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Abstract:

• This paper presents a modification (and partly a generalization) of STOPBREAK
process, which is the stochastic model of time series with permanent, emphatic fluc-
tuations. The threshold regime of the process is obtained by using, so called, Noise
indicator. We proceed to investigate the model which we named the General Split-
BREAK (GSB) process. After brief recalling of its basic stochastic properties, we give
some procedures of its parameters estimation. A Monte Carlo study of this process is
also give, along with the application in the analysis of stock prices dynamics of several
Serbian companies which were traded on Belgrade Stock Exchange.
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1. INTRODUCTION

Starting from the fundamental results of Engle and Smith [4], who were the

first who had introduced the stochastic process of permanent fluctuations, named

STOPBREAK process, we had defined a new, modified version of the well known

generalization of STOPBREAK process. In our model, we set the threshold noise

indicator as we had recently done in the time series of ARCH type, described

in Popović and Stojanović [12] and Stojanović and Popović [15]. Our model,

named the General Split-BREAK process or, simply, GSB process, is at the same

time the generalization of so called Split-BREAK model introduced in Stojanović

et al. [16].

In the next section, Section 2, we shall briefly present the definition and

the main stochastic properties of GSB model, described in detail in Stojanović

et al. [17], and we will define the sequence of increments of the GSB process, called

Split-MA process. Beside the standard investigation of the stochastic properties

of Split-MA model, we will particularly give the conditions of its invertibility. The

main result of this paper, procedures of the parameters estimation of GBS process,

are described in Section 3. We will pay the special attention to the estimation of

the threshold parameter, named critical value of the reaction. We shall prove the

asymptotic properties of evaluated estimates. The following section, Section 4,

is devoted to the Monte Carlo simulations of the innovations of GSB process.

Section 5 describes an application of the estimation procedures on the real data

of some trading volumes on Belgrade Stock Exchange. Finally, Section 6 is the

conclusion.

2. THE GSB PROCESS. DEFINITION AND MAIN PROPERTIES

We shall suppose that (yt) is the time series with the known values at

time t ∈ {0, 1, ...T} and F = (Ft) is a filtration defined on the probability space

(Ω,F , P ). Following Engle and Smith [4], the sequence (yt) will be a General

STOPBREAK process if it satisfies the recurrent relation

(2.1) A(L)B(L) yt = qt−1A(L) εt + (1−qt−1)B(L) εt , t = 1, ..., T ,

where, A(L) = 1 −∑p
j=1

αj Lj , B(L) = 1 −∑r
k=1

βk Lk, and L is the backshift

operator. On the other hand, (εt) is a white noise, i.e. the i.i.d. sequence of

random variables adapted to the filtration F , which satisfies

E
(
εt |Ft−1

)
= 0 , Var

(
εt |Ft−1

)
= σ2 , t = 1, ..., T .

At last, (qt) represents the sequence of random variables which depends on the

white noise (εt), and in addition, P
{
0 ≤ qt ≤ 1

}
= 1 for each t = 0, 1, ..., T . The
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sequence (qt) displays the (permanent) reaction of the STOPBREAK process,

because its values determine the amount of participation of previous elements of

white noise process engaged in the definition of (yt).

In that way, the structure of the sequence (qt) determines the character

and the properties of the STOPBREAK process, which vary among the well

known linear stochastic models. This model was investigated later by several

authors, for instance Gonzáles [6], or Diebold [3], whose works were based on

certain variations of the reaction (qt). On the other hand, many authors, for

instance Huang and Fok [9] or Kapetanios and Tzavalis [10], have studied mainly

the practical application of the STOPBREAK (and some similar) processes.

Similarly as in the definition of Split-ARCH model [12, 15], we shall suppose

in the following that

(2.2) qt = I(ε2
t−1 > c) =

{
1 , ε2

t−1 > c

0 , ε2
t−1 ≤ c ,

t = 1, ..., T ,

i.e., that the permanent reaction (2.2) represents, so-called a Noise indicator.

Remark that, according to (2.2), it follows that

E
(
qtεt |Ft−1

)
= qtE

(
εt |Ft−1

)
= 0 ,

and it can be seen that the sequence (qt εt) is a martingale difference, as in the

definition of basic STOPBREAK model [4].

However, it seems that in the case of general STOPBREAK process this

formulation of reaction (qt) is inadequate. The primary reason for such opinion is

the fact that the model (2.1) includes only “directly previous” realizations of (qt),

which are obtained at the moment t − 1. Therefore, the general STOPBREAK

process (2.1) with the reaction (2.2) operates in (only) two different regimes

(2.3) εt =

{
A(L) yt , qt−1 = 0 (w.p. bc)

B(L) yt , qt−1 = 1 (w.p. ac) ,

where ac = E(qt) = P{ε2
t−1 > c}, bc = 1−ac and“w.p.” stands for “with probabil-

ity”. Therefore, the equality (2.3) defines the well known Thresholds Autoregres-

sive (TAR) model introduced by Tong [18] and discussed in details, for instance

by Chan [2], Hansen [8] and, in the newest time, Scarrott and MacDonald [13] and

some other authors. Based on this, here we discuss the different generalization

of Split-BREAK process, more general than that of Engle and Smith [4].

Definition 2.1. Let L be a backshift operator, A(L) = 1 −∑m
i=1

αiL
i,

B(L) = 1 −∑n
j=1

βj Lj , C(L) = 1 −∑p
k=1

γk Lk, and (qt) the noise indicator de-

fined with (2.2). Then, the sequence (yt) represents the General Split-BREAK

(GSB) process if it satisfies

(2.4) A(L) yt = B(L) qt εt + C(L)(1 − qt) εt , t ∈ Z .
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Note that the definition above represents the general stochastic model which

as its specific forms, contains the most of other, well known models. In depen-

dence of A(L), B(L) and C(L) we have, for example, the following processes:

A(L) = B(L) = C(L) = 1 : yt = εt (White Noise)

A(L) = 1, B(L) = C(L) 6= 1 : yt = B(L)εt (MA model)

A(L) 6= 1, B(L) = C(L) = 1 : A(L)yt = εt (AR model) .

Finally, in the case when A(L) = C(L) = 1 − L and B(L) = 1 we get the Split-

BREAK process introduced by Stojanović et al. [16]. In the following, we shall

analyze some specificity of the model (2.4) and suppose A(L) = C(L) 6= 1 and

B(L) = 1. Thus, the defined model can be written in the form

(2.5) yt −
p∑

j=1

αj yt−j = εt −
p∑

j=1

αj θt−j εt−j , t ∈ Z ,

where αj ≥ 0, j = 1, ..., p, and θt = 1 − qt = I(ε2
t−1 ≤ c). Obviously, this repre-

sentation is close to linear ARMA time series, except that it has the indicators

of noise (εt) in its own structure. They indicate the realizations of noise which

have statistically significant weights in “previous” time. These “temporary” com-

ponents change the ARMA structure of GSB model (2.5). In this way, they make

some difficulties in the usage of well known procedures in investigation of the

properties of our model .

On the other hand, similarly to the basic STOPBREAK process, the equal-

ity (2.4) enables that the sequence (yt) can be presented in the form of additive

decomposition

(2.6) yt = mt + εt , t ∈ Z ,

where

(2.7) mt =

p∑

j=1

αj

(
yt−j − θt−j εt−j

)
=

p∑

j=1

αj

(
mt−j + qt−j εt−j

)

is the sequence of random variables which we named the martingale means. It is

general case of analogous equality of Engle and Smith [4], which is obtained from

(2.7), for p = α1 = 1. According to (2.6) it follows

(2.8) E
(
yt |Ft−1

)
= mt + E

(
εt |Ft−1

)
= mt ,

from which it follows E(yt) = E(mt) = µ (const.), i.e. the means of these two

sequences are equal and constant. The variance of GSB process can be determined

in a similar way. As

(2.9) Var
(
yt |Ft−1

)
= E

(
y2

t |Ft−1

)
− m2

t = σ2 ,

we can conclude that the conditional variance (volatility) of the sequence (yt) is a

constant and it is equal to the variance of the noise (εt). Let us remark that the
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equalities (2.8) and (2.9) explain the stochastic nature of (2.4). As the sequence

(mt) is predictable, it will be a component which demonstrates the stability of

the process itself. Contrary, the sequence (εt) is the factor which represents the

deviations (or random fluctuations) from values (mt). On the other hand, the

variances of sequences (mt) and (yt) satisfy the relation

Var(yt) = Var(mt) + σ2

and, in the non-stationary case, these are not constants, i.e., depend on the

observation time t.

In the following, we shall describe stochastic structure of the increments

Xt
def
= A(L) yt , t ∈ Z ,

which, according to (2.4) and (2.5), we can write in the form of recurrent relation

(2.10) Xt = εt −
p∑

j=1

αj θt−j εt−j , t ∈ Z .

Obviously, the sequence (Xt) has the multi–regime structure, which depends on

the realizations of indicators (θt). If all fluctuations of the white noise in time

t − j are large, an increment Xt will be equal to the white noise. On the other

hand, the fluctuations of the white noise which do not exceed the critical value c

will produce a “part of” MA(p) representation of (Xt). In this way, the similarity

of this model to the standard linear MA model is noticeable, and the sequence

(Xt) we shall call the general Split-MA model (of order p) or, simply, Split-MA(p)

model. It represents the generalization of the model defined in Stojanović et al.

[16], and the threshold integrated moving average (TIMA) model introduced by

Gonzalo and Martinez [7]. The main properties of this process can be expressed

as follow.

Theorem 2.1. The sequence (Xt), defined by (2.10), is stationary, with

mean E(Xt) = 0 and covariance γ
X

(h) = E(XtXt+h), h ≥ 0, which satisfies the

equality

(2.11) γ
X

(h) =





σ2

(
1 + bc

p∑
j=1

α2
j

)
, h = 0

σ2 bc

(
p−h∑
j=1

αj αj+h − αh

)
, 1 ≤ h ≤ p − 1

−σ2 bc αp , h = p

0 , h > p .

Proof: Elementary.
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Similarly to the basic STOPBREAK model, we can, under some conditions,

show the invertibility of increments (Xt). This property is analyzed from different

aspects by many authors who explored the STOBREAK models. We shall do

the same concerning our model in order to proceed estimation of the unknown

parameters of the model and apply our model to real data. As we shall see later,

only realizations of invertible Split-MA process can give strong consistent and

asymptotically normal estimates.

Theorem 2.2. The sequence (Xt), defined by (2.10), is invertible iff the

roots rj , j = 1, ..., p, of characteristic polynomial

Q(λ) = λp − bc

p∑

j=1

αj λp−j

satisfy the condition |rj | < 1, j = 1, ..., p, or, equivalently, bc

p∑
j=1

αj < 1. Then,

(2.12) εt =
∞∑

k=0

ωk(t)Xt−k , t ∈ Z ,

where
(
ωk(t)

)
is the solution of stochastic difference equation

(2.13) ωk(t) = θt−k

p∑

j=1

αj ωk−j(t) , k ≥ p , t ∈ Z ,

with the initial conditions ω0(t) = 1, ωk(t) = θt−k

∑k
j=1

αj ωk−j(t), 1 ≤ k ≤ p− 1.

Morever, the representation (2.12) is almost surely unique and the sum converges

with probability one and in the mean-square sense.

Proof: First of all, for any t ∈ Z, we define the vectors and matrices

Vt =
(

εt εt−1 ··· εt−p+1

)
′

, Xt =
(

Xt 0 ··· 0
)
′

,

At =




α1θt α2 θt−1 ··· αp−1θt−p+2 αp θt−p+1

1 0 ··· 0 0

0 1 ··· 0 0

...
...

...
...

0 0 ··· 1 0




,

and we can write the model (2.10) in the form of stochastic difference equation

of order one

(2.14) Vt = At−1Vt−1 + Xt , t ∈ Z .
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From here, we have

Vt = Xt +
k∑

j=1

(
At−1 ···At−j

)
Xt−j +

(
k+1∏

j=1

At−j

)
Vt−k−1 ,

where k = 1, 2, ... . It can be proven (see, for instance Francq et al. [5]) that the

existence of almost sure unique, stationary solution of equation (2.14), in the

form

(2.15) Vt = Xt +
∞∑

k=1

(
At−1 ···At−k

)
Xt−k , t ∈ Z ,

is equivalent to the convergence

k+1∏

j=1

At−j
a.s.−→ 0 , k −→ ∞ ,

i.e., to the fact that the eigenvalues rj , j = 1, ..., p, of the matrix

A = E(At) =




α1 bc α2 bc ··· αp−1 bc αp bc

1 0 ··· 0 0

...
...

...
...

0 0 ··· 1 0




satisfy the conditions |rj | < 1, j = 1, ..., p . According to the representation

det
(
A − λI

)
= (−1)p Q(λ) ,

it is obvious that the eigenvalues rj , j = 1, ..., p , are the roots of the characteristic

polynomial Q(λ). Then, the condition |rj | < 1, j = 1, ..., p, is necessary and suffi-

cient for the almost sure uniqueness of the representation (2.15), and the almost

sure convergence of the corresponding sum. In the similar way, we can prove that

the same conditions are equivalent to the mean square convergence of the sum in

(2.15). From this point on, by simple computation, we can obtain the equations

(2.12) and (2.13).

Based on the proposition above, it is clear that the presence of the se-

quence (θt) in (2.10) enables the conditions of invertibility of increments (Xt)

to be weaker than corresponding conditions that are related to the stationarity

of the series (yt) and (mt) (see, for more details [17]). In that way, even non-

stationary time series (yt) and (mt) can form invertible Split-MA process which

is always stationar. This situation is particularly interesting in the case of so

called integrated (standardized) time series, where

(2.16)

p∑

j=1

αj = 1 .
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If the value of parameter bc is non-trivial, i.e., bc ∈ (0, 1), then the sequence (Xt)

will be invertible although (yt) and (mt) are non-stationary time series. We will

further assume that the “normality condition” (2.16) is always fulfilled, because it

will be of dual importance below. Primarily, the condition (2.16), which defines

series (yt) and (mt) as the non-stationary ones, allows us, as opposed to the

stationary case, that these two series have non-zero means, which is particularly

important in applications (see, for instance, Section 5). Finally, another reason

for introducing the“normality condition” (2.16) lays in simplifying the estimation

procedure of unknown parameters of GSB model. As the sequences (yt) and (Xt),

in general, do not depend on the coefficients α1, ..., αp only, but also of the critical

level of reaction c > 0, the presumption (2.16) will be an additional “functional”

relationship between the unknown parameters which allows us to compute them

uniquely. In the next section there will be more discussion about such an idea of

parameters estimation when GSB model is standardized GSB model.

3. PARAMETERS ESTIMATION

Procedure of estimation of the unknown parameters α1, ..., αp, c of GSB

model will be based on the realization of a stationary Split-MA(p) process (Xt).

For this purpose, we suppose that X
1
, ..., X

T
is the part of a realization of this time

series for which we define two kinds of estimates. First, equating the covariance

γ
X

(h), h = 0, ..., p, defined by equality (2.11), with its empirical value

γ̂
X

(h) =
1

T − h

T−h∑

t=1

Xt Xt+h , h = 0, ..., p ,

we get the, so called, initial estimates of unknown parameters. We denote these

estimates with α̃1, ..., α̃p, respectively, i.e., in the case of critical value, with c̃.

Obviously, these are continuous functions of estimates γ̂
X

(h), and according to

the well known properties of continuity the almost sure convergence and the

convergence in distribution (see, for instance Serfling [14]) it can be easily proved

that α̃1, ..., α̃p, c̃ are the consistent and the asymptotically normal estimates of

α1, ..., αp, c.

In spite of good stochastic properties of these estimates, it can be proven

that these are not the efficient estimates of unknown parameters. In order to

achieve better estimates of unknown parameters we introduce the regression es-

timates α̂1, ...α̂p, ĉ based on the regression of sequence

(3.1) Wt =

p∑

j=1

αj θt−j+1Wt−j + εt−1 , t ∈ Z .

For this reason, we will firstly show that the necessary and sufficient stationarity
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conditions of a series of (Wt) are equivalent to the conditions of invertibility of

(Xt), described in Theorem 2.2.

Theorem 3.1. The sequence (Wt), defined by (3.1), is the stationary and

ergodic iff the roots rj , j = 1, ..., p, of characteristic polynomial

Q(λ) = λp − bc

p∑

j=1

αj λp−j

satisfy the condition |rj | < 1, j = 1, ..., p, or, equivalently, bc

p∑
j=1

αj < 1.

Proof: If we introduce the vectors and matrices

Wt =
(

Wt Wt−1 ··· Wt−p+1

)
′

, Et =
(

εt 0 ··· 0
)
′

,

At =




α1θt α2 θt−1 ··· αp−1θt−p+2 αp θt−p+1

1 0 ··· 0 0

0 1 ··· 0 0

...
...

...
...

0 0 ··· 1 0




,

then the equality (3.1) can be written in the form of recurrent relation

(3.2) Wt = AtWt−1 + Et−1 , t ∈ Z .

From here, completely analogously to the Theorem 2.2, it can be shown that the

equation (3.2) has the strictly stationary, almost sure unique and ergodic solution

Wt = Et−1 +
∞∑

k=1

(
At ···At−k+1

)
Et−k−1 , t ∈ Z ,

if and only if the eigenvalues r1, ..., rp of matrix A = E(At) satisfy the condition

|rj | < 1, j = 1, ..., p.

Now, let us define, using the procedure described in [11], the residual se-

quence

(3.3) Rt = Wt −
p∑

j=1

aj Wt−j , t ∈ Z ,

where we denoted aj = bc αj , j = 1, ..., p . We shall prove the following proposition.
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Theorem 3.2. If the sequence (Wt), defined by (3.1) is stationary, then

the sequence (Rt), defined by (3.3) is the sequence of uncorrelated random vari-

ables.

Proof: If we introduce the vectors Rt =
(

Rt 0 ··· 0
)
′

, t ∈ Z, then it is

valid

Rt = Wt − AWt−1 , t ∈ Z ,

where Wt and A are the matrices that we defined earlier. For arbitrary h > 0

the covariance matrix ΓR(h)
def
= E(RtR

′

t−h) of the vectors (Rt) can be written

as

(3.4) ΓR(h) = ΓW(h) − AΓW(h + 1) − AΓW(h − 1) + AΓW(h)A′ ,

where

ΓW(h) =




γ
W

(h) γ
W

(h + 1) ··· γ
W

(h + p − 1)

γ
W

(h − 1) γ
W

(h) ··· γ
W

(h + p − 2)

...
...

...

γ
W

(h − p + 1) γ
W

(h − p + 2) ··· γ
W

(h)




is covariance matrix of the vector series (Wt), and

γ
W

(h) = E(WtWt−h) , γ
W

(−h) = γ
W

(h)

is covariance of the stationary series (Wt). Using simple calculation it can be

shown that there is AΓW(h) = ΓW(h)A′ = ΓW(h + 1), and by substituting this

equality in (3.4) immediately follows ΓR(h) = Op×p.

Notice that in the equality (3.3) we defined the sequence
(
Wt

)
as a linear

autoregressive process of order p, with noise
(
Rt

)
. Then, by using standard

regression procedure, we can obtain the estimate â
T

= (â1, ..., âp)
′ of parameter

a = (a1, ..., ap)
′, in the form of equality

(3.5) â
T

= W−1

T
·b

T
,

where

W
T

=




T∑
t=p+1

W 2
t−1

T∑
t=p+1

Wt−1Wt−2 ···
T∑

t=p+1

Wt−1Wt−p

T∑
t=p+1

Wt−1Wt−2

T∑
t=p+1

W 2
t−2 ···

T∑
t=p+1

Wt−2Wt−p

...
...

...

T∑
t=p+1

Wt−1Wt−p

T∑
t=p+1

Wt−2Wt−p ···
T∑

t=p+1

W 2
t−p




,
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b
T

=

(
T∑

t=p+1

WtWt−1

T∑
t=p+1

WtWt−2 ···
T∑

t=p+1

WtWt−p

)
′

.

Now we are able to show the asymptotic properties of obtained estimates. In this

order, we define the set

A =

{
a = (a1, ..., ap)

′ ∈ Rp
∣∣∣

p∑

j=1

aj < 1

}

which, obviously, is a set of parameter values a for which the invertibility condi-

tion of Split-MA process (Xt), i.e. the stationarity condition of the series (Wt) is

satisfied. In the mentioned assumptions, the following assertion is valid.

Theorem 3.3. Let, for some T0 > 0 and any T ≥ T0, the condition â
T
∈A

is fulfilled. Then â
T

is strictly consistent and asymptotically normal estimate of

parameter a ∈ Rp.

Proof: According to equality (3.5), it is valid

(3.6) â
T
− a =

(
1

T − p
W

T

)
−1

·
(

1

T − p
r

T

)
,

where

r
T

=

(
T∑

t=p+1

RtWt−1

T∑
t=p+1

RtWt−2 ···
T∑

t=p+1

RtWt−p

)
′

.

According to ergodicity of (Wt), which is valid to the set A, follows the ergodicity

of residuals (Rt). Then, under conditions of the theorem, using the ergodic

theorem we have

(3.7)
1

T − p
W

T

a.s.−→ D , T → ∞ ,

where D = E
(
gtg

′

t

)
, gt =

(
Wt−1 ··· Wt−p

)
′

and the moment-matrix D does

not depend on t ∈ Z, for any a from the stationarity set A. According to ergodic

theorem, also, it is valid that

1

T − p
r

T

a.s.−→ 0p×1 , T → ∞ ,

and these two convergences, applied to equality (3.6), give

(3.8) â
T
− a

a.s.−→ 0p×1 , T → ∞ ,

i.e. the strict consistency of estimate â
T

is proved.

Note further that the decomposition (3.6) can be written in the form of

equality

(3.9)
√

T − p
(
â

T
− a
)

=

(
1

T − p
W

T

)
−1

·
(

1√
T − p

r
T

)
.
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As for any c = (c1 ··· cp)
′ ∈ Rp the sequence

c′r
T

=
T∑

t=p+1

Rt

(
p∑

j=1

cj Wt−j

)

is martingale, using the central limit theorem for martingale ([1]), we have

1√
T − p

c′r
T

d−→ N (0, c′Λc) , T → ∞ ,

where Λ = E(utu
′

t), ut = Rt

(
Wt−1 ··· Wt−p

)
′

and Λ does not depend on t, for

any a ∈ A. Now, using this convergence and the Cramér–Wold decomposition,

we get
1√

T − p
r

T

d−→ N (0,Λ) , T → ∞ .

Finally, according to (3.7) it is valid

(
T − p

)
W−1

T

a.s.−→ D−1 , T → ∞ ,

and, according to equality (3.9) and the last two convergences, we obtain

(3.10)
√

T − p
(
â

T
− a
) d−→ N

(
0,D−1ΛD−1

)
, T → ∞ ,

thus the theorem is completely proved.

According to the obtained estimate â
T
, under the condition (2.16), the

estimates of unknown parameters α1, ..., αp, bc of GSB processes can be expressed

as

(3.11)





b̂c =
p∑

j=1

âj

α̂j = âj b̂
−1
c , j = 1, ..., p .

Using the showed properties of estimate â
T
, we can prove that the estimates of

“true” parameters have similar properties, which we formulate in the following

assertion.

Theorem 3.4. Let ϑ̂
T

= (α̂1, ..., α̂p, b̂c)
′ be estimate of the unknown pa-

rameter ϑ = (α1, ..., αp, bc)
′ ∈ Rp+1, obtained according to estimate â

T
and equal-

ity (3.11). If, for some T0 > 0 and any T ≥ T0 is satisfied the condition

b̂c

p∑

j=1

α̂j < 1 ,

then ϑ̂
T

is strictly consistent and asymptotically normal estimate of ϑ.
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Proof: According to convergence (3.8) and the continuity properties of

almost sure convergence (see, for instance Serfling [14]) it is obviously valid that

ϑ̂
T
− ϑ

a.s.−→ 0p×1 , T → ∞ .

Notice that, for any a = (a1, ..., ap)
′ ∈ Rp, the expression (3.11) defines a mapping

g : Rp → Rp+1, by

ϑ = g(a) =

(
a1

(
p∑

j=1

aj

)
−1

, ···, ap

(
p∑

j=1

aj

)
−1

,
p∑

j=1

aj

)
′

.

Then, applying the convergence (3.10) and continuity properties of asymptotically

normal distributed random vectors (see, for instance Serfling [14]) we have

√
T − p

(
ϑ̂

T
− ϑ

) d−→ N (0,V) , T → ∞ ,

where V = GD−1ΛD−1G′ and G =

(
∂g(a)

∂a

)∣∣∣∣
a=â

.

At the end of this section, let us remark some more facts that directly follow

from the estimation procedure described above and the theorems we have just

proven.

Remark 3.1. Asymptotic variances D−1ΛD−1 and V are commonly

used as measures of bias of estimates â
T

and ϑ̂
T
, compared to the true values of

parameters a = (a1, ..., ap)
′ and ϑ = (α1, ..., αp, bc), where

∑p
j=1

aj = bc. Based

on the introduced assumptions and the proof of previous theorem we have that

G(a) =

(
∂g(a)

∂a

)
=




b−1
c − a1b

−2
c −a1b

−2
c ··· −a1b

−2
c

−a2 b−2
c b−1

c − a2 b−2
c ··· −a2 b−2

c

...
...

...

−ap b−2
c −ap b−2

c ··· b−1
c − ap b−2

c

1 1 ··· 1




,

and taking the standard matrix norms, we conclude that for all a ∈ Rp is valid

‖G(a)‖
1

=
∥∥G(a)′

∥∥
∞

= b−1
c − b−2

c

p∑

j=1

aj + 1 = 1 .

Then, according to the previous equalities, for any matrix norm ‖·‖ which is

sub–multiplicative to ‖·‖
1

and ‖·‖
∞

, we get

‖V‖ =
∥∥G(â)D−1ΛD−1 G(â)′

∥∥ ≤
∥∥D−1ΛD−1

∥∥ .

Therefore, asymptotic variance of estimates ϑ̂
T
, obtained by (3.11), does not

exceed the asymptotic variance of â
T
, under which they were calculated. In this

way, the method of parameters estimation of the GSB model is formally justified.
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Remark 3.2. If we apply estimates b̃c and b̂c, we can make a modeled

values of (εt), and thereby, we can estimate the variance σ2 of the sequence (εt).

To do this, we can use the sample variance, i.e. the estimates

(3.12) σ̃2 =
1

T

T∑

t=1

ε2
t (X, θ̃) or σ̂2 =

1

T

T∑

t=1

ε2
t (X, θ̂) ,

where εt(X, θ̃) and εt(X, θ̂) are modeled values of the white noise which we ob-

tained by applying estimates b̃c and b̂c, respectively (see, for more details, the

following section). In the case of the Gaussian noise (εt), these estimates are

identical to those which we can get applying the maximum likelihood procedure,

as it was shown in Stojanović et al. [16]. Namely, under the assumption that (εt)

is the Gaussian white noise, the log-likelihood function will be

L(y
1
, ..., y

T
; σ2) = −T

2
ln(2πσ2) − 1

2σ2

T∑

t=1

(
yt − mt

)2
,

and we can easily see that the estimated value of the variance is identical to

the sample variance (3.12) of the series (εt). The consistency and asymptotic

normality of estimates σ̃ and σ̂ can be easily shown.

4. MONTE CARLO STUDY OF THE MODEL

In this section we will demonstrate some applications of the above described

estimation procedure of Split-MA(1) and Split-MA(2) models. For the white noise

(εt) it was used a simple random sample from with Gaussian N (0, 1) distribution,

so that the elements of the sequence (ε2
t ) were χ2

1 distributed, which has been used

for solving the critical value of the reaction c̃ and ĉ.

In the case of Split-MA(1) process, as it is shown in Stojanović et al. [16],

these estimates are based on 100 independent Monte Carlo simulations for each

sample size T = 50, T = 100 and T = 500 for the model

(4.1) Xt = εt − θt−1εt−1 , t = 1, ..., T ,

where θt = I(ε2
t−1 ≤ 1) and ε0 = ε−1

a.s.
= 0. Firstly, according to the correlation

(4.2) ρ(h) = Corr(Xt+h, Xt) =





1 , h = 0
−bc/(bc + 1) , h = ±1
0 , otherwise .

it obtained the estimates b̃c = −ρ̂
T
(1)
(
1 + ρ̂

T
(1)
)
−1

, where ρ̂
T
(1) is the empirical

first correlation of the sequence (Xt). After that, solving the equation P
{
ε2
t ≤ c

}

= b̃c with respect to c, we obtained the estimates for the critical value c̃.
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In the next estimation stage, using the equality (4.1) in the “functional”

form εt(X, θ) = Xt + θt−1εt−1(X, θ) and b̃c as the initial (estimated) value of the

parameter bc ∈ (0, 1), the regression estimates b̂c are computed as

(4.3) b̂c =

[
T−1∑

t=0

Wt+1(X, θ̃) Wt(X, θ̃)

]
·
[

T−1∑

t=0

W 2
t (X, θ̃)

]
−1

,

where

Wt(X, θ̃) = θ̃t Wt−1(X, θ̃) + εt−1(X, θ̃) , θ̃t = I(ε2
t−1 ≤ c̃) ,

and ε0(X, θ̃) = ε−1(X, θ̃) ≡ 0. Finally, the regression estimates of the (true) crit-

ical value c = 1 are solutions of the equation P
{
ε2
t ≤ c

}
= b̂c with respect to c.

The average values of these estimates are set, together with the correspondent

estimating errors (the numeric values set in the parentheses) in the rows of Table 1.

Table 1: Estimated values of Monte Carlo simulations
of the Split-MA(1) process.

Sample

size

Averages of estimated values

ρ̂
T
(1) ebc ec b̂c ĉ eσ2 σ̂2

T = 50
−0.376 0.614 0.894 0.647 0.944 1.216 1.042
(0.139) (0.219) (0.726) (0.192) (0.571) (0.292) (0.202)

T = 100
−0.386 0.634 0.894 0.671 1.039 1.168 1.016
(0.097) (0.156) (0.444) (0.141) (0.427) (0.184) (0.124)

T = 500
−0.394 0.664 0.916 0.676 0.992 1.135 0.997
(0.056) (0.091) (0.259) (0.068) (0.194) (0.102) (0.099)

True values −0.406 0.683 1.000 0.683 1.000 1.000 1.000

The second column of Table 1 contains the estimated values of the coeffi-

cient of the first correlation ρ̂
T
(1) of the Split-MA(1) model. The average values

of that column are somewhat smaller in the absolute value of the true value, which

is the case here ρ(1) = −bc(1 + bc)
−1 ≈ −0.406. In that way, estimates b̃c and c̃,

showed in the next two columns, will be a proper estimates if −0, 5 < ρ̂
T
(1) < 0.

Then, we showed the regression estimates b̂c and ĉ which average values are closer

to the true value than previously mentioned, initial estimates c̃. This is due to the

fact, formally proved in Remark 3.1, that estimates ĉ are more efficient than c̃.

The histograms of empirical distributions of the estimates c̃ and ĉ are shown in

Figure 1. It can be seen that ĉ has the asymptotically normal distribution even

for the sample of a “small” sample size. Finally, the averages of estimated values

of σ2, based on modeled values of the white noise (εt) and equations (3.12), are
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displayed in the last two columns of Table 1. Their average values differ from the

true value σ2 = 1 as a consequence of two stage estimating procedure that was

used. In spite of that, it can be seen that the average values of σ̂2 are closer to

the true value one than the average values of σ̃2.

Figure 1: Empirical distributions of estimated parameters c̃ and ĉ
of Split-MA(1) model

As in the case of of Split-MA(1) process, we are able to apply the above

procedure for estimating the unknown parameters of Split-MA(2) process

(4.4) Xt = εt − α1 θt−1 εt−1 − α2 θt−2 εt−2 , t = 1, ..., T .

For this purpose, we used 45 independent Monte Carlo simulations of this series

of the length T = 500, with values of parameters α1 = 0.6, α2 = 0.4 and c = 1.
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Firstly, by equating the correlation functions γ
X
(h) of the model above with its

empirical correlations γ̂
X
(h), where h = 0, 1, 2, we get the estimate

α̃1 =
− γ̂

X
(1) −

√
γ̂2

X
(1) + 4 γ̂

X
(1) γ̂

X
(2)

2 γ̂
X
(2)

,

α̃2 = 1 − α̃1 =
2 γ̂

X
(1) + γ̂

X
(1) +

√
γ̂2

X
(1) + 4 γ̂

X
(1) γ̂

X
(2)

2 γ̂
X
(2)

,

b̃c =
−γ̂

X
(2)(

α̃2
1 + α̃2

2

)
γ̂

X
(2) + α̃2 γ̂

X
(0)

.

After that, using α̃1, α̃2 and c̃ as initial estimates we can generate the sequences




εt(X, θ̃, α̃) = Xt + α̃1 θ̃t−1εt−1(X, θ̃, α̃) + α̃2 θ̃t−1εt−2(X, θ̃, α̃)

θ̃t = I
(
ε2
t−1(X, θ̃, α̃) ≤ c̃

)

Wt(X, θ̃, α̃) = α̃1 θ̃tWt−1(X, θ̃, α̃) + α̃2 θ̃t−1Wt−2 + εt−1(X, θ̃, α̃) ,

where t = 1, ..., 500 and ε0 = ε−1
a.s.
= 0. Finally, according to the equalities (3.5)

and (3.11) we obtain the regression estimates of appropriate parameters α̂1, α̂2, ĉ

of Split-MA(2) model.

Table 2: Estimated values of Monte Carlo simulations
of the Split-MA(2) process.

Estimators

type

Parameters

a1 a2 α1 α2 bc c σ2

Initial
estimates

— — 0.597 0.403 0.673 0.993 1.016
— — (0.043) (0.043) (0.075) (0.162) (0.219)

Regression
estimates

0.421 0.274 0.605 0.394 0.685 1.006 1.045
(0.025) (0.025) (0.029) (0.029) (0.031) (0.145) (0.143)

True values 0.420 0.273 0.600 0.400 0.683 1.000 1.000

The Table 2 shows the average values of obtained estimates, corresponding

estimating errors and the true values of parameters. At the first glance, there are

no major differences in the quality of the obtained estimates. Moreover, regres-

sion estimates are slightly more different from the real values of the parameters,

previously obtained from the initial evaluations. However, the dispersion of the

regression estimates is much smaller than the dispersion of the initial estimates,

and this is one of the important advantages of this estimation method. This

fact is clearly visible in Figure 2, which shows the histograms of empirical dis-

tributions of both types of estimates. Obviously, the histograms of regression

estimates (panels below) have much more pronounced asymptotic tendencies in

relation to the initial estimates of parameters (panels above).
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Figure 2: Empirical distributions of estimated parameters of Split-MA(2) model.

5. APPLICATION OF THE MODEL

Here we describe some of the possibilities of practical application the GSB

process in the modeling dynamics of financial series. We observe Split-MA(1) and

Split-MA(2) models, described by equalities (4.1) and (4.4), as stochastic models

of dynamics the total values of stocks trading on the Belgrade Stock Exchange.

As a basic financial sequence we observe the realization of log-volumes

(5.1) yt = ln(St · Ht) , t = 0, 1, ..., T ,

where St is the share price and Ht is the volume of trading of the same share at

time t = 1, ..., T . (The price is in dinars and the volume is the number of shares

that were traded on the certain day. The days of trading are used as successive

data.) Firstly, we applied iterative equations

(5.2)

{
εt = yt − mt

mt = mt−1 + εt−1I(ε2
t−2 > ĉ)

, t = 1, ..., T ,

to generate the corresponding values of sequences (εt) and (mt) of Split-BREAK

process of order p = 1. As estimates of the critical value ĉ, we used the previous

estimating procedure, and as initial values of the iterative procedure (5.2) we use

m0 = y0 = yT , ε0 = ε−1
a.s.
= 0, where yT is the empirical mean of (yt). We use the

basic empirical series defined by (5.1) in solving the series of increments (Xt),

i.e. the realized values of Split-MA(1) described above. The similar procedure

can be used to estimate the parameters of Split-MA(2) model. In that case, we
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substitute the second equation in (5.2) with

mt = α̂1

(
mt−1 + εt−1I(ε2

t−2 > ĉ)
)

+ α̂2

(
mt−2 εt−2 I(ε2

t−3 > ĉ)
)
, t = 2, ..., T ,

where α̂1, α̂2 is the estimated values of model’s parameters, with α̂1 + α̂2 = 1 and

ε0 = ε−1
a.s.
= 0. Table 3 contains the number of observations for the company (T ),

and estimated values of Split-MA(1) and Split-MA(2) models in the case of six

Serbian eminent companies.

Table 3: Estimated values of the GSB parameters of real data.

Companies Cities T
p = 1

ρ̂
T
(1) ebc ec b̂c ĉ

HEMOFARM Vršac 54 −0.346 0.530 0.582 0.613 0.836
METALAC Milanovac 174 −0.449 0.816 4.929 0.829 5.223
SUNCE Sombor 157 −0.424 0.735 2.836 0.784 3.132

Companies Cities T
p = 2eα1 eα2 ec α̂1 α̂2 ĉ

ALFA PLAM Vranje 50 0.640 0.360 2.628 0.690 0.310 3.331
DIN Nǐs 56 0.715 0.285 1.393 0.816 0.184 1.202

T. MARKOVIĆ Kikinda 277 0.824 0.176 1.396 0.830 0.170 1.392

The following, Table 4 contains estimated values of means and variances

of previously defined sequences: log–volumes (yt), martingale means (mt), the

Split-MA process (Xt) and the white noise (εt). If we analyze empirical values of

these series, we can recognize the relations that could be explained the theoretical

results above. Namely, the averages of the log–volumes are close to the averages of

martingale means, which is in accordance with (2.8), i.e. to the fact that the real-

izations of (yt) are “close” to the sequence (mt). On the other hand, the averages

of (Xt) and (εt) are “close” to zero, which is consistent with previous theoret-

ical results. Also, the estimates of the empirical variances of Split-MA series

are generally higher than the corresponding values of the noise variances, which

is consistent with the theoretical properties of these sequences (see Theorem 2.1).

Table 4: Estimated values of real data.

Companies
Log-volumes Mart. means Split-MA White noise

Mean Var Mean Var Mean Var Mean Var

HEMOFARM 15.250 0.814 15.310 0.694 0.022 1.786 −0.042 1.576
METALAC 13.665 2.788 13.798 2.731 0.001 3.979 −0.005 3.614
SUNCE 12.748 2.282 12.730 2.151 −0.024 1.978 −0.028 1.981
ALFA PLAM 15.320 1.505 15.354 1.457 −0.126 2.410 −0.005 1.590
DIN 14.485 4.998 14.628 6.071 −0.126 3.003 −0.139 2.868

T. MARKOVIĆ 13.816 2.295 13.830 1.977 0.001 4.002 −0.078 3.611
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A high correlation between the log-volumes and the martingale means can

be seen in Figure 3, which represents the realizations of these sequences. Obvi-

ously, this fact concurs with the definition of the GSB process, i.e., the equation

(2.6), and justifies the application of the GSB process as an appropriate stochastic

model of the dynamics of empirical time series.

Figure 3: Comparative graphs of the real and modeled data.

Finally, Figure 4 shows that there is also a strong correlation between the

white noise (εt) and the increments (Xt). It is clear that the concurrence of

realizations of these two sequences will be better if, in addition to the great

fluctuation of (Xt), the critical value of the reaction c is relatively small (see,

for instance, Section 4). In fact, small values of c point out to the possibility

that the true value of this parameter is c = 0, when increments (Xt) are equal

to the noise (εt). In that case (yt) is the sequence with independent increments

and the whole statistical analysis is made easier. According to the previous facts

about asymptotic normality of obtained estimates, testing the null hypothesis

H0 : c = 0, ( i.e. bc = 0), in the case of the “large” sample size, will be based on

the normal distribution, i.e. standard, well known statistical tests.
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Figure 4: Comparative graphs of real and modeled data.

6. CONCLUSION

As we know, the non-linear stochastic models of financial time series usually

give excellent results in explaining many aspects of their behavior. In this sense,

various modifications of the STOPBREAK process enable successful description

of the dynamics of financial time series with emphatic permanent fluctuations.

We should point out once again Stojanović et al. [16], where were compared the

efficiency between the simplest GSB model (named Split-BREAK model) of order

p = 1 and some well known models which are standardly used in the real data

modeling. Using the same data set as in the section above, it is shown that our

process represents these time series better, and that fewer coefficients need to be

estimated in comparison with well known models used so far.



Model of GSB Process 167

ACKNOWLEDGMENTS

This research was supported in part by the Serbian Ministry of Education,

Science and Technological Development (No. #OI 174007 and 174026).

REFERENCES

[1] Billingsley, P. (1961). The Lindeberg–Levy theorem for martingales, Proceed-
ings of the American Mathematical Society, 12(5), 788–792.

[2] Chan, S.K. (1993). Consistency and limiting distribution of the lest squares
esimator of a thresholds autoregressive model, Annals of Statistics, 21, 520–533.

[3] Diebold, F.X. (2001). Long memory and regime switching, Journal of Econo-
metrics, 105(1), 131–159.

[4] Engle, R.F. and Smith, A.D. (1999). Stochastic permanent breaks, The Re-
view of Economics and Statistics, 81, 553–574.

[5] Francq, C.; Roussignol, M. and Zakoian, M.J. (2001). Conditional het-
eroskedasticity driven by hidden markov chains, Journal of Time Series Analysis,
22(2), 197–220.
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