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– Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Portugal
fmig@fct.unl.pt

João Tiago Mexia
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1. INTRODUCTION

Inference about the regression coefficients in a standard linear regression

model under the usual assumptions of normality, independence and homoscedas-

ticity of errors and without any constraints on the regression parameters is quite

old. A good amount of research has also been done in this set up under some linear

inequality constraints on the regression coefficients (see Liew (1976), Gourieroux

et al. (1982), Self and Liang (1985), Mukerjee and Tu (1995), Andrews (1999),

Andrews (2001), Meyer (2003) and Kopylev and Sinha (2010)). Most of the dis-

cussions in these papers are asymptotic in nature, and also under the assumption

that the underlying dispersion matrix of errors is either completely known or

asymptotically estimated and hence used as if it were known. It turns out that,

under linear inequality constraints on the regression coefficients, quite often the

null distribution of the likelihood ratio test statistic for the nullity of a regression

coefficient is a linear combination of several independent chisquares rather than

being just one chisquare. We add that the proofs in some papers are geometric

in nature while in others it is algebraic in nature, but they are quite involved in

both the cases due to the very nature of the model and the testing problem.

A brief literature review is in order. The first paper on this topic seems

to be due to Gourieroux et al. (1982), followed by the celebrated paper by Self

and Liang (1985). The emphasis in both the papers is the derivation of the

asymptotic properties of the maximum likelihood estimates and the associated

LRT when some parameters lie on their boundaries. In an excellent paper by

Mukerjee and Tu (1995), the exact small sample LRT is derived and its properties

have been studied in the special case of a simple linear regression model with the

nonnegativity restriction on both the intercept and the slope parameters, and

inference being on an arbitrary linear function of the two parameters. The paper

by Meyer (2003) discusses a test for linear regression versus convex regression

while Kopylev and Sinha (2010), primarily motivated by Self and Liang (1985),

develop explicit and useful expressions of the MLEs and LRTs in dimensions two

and three, the entire treatment being asymptotic in nature.

In this paper we revisit this important inference problem in the case of

a standard linear regression model with some linear inequality constraints on

the regression coefficients and develop the LRT for the nullity of just one linear

function when the variance is unknown. Our treatment is exact, and we offer two

solutions. This is in the same spirit as in Mukerjee and Tu (1995). The paper

is organized as follows. In Section 2 we consider the linear regression problem

with two regression coefficients, both being nonnegative, and derive the LRT

for the nullity of one of them. In Section 3 we consider the case of a linear

regression with three regression coefficients, all of which are nonnegative, and

describe the LRT for the nullity of one of them. In both the settings, normality

and independence of errors with an unknown variance are assumed. In each case
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we derive the likelihood ratio test and discuss some aspects of the corresponding

null distribution of the LRT. Results of some simulation studies are reported in

Section 4 in the case of two regression coefficients, comparing the Type I errors of

the usual LRT (without taking into account any correction due to nonnegativity

of regression coefficients) and the proposed LRT, clearly showing the benefit of

the corrections. Such benefits have also been observed and reported in Mukerjee

and Tu (1995).

We end this section with a general observation that in the context of a

linear model

(1.1) y ∼ Nn(Xβ, σ2W) ,

if there are known linear inequality constraints on the regression coefficients β,

and the inference problem is to test the equality of such a linear constraint versus

it is bigger (or smaller), under a suitable (known) matrix transformation we can

always assume without any loss of generality that the inequality constraints as

well as the testing problem depend solely on the regression coefficients themelves.

This is precisely the formulation we adopt in the remainder of the paper. We also

observe an important point from Self and Liang (1985) and Kopylev and Sinha

(2010). Under normality and independence of errors, the maximization of the

likelihood with respect to the entire regression coefficients β, which is is equiva-

lent to the minimization of the familiar normal quadratic form (β− β̃)′ V(β− β̃)

with respect to the regression coefficients β, where V is the estimates covariance

matrix, can be safely carried out only with respect to the subset of the regres-

sion coefficients which satisfy the inequality constraints, thus completely ignoring

the minimization aspect with respect to the unrestricted regression coefficients.

Hence, although our proposed solutions in this paper are derived for linear re-

gression models with two nonnegative regression coefficients, this formulation can

be adapted for any number of unrestricted regression coefficients!

These results can be very useful in econometrics, extending, for example,

the results of Andrews (1999) and Andrews (2001). Similar methodologies can

also be applied in environmental risk analysis, as it can be seen in Sinha, Kopylev

and Fox (2012).

2. TWO REGRESSION COEFFICIENTS ON THE BOUNDARY

2.1. Model

Consider the linear model

(2.1) y ∼ Nn(Xβ, σ2W) ,
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with unknown parameters β and σ2, and known matrices X and W. Then the

usual maximum likelihood (ML) estimators of β and σ2 are given by

β̃ = (X′W−1X)−1X′ W−1y ,(2.2)

σ̃2 =
S

n
, S = (y − Xβ̃)′ W−1 (y − Xβ̃) .(2.3)

We assume without any loss of generality that β = (β1, β2), and derive

below the likelihood ratio test (LRT) statistic for the hypothesis

(2.4) H0 : β1 = 0 vs. H1 : β1 > 0 ; β1, β2 ≥ 0 .

As mentioned earlier, we point out that any linear regression model with

a linear inequality constraint on the original regression coefficients and a linear

hypothesis on another linear function of them can be reduced to the above setup

by suitable linear transformations of y
¯
. Let Vψ be the inverse of the Fisher

information matrix for ψ = [β1 β2 σ2], which will have the form

(2.5) Vψ =

[

σ2(X′ W−1X)−1 0

0′ 2σ4

n

]

.

All throughout we assume that σ2 is unknown, and we proceed in two ways

to develop a test for H0. Our first approach is based on taking σ2 to be known and

deriving an LRT for H0, and then replacing σ2 by its natural estimate, namely,

the sample residual variance, and checking what kind of properties the resultant

test statistic would possess. This is done by extensive simulation carried out in

Section 4. The second approach is to derive the genuine LRT when σ2 is unknown.

Although the latter test statistic has an explicit form, its null distribution is rather

complicated. We study its properties again by simulation in Section 4. A point

of caution is in order here. Unlike the asymptotic treatments in Self and Liang

(1985) and Kopylev and Sinha (2010), the null distributions of the test statistics

in both the above cases depend on the nuisance parameter β2 (in fact, via β2/σ).

This is in sharp contrast with the contents of all the previous papers!

2.2. σ2 known

The derivation of the LRT in this case essentially follows from Kopylev and

Sinha (2010) who derived it algebraically. We provide below an alternative proof

using some geometrical arguments. Following the results presented in [5], the

LRT statistic for known σ will have the exact form:

(2.6) L = min
β∈C

(β̃−β)′(XW−1X′)(β̃−β) − min
β∈C0

(β̃−β)′(X′W−1X′)(β̃−β) ,
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where C is the cone represented by R
+
0 =

∏2

i=1[0, +∞[ and C0 is the cone repre-

sented by {0}× [0, +∞[.

Upon simplification, we get an equivalent expression for L:

L0 = min
β1,β2≥0

[

v11(β1 − β̃1)
2 − 2 v12(β1 − β̃1)(β2 − β̃2) + v22(β2 − β̃2)

2
]

− min
β2≥0

[

v11β̃
2
1 − 2 v12 β̃1(β2 − β̃2) + v22(β2 − β̃2)

2
](2.7)

where v11, v12 and v22 come from

(2.8) V = (X′W−1X)−1 =

[

v11 v12

v12 v22

]

.

Note that dividing the estimators β̃1 and β̃2 as well as the parameters β1

and β2 by
√

v11 and
√

v22, respectively, we can rewrite L0 as

ℓ = min
θ1,θ2≥0

[

(θ1 − θ̃1)
2 − 2 ρ(θ1 − θ̃1)(θ2 − θ̃2) + (θ2 − θ̃2)

2
]

− min
θ2≥0

[

(1 − ρ2) θ̃2
1 + (θ2 − θ̃2.1)

2
](2.9)

where θ = diag
(

1√
v11

, 1√
v22

)

β and θ̃ = diag
(

1√
v11

, 1√
v22

)

β̃, and θ̃2.1 = θ̃2 − ρθ̃1.

It is easy to see that the hypotheses H0 and H1 remain invariant under this

transformation.

2.3. Minimization

Let us assume that ρ > 0 and start with the minimization of Q(θ1, θ2) =

(θ1− θ̃1)
2−2 ρ(θ1− θ̃1)(θ2− θ̃2)+(θ2− θ̃2)

2. When min{θ̃1, θ̃2} < 0 and θ̃2 ≥ ρθ̃1,

putting

(2.10)

{

x = θ1 − θ̃1

y = θ2 − θ̃2

,

the level curves of the ellipsoid for the d-level curve are given by

(2.11) x2 − 2 ρxy + y2 = d2

and, choosing the positive value,

(2.12) x = ρy +
√

d2 − (1−ρ2)y2 ,

we get

(2.13)
dx

dy
= ρ − (1 − ρ2)y

√

d2 − (1−ρ2)y2
.
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To have dx
dy = 0, one must have y = ± ρd√

1−ρ2
. Since the solution we seek is

positive, so

(2.14) x =
d

√

1 − ρ2
.

In order that the vertical tangent coincides with the vertical axis one must

have x = −θ̃1, and so d = −θ̃1

√

1 − ρ2 and y = −θ̃1ρ. Thus,

(2.15)

{

θ1 = 0

θ2 = θ̃2 − ρθ̃1 = θ̃2.1

.

We also have that Q(0, θ̃2.1) = (1 − ρ2) θ̃2
1. Under these assumptions, sup-

pose we can attain a value smaller than (1− ρ2) θ̃2
1, say

(

−θ̃1

√

1 − ρ2 − ǫ
)2

, with

ǫ > 0. In that case, the largest value possible for x would be

(2.16) x = −θ̃1 −
ǫ

√

1 − ρ2
,

which implies that

(2.17) θ1 = − ǫ
√

1 − ρ2
< 0 ,

which is not a valid solution for θ1.

Analogously, when min{θ̃1, θ̃2}< 0 and θ̃2 ≤ ρ−1θ̃1 we have (θ1, θ2) = (θ̃1,2, 0)

and Q(θ̃1.2, 0) = (1 − ρ2) θ̃2
2.

On the other hand, when ρ−1θ̃1 < θ̃2 < ρθ̃1, we take (θ1, θ2) = (0, 0) and

get Q(0, 0) = θ̃2
1 − 2 ρθ̃1θ̃2 + θ̃2

2. If we take any other valid solution, say (ǫ1, ǫ2),

with ǫ1, ǫ2 > 0, it is easy to see that

(2.18) Q(ǫ1, ǫ2) − Q(0, 0) = −2 θ̃2.1ǫ1 − 2 θ̃1.2 ǫ2 + ǫ21 + ǫ22 − 2 ρǫ1ǫ2 > 0 ,

and so the optimal solution is in fact (0, 0). Summing up the various cases, the

first term of ℓ, written as Q1, simplifies to

(2.19)
Q1

σ2(1 − ρ2)
=































0 ; θ̃1 > 0, θ̃2 > 0

θ̃2
1 ; θ̃2.1 > 0, θ̃1 < 0

θ̃2
2 ; θ̃1.2 > 0, θ̃2 < 0

θ̃2
1 − 2ρθ̃1θ̃2 + θ̃2

2

1 − ρ2
; θ̃1.2 < 0, θ̃2.1 < 0

.

Under the null hypothesis, i.e., when θ1 = 0, one gets the likelihood

(2.20) ℓ0 = (1 − ρ2) θ̃2
1 + (θ2 − θ̃2.1)

2 .
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It is easy to see that the minimum for this ℓ0 is achieved when θ2 = θ̃2.1 for

θ̃2.1 ≥ 0, and θ2 = 0 for θ̃2.1 < 0. So, the second term of ℓ define Q0 as

(2.21)
Q0

σ2(1 − ρ2)
=











θ̃2
1 ; θ̃2.1 > 0

θ̃2
1 − 2 ρθ̃1θ̃2 + θ̃2

2

1 − ρ2
; θ̃2.1 < 0

.

2.4. Likelihood ratio with known σ2

Combining the above results, it follows that the LRT rejects H0 for large

values of λ given by

(2.22) λ =



















































θ̃2
1 ; θ̃2.1 > 0, θ̃1 > 0

θ̃2
2.1 + (1 − ρ2)θ̃2

1

2(1 − ρ2)
; θ̃2.1 < 0, θ̃2 > 0

0 ; θ̃2.1 > 0, θ̃1 < 0

θ̃2
1.2

1 − ρ2
; θ̃1.2 > 0, θ̃2 < 0

0 ; θ̃2.1 < 0, θ̃1.2 < 0

.

The above representation of the difference of the minimum of the two

quadratic forms is exactly similar to what appears in Kopylev and Sinha (2010).

At this point two things need to be settled. First, the null distribution of λ, and

then the fact that σ2 is unknown and it needs to be replaced by an estimate.

Since under H0 : β1 = 0 and β2 ≥ 0 is unknown, it is obvious that the exact null

distribution of our LRT λ will depend on β2! This is indeed a major difference

between our result and that of Kopylev and Sinha (2010) where the argument is

asymptotic in nature, resulting in the null distribution of LRT being independent

of σ as well as any nuisance parameter. Below we assume that β2 = 0 and derive

the null distribution of LRT still assuming that σ2 is known, and then rescale

λ to take care of unknown σ2. We will call this the modified LRT. Simulation

studies carried out in Section 4 about the Type I error of the modified LRT for

unknown β2 and unknown σ2 reveal that the performance of the modified LRT

is quite good.

Write V1 = θ̃1, V2 = θ̃2, W1 = θ̃1.2√
1−ρ2

and W2 = θ̃2.1√
1−ρ2

, and note that under

H0, V1 ∼ N(0, 1), cov[V1, W2] = cov[V2, W1] = 0, and V2 ∼ N [δ, 1] with δ > 0.
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We now express

P
[

λ < x
]

= P
[

V 2
1 < x ∧ V1 > 0 ∧ W2 > 0

]

+ P

[

V 2
1 +W 2

2 < x ∧ W2 >− ρ

1−ρ
V1 ∧ W2 > 0

]

+ P
[

W 2
1 < x ∧ V2 < 0 ∧ W1 > 0

]

+ P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

.

(2.23)

The computation of the above probabilities can be somewhat complicated

using Cartesian coordinates. Below we use the familiar polar coordinates.

It is well known that a random two dimensional vector whose components

are two independent normal vectors with null mean value and variance σ2 has

the same distribution as the vector

(2.24)

(

R cos U
R sinU

)

where

R ∼
√

σ2χ2
2 ,(2.25)

U ∼ Unif(0, 2π) ,(2.26)

these variables being independent. In fact, the following equality can be obtained:

(2.27)

∫∫

A

e
x
2
+y

2

2σ2

2πσ2
dx dy =

∫∫

Λ

r
e

r
2

2σ2

2πσ2
du dr ,

where A is a subset of R
2 and Λ is a subset of Ω = [0,∞[×[0, 2π[. The polar

coordinate transformation

(2.28) p(r, u) =

{

x = r cos u

y = r sinu

guarantees a bijective function between R
2 and Ω (for (0, 0), take r = u = 0).

Hence, applying the polar transformation on the pair (V1, W2) 7→ (R, U)

and noting that (V1, W2) and (V2, W1) are pairs of independent standard normal

variables, one can rewrite (2.23) as

P

[

ℓ

σ2
< x

]

= P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

+
1

2
P
[

χ2
1 < x

]

+ P
[

R2 < x ∧ 2π−arcsin ρ < U < 2π
]

,

P

[

ℓ

σ2
< x

]

=
1

2
− arcsin ρ

2π
+

1

2
P
[

χ2
1 < x

]

+
arcsin ρ

2π
P
[

χ2
2 < x

]

,

(2.29)

noting that arctan −ρ
1−ρ = arcsin ρ. It is then established the following.
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Theorem 2.1. The exact distribution of the LRT statistic under H0 : θ1=0

vs H1 : θ1 > 0, for θ2 = 0 and known σ2 is a mixture of χ2
0, χ2

1 and χ2
2 with

coefficients 1
2
− p, 1

2
and p, respectively, with

p =
arcsin(ρ)

2π
,

where ρ the correlation coefficient between θ̃1 and θ̃2.

Up until now, it was assumed that the variance component σ2 was known,

which in practice is rarely the case. Take

(2.30) S0 =
nS

n − p
,

where S, defined in (2.3) is the maximum likelihood estimator for σ2, which is

independent of θ̃1 and θ̃2, and observe that

(2.31) (n − p)S ∼ σ2χ2
n−p .

Hence, one can use S0 to enable the computation of the distribution of ℓ.

Thus, taking the expression in (30) and multiplying ℓ by S0, one gets

P
[

ℓ < (1−ρ2)x
]

= P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

+
1

2
P
[

F1,n−p < (1−ρ2)x
]

+ P

[

R2

S0

< (1−ρ2)x ∧ 2π−arcsin ρ < U < 2π

]

,

P
[

ℓ < x
]

=
1

2
− arcsin ρ

2π
+

1

2
P
[

F1,n−p < (1−ρ2)x
]

+
arcsin ρ

2π
P
[

F2,n−p < (1−ρ2)x
]

.

(2.32)

So, another version of Theorem 2.1 for the rescaled or modified LRT is

given by

Theorem 2.2. The exact distribution of the LRT under H0 : θ1 = 0 vs

H1 : θ1 > 0, for θ2 = 0, is a mixture of F0, F1,n−p and F2,n−p with coefficients
1
2
− p, 1

2
and p, respectively, with

p =
arcsin(ρ)

2π
,

where ρ the correlation coefficient between θ̃1 and θ̃2.

Tables 1, 2 and 3 represent the rejection probability for some values of β1,

taking α = 0.05.
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2.5. LRT when σ2 is unknown

In this section we derive the LRT for H0 when the error variance σ2 > 0 is

unknown. Write

(y − Xβ)′W−1(y − Xβ) = (y − Xβ̂)′W−1(y − Xβ̂) + Q(β)

= SSres + Q(β)
(2.33)

where β̂ is the usual weighted least squares estimate of β defined in (3), and

Q(β) = (β̂−β)′(XW−1X′)(β̂−β). Then it easily follows that the LRT statistic λ

for H0 defined as the ratio of null-restricted maximum of the likelihood of y to

the unrestricted maximum of the same likelihood is given by

(2.34) λ =

[

SSres + Q1

SSres + Q0

]n/2

where Q1 and Q0 are the unrestricted and restricted values of the quadratic Q(β)

under the conditions β1, β2 ≥ 0 and β1 = 0, β2 ≥ 0, respectively.

Using the expressions for Q1 and Q0 from (20) and (22), respectively, and

noting that our exact LRT rejects H0 for large values of ∆ = SSres+Q0

SSres+Q1
, we simplify

∆ as

(2.35) ∆ =



































































SSres

SSres + θ̃2
1

; θ̃2.1 > 0, θ̃1 > 0

SSres

SSres +
θ̃2
1
−2ρθ̃1θ̃2+θ̃2

2

1−ρ2

; θ̃2.1 < 0, θ̃2 > 0

1 ; θ̃2.1 > 0, θ̃1 < 0

SSres + θ̃2
2

SSres +
θ̃2
1
−2ρθ̃1θ̃2+θ̃2

2

1−ρ2

; θ̃1.2 > 0, θ̃2 < 0

1 ; θ̃2.1 < 0, θ̃1.2 < 0

.

The crux of the problem now is to derive the null distribution of ∆. It is

obvious that although the null distribution of ∆ is independent of σ2, it does de-

pend on the unknown second regression coefficient β2 ≥ 0 as in the previous case.

Finding this null distribution even for a specified β2 turns out to be extremely

difficult, and we can present only some simulation results for this purpose.

Tables 7, 8 and 9 represent the rejection probability for some values of β1

and β2, taking α = 0.05.

Based on these simulation results, we conclude that this test behaves very

good, maintaining test size and gaining power compared to the usual F test and

the ad-hoc test described earlier.
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3. NUMERICAL RESULTS

3.1. Ad-hoc test

A set of simulations was performed to evaluate the power performance of

the ad-hoc test when σ2 is unknown. The model assumed was

(3.1) yj = β0 + β1x1,j + β2x2,j + ej ,

with j = 1, ..., 33 and β1, β2 ≥ 0. Considering that ej ∼ N(0, σ2), the procedure

consists in generating values for θ̃1, θ̃2 and S0, comparing the result of the usual

F test with the derived test for H0 : β1 = 0 vs H1 : β1 > 0. The procedure was

repeated 10000 times to obtain an empirical rejection probability. The chosen

values for the parameters were:

β1 = 0, 1, 3, 10

β2 = 0, 1, 3, 10, 30

ρ = 0, 0.1, 0.25, 0.5

σ2 = 1 .

(3.2)

The results appear in Tables 1 through 3.

Table 1: Rejection probability of ad-hoc test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.062 0.041 0.056 0.052 0.055
1 0.232 0.275 0.251 0.228 0.243
3 0.900 0.891 0.899 0.905 0.913

10 1.000 1.000 1.000 1.000 1.000

Table 2: Rejection probability of ad-hoc test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.053 0.045 0.044 0.053 0.045
1 0.218 0.229 0.232 0.266 0.238
3 0.879 0.853 0.904 0.900 0.860

10 1.000 1.000 1.000 1.000 1.000
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Table 3: Rejection probability of ad-hoc test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.045 0.035 0.053 0.053 0.050
1 0.263 0.225 0.224 0.237 0.232
3 0.917 0.865 0.892 0.899 0.901

10 1.000 1.000 1.000 1.000 1.000

For comparison sake, we also present simulation results for the usual F test

(Tables 4 to 6).

Table 4: Rejection probability of F test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.0477 0.0471 0.0468 0.0481 0.0460
1 0.1646 0.1554 0.1653 0.1675 0.1592
3 0.8320 0.8293 0.8273 0.8276 0.8210

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5: Rejection probability of F test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.0471 0.0512 0.0460 0.0474 0.0491
1 0.1634 0.1648 0.1624 0.1588 0.1577
3 0.8240 0.8296 0.8297 0.8258 0.8317

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: Rejection probability of F test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.0464 0.0504 0.0490 0.0494 0.0500
1 0.1544 0.1551 0.1694 0.1593 0.1630
3 0.8308 0.8275 0.8253 0.8280 0.8288

10 1.0000 1.0000 1.0000 1.0000 1.0000

The power increase for the ad-hoc test over the F test is evidently very

significant for β1 > 0.
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3.2. Exact LR test with unknown σ2

A batch of simulations was run for the exact test ∆. The set of parameters

considered, the same as for the previous batch of simulations, was:

β1 = 0, 1, 3.10

β2 = 0, 1, 3, 10, 30

ρ = 0, 0.25, 0.5

σ2 = 1 .

(3.3)

The results appear in Tables 7 to 9.

Table 7: Rejection probability of exact LR test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.0470 0.0526 0.0495 0.0495 0.0498
1 0.2476 0.2548 0.2485 0.2493 0.2466
3 0.9030 0.9015 0.9000 0.8961 0.8998

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8: Rejection probability of exact LR test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.0490 0.0499 0.0484 0.0521 0.0443
1 0.2702 0.2773 0.2512 0.2552 0.2514
3 0.9133 0.9063 0.8963 0.9012 0.8943

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9: Rejection probability of exact LR test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.0486 0.0592 0.0452 0.0459 0.0541
1 0.2769 0.2647 0.2511 0.2403 0.2564
3 0.9485 0.9324 0.8949 0.8934 0.9031

10 1.0000 1.0000 1.0000 1.0000 1.0000

Again, there is a clear gain of power over the usual F test for β1 > 0.
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3.2.1. Critical Values

The critical values for the exact likelihood ratio test were also obtained

(Table 10).

Table 10: 5% quantiles.

β2\ρ 0 0.25 0.5

0 0.9126540 0.9045819 0.8939074
1 0.9136219 0.9139177 0.9121665
3 0.9120875 0.9121392 0.9100027

10 0.9111222 0.9145002 0.9092603
30 0.9108427 0.9106236 0.9129284

It is easy to see that the critical values across the different values of β2 are

similar, and stabilize as this parameter increases. This leads us to believe that

the use of these critical values would be valid for a wide range of unknown values

of β2.
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