ex-

pression of the between component is due to Costa (2009):

(3.7) GB(θ) =
K−1∑

h=1

K∑

k=h+1

r∗hk − q∗hk
r∗hkq

∗

kh + r∗khq
∗

hk

(qhrk + qkrh) ,

where r∗hk = rh/(rh+rk) and r∗hk = qh/(qh+qk). The component due to transvari-

ation, denoted in what follows as GT (θ), can be obtained by difference. The
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between component of the Gini index has the merit to take into account pairwise

differences between individuals instead of being entirely based on comparisons

among group means: for this reasons it should be preferred to GE-like indices.

Eventually, the decomposition

(3.8) G(θ) = GW (θ) +GB(θ) +GT (θ)

is obtained.

For the purpose of this work, we consider G(θ), GB(θ), GW (θ), GT (θ),

GE(θ;α), GEB(θ;α) and GEW (θ;α) as target population parameters to be es-

timated.

3.1. The use of direct estimates

Direct estimates θ̂sk plugged in the expression of population quantities are

a popular way for estimating inequality indices. Figures 3 and 4 report estimates

Ĝ(θ), ĜB(θ), ĜW (θ), ĜT (θ), ĜE(θ;α), ĜEB(θ;α) and ĜEW (θ;α) of these

inequality measures for each year in the interval 1991–2010 concerning Italian

infant mortality, obtained by simply plugging-in direct estimates of the mortality

intensity. As an example, at each year, Ĝ(θ) is obtained as:

(3.9) Ĝ(θ) =
1

2ˆ̄θ

K∑

h=1

K∑

k=1

Sh∑

s=1

Sk∑

v=1

Psh
P

Pvk
P

|θ̂sh − θ̂vk|

employing the direct estimates (2.1).
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Figure 3: Plug-in estimates. Generalised Entropy and Between Generalised
Entropy (left panel). Within Generalised Entropy (middle panel).
Effect due to the between component (right panel).

Estimates of inequality indicators show a noisy temporal trend that sug-

gests an increasing weight of the within components (see middle panels of the

following Figures 3 and 4) and a decreasing weight of the between component
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(see Figure 3 right panel and Figure 4 lower left panel). In particular, according

to the GE index, the between component accounts for 55% of total inequality in

1991, decreases to 25% in year 2008 and then shows a further increase to 36%

in 2010. The between component of the Gini index accounts for 70% of total

inequality in 1991, decreases to 49% in year 2008 and then shows a further in-

crease to 60% in 2010. Our purpose is to show that these estimates should not be

considered as reliable pictures of territorial disparity in Italian infant mortality,

since they are heavily affected by the sampling variability of direct estimates.
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Figure 4: Plug-in estimates. Gini index and its between component
(upper left panel). Within component (upper middle panel).
Transvariation component (upper right panel). Lower panels
report the contribution of each component to the total.

Literature concerning sampling variability of Gini index and Generalised

Entropy measures focuses on the classical case where available data constitute

a sample from a larger population, but individual values of the study variable

are considered as measured without error (see for example Langel and Tillé,

2013). Instead, due to the peculiarities of the motivating example, we address

the situation where the whole population has been observed (i.e. data concerning

birth and death counts are available for each province), but the individual values

of study variable (i.e. mortality intensity θsk) need to be estimated. In this

situation, the sampling properties of inequality indices estimators depend on the

sampling properties of individual-level estimators. According to our knowledge,

this topic has been neglected in the literature concerning health inequalities. In

Subsection 3.2 the effect of estimating inequality measures by simply plugging-in

direct estimates θ̂sk is discussed.



Assessing the Evolution of Territorial Disparities in Health 11

3.2. The effect of sampling variability on decomposition

In order to discuss the consequences of direct estimates sampling variability

on the estimation of inequality measures decomposition, we design a simulation

study that considers a population partitioned in K = 3 groups, where the whole

inequality is explained by the between-group component, while equality within

groups is postulated. We set θ̄1 = 0.6 θ̄, θ̄2 = θ̄ and θ̄3 = 1.4 θ̄. Moreover, we set

θsk = θ̄k ∀s, k, such that the within component of any inequality measure equals

0, i.e. GW (θ) = GEW (θ;α) = 0. In order to investigate the effect of mortality

intensity, we let θ̄ vary between .002 and .009, similarly to the national mortality

levels observed between 1991 and 2010 in Italian infant mortality. For the sake of

simplicity, from now on, we set α = 1.5 when dealing with the GE index. With

this setting, for any θ̄, we obtain G(θ) = GB(θ) = 0.196 and, fixing α = 1.5,

GE(θ; 1.5) = GEB(θ; 1.5) = 0.069. For each value of θ̄, and for each s and k,

M = 50, 000 death counts {ymsk}m=1,...,M are generated from the model:

ysk|θ̄k ∼ Poisson(θ̄kPsk) , k = 1, ...,K, s = 1, ..., Sk ,

where Psk is set at the number of births observed in the Italian provinces in 2010,

in order to obtain simulation results relevant for highlighting the peculiarities of

our case-study. For each simulated count ymsk, direct estimates θ̂msk = ymsk/Psk are

used to obtain plug-in estimates of the inequality measures and their components.

Averaging over all simulated values, we obtain the expected value of the plug-in

estimators, as an example:

E(Ĝ(θ)|θ) =
1

M

M∑

i=m

Ĝm(θ) .

Simulation results are reported in Figures 5 and 6, with θ̄ values in abscissa.

In all panels, true population values are reported as horizontal thin lines. The left

panel of Figure 5 and the upper left panel of Figure 6 show that estimators Ĝ(θ)

and ĜE(θ;α) of the global inequality are positively biased while both estimators

of the between components, whose expected value is reported as a dashed line

in the same panels, are approximately unbiased. Unbiasedness of the between-

component estimators is not surprising and can be ascribed to the stability of the

group-specific sample means ˆ̄θk as estimators of the population parameters θ̄k,

based on greater population sizes with respect to area-level estimates θ̂sk. It turns

out that the bias of the global estimators is essentially due to overestimation of the

within component, as can be seen from the central panels of the figures. Moreover,

the bias of the global measures decreases when θ̄ increases: the relative bias of

ĜE(θ; 1.5) ranges from 63% (when θ̄ = .002) to 14% (when θ̄ = .009), while the

relative bias of Ĝ(θ) ranges from 34% (when θ̄ = .002) to 13% (when θ̄ = .009).
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Figure 5: Expected values of the components of the Generalised Entropy
index (left and central panels). Expected values of the contri-
bution of the between component to the total (right panel).
In abscissa θ̄ values.
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Figure 6: Expected values of the components of the Gini index (upper
panels). Expected values of the contribution of each compo-
nent to the total (lower panels). In abscissa θ̄ values.

This is a very relevant feature to bear in mind in our case study: since

the average mortality intensity decreases along the study period (see Figure 1),

it is very likely that overestimation of the within component is more severe at

the end of the study period itself. In other words, inequality measures computed

at the beginning and at the end of the period (reported in Figures 3 and 4) are

not directly comparable since they are affected in a different way by sampling

variability. An interesting feature of the Dagum’s decomposition of the Gini

index is its ability to capture (and to be affected by) transvariation: for low θ̄

values, simulated rates θ̂msk are more likely overlapping between groups than for

high θ̄ values: this intuitive behaviour induces the trend of E(ĜT (θ)|θ) plotted

in the right panels of Figure 6. As a consequence of the overestimation of within
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variability, the contribution of the between components to the global inequality

turns out to be heavily underestimated (see Figure 5, right panel and Figure 6,

lower left panel): E(ĜEB(θ; 1.5)/ĜE(θ; 1.5)|θ) ranges from 0.62 to 0.88 as a

function of θ̄, while E(ĜB(θ)/Ĝ(θ)|θ) ranges from 0.75 to 0.89.

The dangers of a quick exploitation of direct estimates have been high-

lighted by the simulation study just described. A model-based approach where

small area estimates are improved by a borrowing strength process is therefore

needed. The Bayesian framework is particularly suitable to this aim and to easily

obtain uncertainty measures concerning inequality decomposition.

4. SPATIO-TEMPORAL SMOOTHING

Spatio-temporal disease mapping models can be adopted as useful tools

for attenuating the effects of sampling variability of individual-level estimates

on inequality measures and their decomposition. Several spatio-temporal disease

mapping models have been proposed including parametric or non-parametric time

trend and different types of spatio-temporal interaction (see e.g. Blangiardo et al.,

2013; Schrödle and Held, 2011; Ugarte et al., 2014). In this work, we adopt

the well-known smoothing model proposed in Knorr-Held (2000), that is briefly

sketched in what follows. Since our aim is limited to obtain smoothed mortality

rates, we do not include group-specific parameters: between-group variation will

be evaluated on the basis of the posterior distribution of the smoothed rates.

According to the approach proposed in Knorr-Held (2000), the spatio-temporal

trend is non-parametrically modelled: this delivers a very flexible model that

can capture complex non-linear behaviours. Smoothing is achieved by borrowing

strength along both space and time under the fairly reasonable hypothesis that

rates variation is smooth along these dimensions. The model is hierarchically

specified and is particularly suitable to be managed in a Bayesian framework.

At the first level of the hierarchy, conditionally on model parameters involved in

higher levels, mortality counts yskt are assumed to follow independent Poisson

distributions:

(4.1) yskt|θskt ∼ Poisson(θsktPskt), s = 1, ..., S, k = 1, ...,K, t = 1, ..., T .

In its most general formulation, the model includes both spatial and tem-

poral structured and unstructured random effects and a spatio-temporal interac-

tion term. All random effects are modelled as Gaussian Markov Random Fields

(GMRF): the Markov property of GMRF models implies sparseness of the pre-

cision matrix, which allows fast computations. The linear predictor is specified

as:

(4.2) log(θskt) = µ+ φt + νt + ψsk + usk + δskt,
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where µ captures the average log-rate; ν = (ν1, ..., νt, ..., νT ) and u = (u11, ...,

uS11, ..., u1K , ..., uSKK) are unstructured temporal and spatial random effects

distributed as independent zero-mean Gaussian variables, i.e. u ∼ N(0, τuIS)

and ν ∼ N(0, τνIT ). Intrinsic GMRF (IGMRF) are adopted for random effects

φ = (φ1, ..., φt, ..., φT ) and ψ = (ψ11, ..., ψS11, ..., ψ1K , ..., ψSKK), namely φ ∼

N(0, τφKT (φ)) and ψ ∼ N(0, τψKS(ψ)), where KT (φ)) is structured in order

to obtain a Random Walk 1 prior and KS(ψ)) depends on the neighbouring

structure of the map, delivering the well-known Intrinsic Conditional AutoRe-

gressive (ICAR) model. With regard to the spatio-temporal interaction random

effects δ = (δ111, ..., δskt, ..., δSKT ), four types of interaction can be postulated by

specifying the structure matrix as the Kronecker product of the corresponding

structure matrices of the main effects. Namely, δ ∼ N(0, τδKST (δ)) where:

– Type I interaction: KST (δ) = IT ⊗ IS ;

– Type II interaction: KST (δ) = IT ⊗ KS(ψ) ;

– Type III interaction: KST (δ) = KT (φ) ⊗ IS ;

– Type IV interaction: KST (δ) = KT (φ) ⊗ KS(ψ) .

To ensure model identifiability, appropriate linear constraints are needed

for the random effects: with regard to IGMRFs, the number of required linear

constraints equals the rank-deficiency of the precision matrix. As pointed out

in Schrödle and Held (2011), identifiability can be ensured by computing the

null space of the structure matrices and using the obtained eigenvectors as linear

constraints: this is the strategy we adopt for model estimation. Unstructured

random effects are constrained to zero sum in order to allow identification of the

intercept term µ. Model hierarchy is completed by specifying a diffuse Gaus-

sian distribution as a prior µ, while Gamma priors are specified for precision

parameters τφ, τu, τν , τψ and τδ.

4.1. Computations

Coherently with the Bayesian framework, we aim at evaluating and de-

composing inequality measures (3.1) and (3.3) on the basis of their posterior

distribution p(G(θt)|y) and p(GE(θt;α)|y): this allows to easily obtain both

point estimates and their associated uncertainty. When dealing with complex

hierarchical Bayesian models, the joint posterior distribution is not available in

closed form and needs to be approximated. Two alternative strategies are cur-

rently very popular for approximating the joint posterior distribution: Markov

Chain Monte Carlo (MCMC) sampling and INLA (see Rue and Martino, 2009).

The latter is particularly suitable for latent GMRF models and provides very

accurate approximations of the posterior distribution. Moreover, INLA outper-



Assessing the Evolution of Territorial Disparities in Health 15

forms MCMC approaches in terms of computational time and accuracy. INLA

has been made easily implementable by the R package INLA (Rue et al., 2013),

that we used for model estimation.

It is worth noting that inequality measures are non-linear combinations of

model parameters: the R package INLA allows to approximate the posterior dis-

tribution of linear combinations of the model parameters, but does not allow to

obtain approximations of non-linear combinations: as a consequence, posterior

inference concerning inequality measures can only be performed by sampling from

the joint posterior distribution, a task that is naturally addressed in an MCMC

framework. Fortunately, the adoption of an MCMC algorithm can be avoided in

our case study, since an experimental function implemented in the INLA pack-

age, inla.posterior.sample, allows to draw samples from the joint posterior

distribution. We checked the coherence between the results obtained by the INLA

experimental function and the posterior samples obtained by means of an MCMC

algorithm, finding agreement between results for the estimated models, with an

impressively lower computational time demanded by the INLA-based procedure.

Once posterior samples from the joint posterior distribution are available, as is the

case where MCMC sampling is performed, posterior distributions of any functions

of the model parameters can be obtained on the basis of these samples. Given

L samples {θlt}l=1,...,L from the joint posterior distribution θt|y, l = 1, ..., l, ..., L,

t = 1, ..., t, ..., T , for each l, inequality measures and their decompositions can be

computed, delivering an L-dimensional sample from their posterior distribution:

as a byproduct, both posterior point estimates and credibility intervals can be

easily obtained.

5. RESULTS

Model selection is performed by means of the Deviance Information Crite-

rion (DIC, Spiegelhalter el at., 2002) according to the results of Table 1. Models

without unstructured terms are preferred in terms of fitting, as the first column

of results shows; the selected model includes a Type II interaction term.

Table 1: Model comparison: Deviance Information Criterion.

Interaction Without ν and u With ν and u

Type I 11185.09 11224.34
Type II 11136.75 11196.59
Type III 11245.67 11356.31
Type IV 11236.46 11286.92
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On the basis of the selected model, we obtain posterior estimates of in-

equality measures and their decomposition of Figures 7 and 8, where posterior

means are reported along with 90% credibility intervals.
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Figure 7: Posterior means and credibility intervals. Generalised Entropy
and Between Generalised Entropy (left panel). Within Gen-
eralised Entropy (middle panel). Effect due to the between
component (right panel).
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Figure 8: Posterior means and credibility intervals. Gini index and its
between component (upper left panel). Within component
(upper middle panel). Transvariation component (upper right
panel). Lower panels report the contribution of each compo-
nent to the total.

These figures should be compared with their counterparts based on direct

estimates, already reported in Figures 3 and 4; all the comparisons discussed in

what follows are coherent with the results of the simulation study reported in

Figures 5 and 6, and should be interpreted in light of them. As a first difference,
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smoothing of direct estimates turns out in smoothing of the temporal trend of

inequality measures, delivering a clearer picture of the evolution of territorial dis-

parities in Italian infant mortality. Secondly, posterior estimates of the overall

level of inequality (see Figure 7 left panel and Figure 8 upper left panel) are

sensibly lower than estimates obtained by means of plug-in estimators. The ratio

E(GE(θt)|y)/ĜE(θt), that can be interpreted as a quick measure of the effect

due to the shrinkage of mortality rates estimates, ranges from 0.9 at the begin-

ning of the study period, when mortality intensity is higher, to 0.45 at the end

of the study period, characterised by lower mortality intensity. The same ratio

referred to the Gini index ranges from about 0.9 at the beginning of the study

period to about 0.7 in last years, witnessing a lower sensitivity of the Gini in-

dex to sampling variability of direct estimates. The difference between plug-in

estimates and model-based posterior estimates is almost entirely due to the re-

duction of the within components (central panels of Figures 7 and 8) and, with

regard to the Gini decomposition, to the reduction of the component measur-

ing transvariation (Figure 8, right panel). Estimates of the between components

remain basically unchanged for both indicators: as a result, the contribution of

the between group variability is higher when considering model-based estimates.

Despite some evidence of a decreasing trend, inequality between macro-regions

explains a considerable share of global inequality: according to the Gini decom-

position, which better captured the between-group component in the simulation

study, such share ranges from 76% in 1991 to 72% in 2010. The same shares are

reduced respectively to 66% and 57% when considering the Generalised Entropy

decomposition.

6. CONCLUSIONS

In this paper, we studied the time trend of health disparity in Italy adopting

a small area geographical scale. The analysis ranged over a number of method-

ological and empirical issues that emerge when combining traditional inequal-

ity indices, methods for their decomposition and Bayesian hierarchical models.

We assumed provinces as units of analysis by grouping them in three main macro-

regions: Northern, Central and Southern areas of Italy.

In order to evaluate the temporal evolution of health inequality in Italy, we

focused on IMRs, since they are commonly considered as good proxies of health, en-

vironmental and socio-economic conditions. After defining, for the sake of brevity,

health inequality as the uneven distribution of health across all units of a popu-

lation, we took into account two popular classes of inequality indicators such as

the Generalized Entropy and the Gini coefficient. We also measured the share of

global inequality due to disparities among macro-regions, decomposing the total

index in its basic components related to the within- and between-group inequality.
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However, we preliminary showed that, when dealing with small area data,

inequality measures based on direct IMRs tend to be severely affected by random

fluctuations. In order to reduce the effect of sample variability and smooth direct

IMRs, we estimated a Bayesian model that takes into account spatial, temporal

and spatio-temporal interaction effects. Bayesian inference was carried out by

means of INLA. Inequality measures based on posterior estimates come out to

be less affected by random variations. The model-based Generalized Entropy

and Gini coefficient appear stable over the study period, revealing a persistent

inequality in infant mortality. In addition, it also comes out that the proportion of

global inequality due to disparities among macro-regions tends to be higher when

model based estimates are taken into account. We concluded that the persistent

health disparity at provincial level is not due to small areas random variability,

but is more evidently connected to relevant differences among macro-regions.

Since neonatal care given to mothers and newborns represents one of the

main infant mortality causes (Scioscia et al., 2007; Parazzini et al., 1992), it

is possible to ascribe the observed infant mortality disparity to different levels

of health services (Bonati and Campi, 2005; Mazzucco et al., 2011). In these

terms, the persistent disparity in infant mortality between provinces may reflect

the long-term socioeconomic inequalities between Northern and Southern Italy

(Golini, 2014).
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