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Abstract:

• Singular spectrum analysis (SSA) is a relatively new and powerful non-parametric time
series analysis technique that has demonstrated its capability in forecasting different
time series in various disciplines. In this paper, we study the feasibility of using the
SSA to perform mortality forecasts. Comparisons are made with the Hyndman–Ullah
model, which is a new powerful tool in the field of mortality forecasting, and will be
considered as a benchmark to evaluate the performance of the SSA for mortality fore-
casting. We use both SSA and Hyndman–Ullah models to obtain 10 forecasts for the
period 2000–2009 in nine European countries including Belgium, Denmark, Finland,
France, Italy, The Netherlands, Norway, Sweden and Switzerland. Computational
results show a superior accuracy of the SSA forecasting algorithms, when compared
with the Hyndman–Ullah approach.
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1. INTRODUCTION

With the continuing increase in life expectancy, the mortality forecasting

plays a major role to advice government policy and planning, and in decision

making for pension and insurance industries. Lee and Carter (1992) proposed

a new method which uses singular value decomposition to represent the logs of

mortality rate in terms of two age-dependent factors and a single time-dependent

factor. The time-dependent factor can be extracted and modelled using conven-

tional time series methods so that forecasts could be made. The popular method

of Lee and Carter (1992) to model and forecast mortality rate has undergone

various extensions and modifications. For a review and recent developments, see

Hyndman and Ullah (2007), Hyndman et al. (2011) and references therein. These

methods exhibited a good performance of mortality rate forecasts. However pro-

ducing more accurate forecasts can help, both pension and insurance companies

and governments, to make better decisions.

Singular Spectrum Analysis (SSA) is a relatively new non-parametric ap-

proach for analysing time series data which incorporates elements of classical time

series analysis, multivariate statistics, multivariate geometry, dynamical systems

and signal processing (Golyandina et al., 2001). SSA has the ability to decom-

pose the original time series into the sum of a small number of independent and

interpretable components such as a slowly varying trend, oscillatory components

and a structureless noise. The literature review on SSA shows that there are

more than hundred papers on the application of SSA in the different areas and,

in the majority of them, superiority of SSA compared to other time series anal-

ysis techniques has been demonstrated (e.g. Hassani et al., 2009; Hassani and

Thomakos, 2010, and references therein). Most recent developments in the the-

ory and methodology of SSA can be found in Zhigljavsky (2010) and Golyandina

and Zhigljavsky (2013).

Mahmoudvand et al. (2013) compared the ability of SSA with the Hyndman–

Ullah model for mortality forecast in France. In this paper we extend that

study to nine European countries (Belgium, Denmark, Finland, France, Italy,

The Netherlands, Norway, Sweden and Switzerland); consider two forecasting al-

gorithms for SSA: Recurrent SSA (RSSA, Danilov, 1997a, b) and Vector SSA

(VSSA, Nekrutkin, 1999); and consider the time series until 2009, in a new ap-

proach.

Since the proposal of Hyndman and Ullah (2007) can be seen as a bench-

mark because it achieves more accurate mortality forecasts than many other ap-

proaches, it will be used to compare with SSA forecasting results and, therefore,

to evaluate SSA as a plausible alternative for mortality forecasting.
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The rest of the paper is structured as follows: in Section 2 we give a brief

description of Hyndman and Ullah (2007) model, and in Section 3 present the

generic SSA methodology. The application is presented Section 4 and Section 5

gives some concluding remarks.

2. HYNDMAN–ULLAH APPROACH

The Hyndman–Ullah approach can be expressed using the equation (Hyn-

dman and Ullah, 2007)

(2.1) log mt(x) = a(x) +
K∑

j=1

kt,j bj(x) + et(x) + σt(x) ǫt(x) ,

where mt(x) denotes the mortality rate for age x at time t, a(x) is the average

pattern of mortality by age across years, bj(x) is a basis function and kt,j is

a time series coefficient. The error term σt(x) ǫt(x) accounts for observational

error that varies with age; i.e., it is the difference between the observed rates

and the spline curves. The error term et(x) is modelling error, i.e. the difference

between the spline curves and the fitted curves from the model. By comparison,

the Lee–Carter model (Lee and Carter, 1992)

(2.2) log mt(x) = a(x) + kt b(x) + ǫt(x) ,

has one set of (kt, b(x)), while the Hyndman–Ullah model includes more than

one set of components. This extension presented by Hyndman and Ullah (2007)

gives more flexibility to the model because the additional components capture

non-random patterns, which are not explained by the first principal component.

Other extensions of the Lee–Carter model are discussed in Booth et al. (2006)

and Shang et al. (2011).

3. SINGULAR SPECTRUM ANALYSIS

The basic SSA method consists of three complementary stages: decom-

position, reconstruction and forecasting. In the first stage the time series is

decomposed, in the second stage the noise free time series is reconstructed and

in the third stage the reconstructed time series is used for forecasting new data

points. A short description of the SSA technique is given below. More informa-

tion can be found in Golyandina et al. (2001), Hassani (2007) and Golyandina

and Zhigljavsky (2013).
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3.1. Basic SSA

First Stage: Decomposition

1st step: Embedding. Let x1, ..., xN be a time series of length N .

Considering a window length L the result of this step is a L × K matrix X =

[X1 : ... : XK ], where K = N − L + 1 and Xi = (xi, ..., xi+L−1)
T , 1 ≤ i ≤ K.

2nd step: Singular Value Decomposition (SVD). In this step, matrix

X will be decomposed using SVD as X = X1 + ··· + Xd, where Xi =
√

λiUiVi
T

and Vi = XT Ui/
√

λi with λ1, ..., λL, the eigenvalues of S = XXT and U1, ..., UL,

the corresponding eigenvectors.

Second Stage: Reconstruction

3rd step: Grouping. The grouping step corresponds to splitting the

elementary matrices into m disjunct subsets I1, ..., Im, and summing the matrices

within each group. In our application we have m = 2, i.e. only two groups. I1 =

{1, ..., r} and I2 = {r + 1, ..., L} are related to the single and noise components,

respectively.

4th step: Diagonal averaging. The purpose of diagonal averaging is

to transform each matrix XIj
into a new series of length N . Using diagonal

averaging we have that X = X̃I1 + ··· + X̃Im
, where X̃Ij

is the hankelized form

of XIj
, j = 1, ..., m. Considering x̃

(Ij)
m,n the (m, n)th entry of the estimated matrix

X̃Ij
and denoting by {ỹj1 , ..., ỹjT

} the reconstructed components in the matrix

X̃Ij
, j = 1, ..., m, applying diagonal averaging follows that

ỹjl
=





1

s − 1

s−1∑

n=1

x̃
(Ij)
n,s−n 2 ≤ s ≤ L − 1 ,

1

L

L∑

n=1

x̃
(Ij)
n,s−n L ≤ s ≤ K + 1 ,

1

K + L − s + 1

L∑

n=n−K

x̃
(Ij)
n,s−n K + 2 ≤ s ≤ K + L .

Third Stage. Forecasting

The basic requirement to make SSA forecasting is that the time series

satisfies a linear recurrent formula (LRF). A time series YT = (y1, ..., yT ) satisfies



198 R. Mahmoudvand, F. Alehosseini and P.C. Rodrigues

LRF of order d if:

(3.1) yt = a1yt−1 + a2 yt−2 + ··· + ad yt−d , t = d + 1, ..., T .

Although there are several versions of univariate SSA forecasting algorithms we

consider here two of the mostly widely used: Recurrent SSA (RSSA, Danilov,

1997a, b) and Vector SSA (VSSA, Nekrutkin, 1999). In what follows, we give a

brief description of these algorithms. Further details can be found in Golyandina

et al. (2001).

Let us assume that U▽

j is the vector of the first L − 1 components of the

eigenvector Uj and πj is the last component of Uj (j = 1, ..., r). Denoting υ2 =∑r
j=1 π2

j we define the coefficient vector R as:

R =
1

1 − υ2

r∑

j=1

πj U▽

j .

Recurrent SSA

Considering the above notation, the RSSA forecasts (ŷT+1, ..., ŷT+M ) can

be obtained by

(3.2) ŷi =

{
ỹi , i = 1, ..., T ,

R
T Zi , i = T + 1, ..., T + M ,

where, Zi = [ŷi−L+1, ..., ŷi−1]
T and ỹ1, ..., ỹT , are the values for the reconstructed

time series and can be obtained from 4th step in above.

Vector SSA

Define linear operator:

(3.3) P(v)Y =

(
ΠY△

R
T Y△

)
, Y ∈ span{U1, ..., Ur} ,

where Π = U▽U▽T + (1− v2)RR
T and Y△ denotes the last L− 1 elements of Y .

Suppose the vector Zj is defined as follows

(3.4) Zj =

{
X̃j for j = 1, ..., K ,

P(v)Zj−1 for j = K + 1, ..., K + M + L − 1 ,
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where X̃j are the jth reconstructed columns of the trajectory matrix of the time

series after grouping and discarding noise components. Now, by constructing the

matrix Z = [Z1, ..., ZK+M+L−1] and performing diagonal averaging, we obtain a

new time series ŷ1, ..., ŷT+M+L−1, where ŷT+1, ..., ŷT+M form the M terms of the

VSSA forecast.

3.2. Forecast accuracy

To evaluate the accuracy and reliability of forecasts in time series, one can

use a suitable combination of the following three approaches: (i) construction of

confidence intervals; (ii) assessment of retrospective forecasts; and (iii) checking

the stability of forecasts. Although the three represent important approaches, in

the present paper we will be interested only in (ii) assessment of retrospective

forecasts. Further information about approaches (i) and (iii) can be found in

Golyandina et al. (2001) and Pepelyshev et al. (2010), respectively.

Retrospective forecasts are usually performed by truncating the time series

and by obtaining forecasts for points temporarily removed. These forecasts can

then be compared with the observed values of the time series to asses their quality

and reliability. Let eT,h(x) = yT+h(x) − ŷT,h(x) denote the forecast error, where

ŷT,h(x) are the forecasts for yT+h(x) using RSSA or VSSA (h = 1, ..., M). Then,

a measure of accuracy such as the Integrated Squared Error of forecast can be

written as

(3.5) ISET,h =
∑

x

e2
T,h(x) .

3.3. SSA parameter selection

The SSA calibration depends upon two basic, but very important, parame-

ters: thewindow lengthL, and the number of eigentriples used for reconstruction r.

The choice of improper values for the parameters L or r yield incomplete recon-

struction and the forecasting results might be misleading. Despite the impor-

tance in choosing proper values for these parameters, no theoretical solution has

been proposed to solve this problem. Some of the techniques to choose the ap-

propriate value of L can be found in Golyandina (2010), Hassani et al. (2011),

Mahmoudvand and Zokaei (2012) and Mahmoudvand et al. (2013). An overall

agreeable suggestion to choose the window length is to have it close to the middle

of the series and proportional to the number of observations per period (e.g. to

12 for monthly time series, to four for quarterly time series, etc.). However, this

choice does not guarantee the best predictions (e.g. Mahmoudvand, et al, 2013).
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For better results, the parameter choice should be made accordingly to available

data and intended analysis.

In practice it is relatively rare that the number of singular values r, needed

to be selected to reconstruct noise free series from a noisy time series, is known

a priori. Among several ways to determine r described in the literature, the

easiest way is done by checking breaks in the eigenvalues spectra. As a rule of

thumb, a pure noise series produces a slowly decreasing sequences of singular

values. Another useful insight is provided by considering separability between

signal and noise components, which is a fundamental concept in studying SSA

properties, by using w-correlations (Golyandina et al., 2001) between two vectors

Y (1) = [y
(1)
1 , ..., y

(1)
T ]T and Y (2) = [y

(2)
1 , ..., y

(2)
T ]T :

(3.6) ρw =

T∑
j=1

wL,T
j y

(1)
j y

(2)
j

√
T∑

j=1
wL,T

j

(
y

(1)
j

)2
×

T∑
j=1

wL,T
j

(
y

(2)
j

)2
,

where, wL,T
j = min{j, L, T − j + 1} and 2 ≤ L ≤ T − 1. According to this mea-

sure, two series are separable if the absolute value of their w-correlation is small.

Therefore, we determine r in such a way that the reconstructed series and resid-

ual have a small w-correlation. Another way to determine r is by examining the

forecast accuracy, i.e. r is determined in such a way that the minimum error in

forecasting will be obtained. Considering L fixed, the choice of r can be done as

(3.7) r = argmin
r<L<T−1

ISET,h(x) .

In this study, we considered L = 10 and employed equation (3.7) to determine

the number of singular values used for reconstruction, r.

4. RESULTS

Following a preliminary study by Mahmoudvand et al. (2013), we intend

to demonstrate the feasibility of SSA for forecasting mortality rates using age-

specific mortality rates from nine European countries: Belgium, Denmark, Fin-

land, France, Italy, The Netherlands, Norway, Sweden and Switzerland. We have

yt(x) = log(mt(x)) where mt(x) denotes the mortality rate for age x in year t.
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4.1. Empirical results: The case of nine European countries

Annual mortality rates of nine European countries for single years of age

were obtained from the Human Mortality Database (http://www.mortality.org/).

These mortality rates are the ratios of death counts to population exposure in

the relevant interval of age and time. Figure 1 shows the typical patterns of log

mortality rates for several ages and years in the considered countries.
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Figure 1: Changes in the total log mortality rates with respect to both
age and year, over the period 1900–2009.
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The plots depicted in Figure 1 show that, from 1900 to 2009, there was

a general pattern of decline in mortality rates for all ages and all countries, as

reported by Mahmoudvand et al. (2013) for the case of France. By analysing

these plots, it can be seem that the decline for infant mortality is steeper than for

adult mortality. The effects of the World War I (1914–1918) and World War II

(1939–1945) are clearly visible in the top right plot of Figure 1, for the age of 25,

being more dramatic for France and Italy, as expected. For the other ages the

same effect is also visible but it not as extreme. Since the number of people with

100 years old is small, the bottom plot of Figure 1 shows a less clear pattern but

a decrease is visible in terms of mortality rate and variability, with the time, for

all countries.

Comparison

The results of our proposal were compared with the results obtained from

the method of Hyndman and Ullah (2007). The comparison was made by consid-

ering the European mortality data between 1900 and 1999, with forecast for the

years 2000–2009. Calculations for the Hyndman–Ullah model were made with the

R package “demography” and for SSA we developed our own R code (available

upon request). The forecasts were compared with the observed values of the time

series, using the integrated squared error (3.5), where the squared errors that

integrated by age, on the log scale.

Forecasts of log mortality rate for the period 2000–2009, using the time se-

ries 1900–1999, for all ages between 0 and 100 years, for both SSA and Hyndman–

Ullah approaches, were computed and compared. This is, for each age, from 0

to 100 years old, and for each of the nine countries, the time series between 1900

and 1999 is used to forecast the next 10 values between 2000 and 2009, which

result in the ten ISE of forecasting reported in Table 1. According to the ISE val-

ues, results in the mortality forecasts by RSSA and VSSA are significantly better

than the results for the Hyndman–Ullah method. Ratios of ISE in the second

and third rows for each country of Table 1 show that SSA provides more than

90% improvement in log mortality forecast for some country–year combinations.

This confirms the superiority of SSA over the Hyndman–Ullah method. More-

over, the VSSA forecasting procedure is slightly better than the RSSA forecasting

procedure, particularly for the long term forecasts. By comparing the results in

Table 1 and the plots in Figure 1, it is clear that, because of its construction,

HU procedure produces good results when the time series are smoother. However

both RSSA and VSSA produce better results when forecasting the most of the

mortality rates in these time series.
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Table 1: ISE of forecasts for the considered countries.

Country Model
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

HU1 NA NA NA NA NA NA NA NA NA NA
Belgium RSSA 0.65 0.65 0.38 0.60 0.51 0.82 1.44 0.49 0.38 0.99

VSSA 0.90 0.59 0.37 0.79 0.39 0.53 1.00 0.38 0.52 1.08

HU 4.70 1.68 3.31 2.92 2.29 5.48 3.57 7.80 6.72 6.96

Denmark RSSA

HU
0.28 0.54 0.28 0.30 0.38 0.24 0.45 0.33 3.20 0.30

VSSA

HU
0.30 0.43 0.39 0.24 0.45 0.23 0.39 0.28 3.33 0.26

HU 4.15 4.95 5.19 4.55 6.08 5.60 5.92 6.17 5.22 8.27

Finland RSSA

HU
0.21 0.11 0.20 0.20 0.44 0.89 0.15 0.51 0.41 0.32

VSSA

HU
0.25 0.17 0.21 0.21 0.28 0.70 0.19 0.38 0.43 0.30

HU 0.50 0.74 0.61 0.93 1.83 1.61 2.13 2.44 2.50 2.15

France RSSA

HU
0.17 0.21 0.22 0.27 0.17 0.19 0.34 0.34 0.27 0.35

VSSA

HU
0.26 0.21 0.23 0.40 0.14 0.16 0.28 0.26 0.21 0.33

HU 0.70 1.09 1.68 1.35 2.48 2.49 3.37 2.93 2.84 3.39

Italy RSSA

HU
0.16 0.10 0.13 0.14 0.21 0.17 0.27 0.29 0.19 0.27

VSSA

HU
0.16 0.13 0.12 0.11 0.14 0.18 0.17 0.27 0.15 0.21

HU 1.00 0.73 1.05 1.10 1.83 2.44 2.78 3.41 4.39 3.94

Netherlands RSSA

HU
0.24 0.36 0.23 0.23 0.15 0.26 0.22 0.27 0.30 0.26

VSSA

HU
0.23 0.30 0.10 0.32 0.14 0.23 0.19 0.23 0.29 0.22

HU 3.23 5.76 2.71 2.52 4.86 5.07 10.24 12.55 6.11 8.51

Norway RSSA

HU
0.21 0.09 0.58 0.35 0.16 0.21 0.43 0.64 0.20 0.32

VSSA

HU
0.27 0.08 0.35 0.32 0.17 0.20 0.34 0.57 0.24 0.37

HU 4.52 3.17 4.79 2.82 3.38 4.17 3.85 4.37 8.20 6.07

Sweden RSSA

HU
0.30 0.17 0.16 0.36 0.23 0.28 0.32 0.27 0.43 0.40

VSSA

HU
0.29 0.17 0.26 0.27 0.18 0.17 0.19 0.13 0.43 0.25

HU 1.54 6.46 4.94 3.33 2.72 4.05 5.01 4.19 5.48 5.46

Switzerland RSSA

HU
0.23 0.43 0.52 0.32 0.45 0.32 0.37 0.32 0.29 0.40

VSSA

HU
0.31 0.51 0.46 0.31 0.40 0.27 0.40 0.27 0.29 0.41

1Due to a small amount of missing values the HU values were not possible to obtain.
Data imputation techniques (e.g. Rodrigues and de Carvalho, 2013) can be used

to fill in the missing values.

Figure 2 shows the results of a sensitivity analysis to choose the model

parameters, window length L for SSA and K for the Hyndman–Ullah model,

where the mean ISE (MISE) of forecasts over the period 2000–2009 is presented.

Recall that MISE is provided by:

(4.1) MISE =
1

M

M∑

h=1

ISET,h

where M denotes the number of forecasts.

Although the model parameters, Lfor SSA and K for HU, are not directly

comparable, it can be seen in the plots of Figure 2 that, for most of the cases, the
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results of SSA, both RSSA and VSSA, are better than those of Hyndman–Ullah,

in terms of MISE. This confirms the ability of SSA for mortality forecasting,

being the RSSA slightly better than the VSSA, as visible in Table 1.
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Figure 2: Mean integrated squared error (MISE) of total log mortality
rates forecast by RSSA and Hyndman–Ullah model over the
period 2000–2009 for different SSA and HU parameters.

5. CONCLUSION

In this paper, the usefulness and ability of Singular Spectrum Analysis

(SSA) to forecast mortality rates was studied. The results of SSA based forecast-

ing procedures were compared with those of Hyndman and Ullah method, which

can be seen as a benchmark for mortality forecasting. As in the preliminary study
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presented by Mahmoudvand et al. (2013) in this field of research, we can also con-

clude that the forecasting accuracy of SSA is higher than the forecasting accuracy

of the Hyndman and Ullah method, for most of the cases. Within the two SSA

based approaches, the RSSA shows slightly better results than the VSSA.

It should be noticed that our proposal does not take into consideration the

correlations among ages, which certainly can add useful informations to the anal-

yses and improve the forecast accuracy. Multivariate versions of SSA would be a

valid alternative to deal with such correlations and should be considered in fur-

ther studies. Other alternatives for further improvement of mortality forecasting

might be achieved when considering other SSA based forecasting algorithms.
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