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1. INTRODUCTION

Poisson distribution has wide spread applications in almost every area of

the sciences, engineering and medicine. Hence, it is important that accurate

estimators are available for its rate parameter.

Many authors have studied estimation of the Poisson mean. A comparison

of nine interval estimators for a Poisson mean when the expected number of events

≤ 5 is given in Barker [2]. An easy to use method to approximate Poisson confi-

dence limits is discussed by Bégaud et al. [4]. Three interval estimators for linear

functions of Poisson rates are given in Stamey and Hamilton [31]. Asymptotic

interval estimators for Poisson regression are studied by Michael and Adam [24].

Swift [32] gives recommendations for choosing between twelve different confidence

intervals for the Poisson mean. Bayesian interval estimation for the difference of

two independent Poisson rates for under reported data is considered in Greer et

al. [18]. Improved prediction intervals for binomial and Poisson distributions are

given in Krishnamoorthy and Jie [20]. Simple approximate procedures for con-

structing binomial and Poisson tolerance intervals are given in Krishnamoorthy

et al. [21]. Interval estimators for the difference between two Poisson rates are

given in Li et al. [22]. Interval estimation for misclassification rate parameters

in a complementary Poisson model is described by Riggs et al. [28]. Patil and

Kulkarni [27] compare nineteen confidence intervals for the Poisson mean. See

also Byrne and Kabaila [7] and Ng et al. [26].

Most studies we are aware of have compared the performances of only classi-

cal interval estimators for the Poisson mean: all of the nine estimators considered

in Barker [2] are classical interval estimators; only one of the estimators consid-

ered in Swift [32] is a Bayesian credible interval estimator; all of the nineteen

estimators considered in Patil and Kulkarni [27] are classical interval estimators;

and so on. Also none of these papers have used a real data set to compare the

performance of the estimators.

The aim of this note is a comparison study of classical interval estimators

as well as Bayesian credible interval estimators for the Poisson mean. We con-

sider equal numbers of classical interval estimators and Bayesian credible interval

estimators with a range of priors considered for the latter. In total, we compare

seventeen different interval estimators for the Poisson mean. Our comparison is

based on simulations as well as a real data set.

The contents of this note are organized as follows. In Sections 2 and 3, sev-

eral interval estimators are described for the Poisson mean. Section 2 describes

the following classical interval estimators: the Wald interval estimator, the score

interval estimator, the exact interval estimator, and the bootstrap interval esti-
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mator. Section 3 describes the following Bayesian credible estimators: the equal

tails credible interval estimator, Jeffreys prior credible interval estimator, the

HPD credible interval estimator and the relative surprise credible interval esti-

mator. Each of the estimators in Section 3 was calculated under four different

priors: uniform prior; exponential prior; gamma prior; chisquare prior. Section

4 performs a simulation study comparing the performance of the estimators of

Sections 2 and 3. The performance is compared in terms of coverage probabilities

and coverage lengths. A real data application is described in Section 5. Finally,

some conclusions are noted in Section 6.

2. INTERVAL ESTIMATORS FOR POISSON MEAN

In this section, some methods to obtain interval estimators for the Poisson

mean are described.

2.1. Approximate interval estimator

Here, we use some large sample methods for constructing interval estima-

tors. Suppose T (X) is an estimator based on sample mean such that

√
n
T (X) − θ√

ν(θ)

L→ Z,

where Z ∼ N(0, 1) and
L→ means convergence in distribution (Chung [10]). Sup-

pose further that there is a statistic S (X) so that ν(θ)
p→ S (X). Then, by Slutsky

’s theorem,

√
n
T (X) − θ√

S (X)

L→ Z .

We can obtain an approximate interval estimator for θ with confidence coefficient

1 − α by inverting the inequality (Rohatgi and Ehsanes Saleh [29]):

∣∣∣∣∣
√
n
T (X) − θ√

S (X)

∣∣∣∣∣ ≤ z1−α/2 .

In the following, we construct approximate interval estimators for the Pois-

son mean. Let X1, X2, ..., Xn be a random sample from a Poisson distribution

with mean λ. We consider two interval estimators.
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a) The score interval. By using

Q =
X − λ√

λ
n

∼ N(0, 1) , n→ ∞ ,

we can write

P



−z1−α

2

<
X − λ√

λ
n

< z1−α

2



 = 1 − α .

So, we have
∣∣∣∣∣∣
X − λ√

λ
n

∣∣∣∣∣∣
< z1−α

2

or

λ2 − λ

(
2X +

z2
1−α

2

n

)
+X

2
< 0 .

By solving this inequality, we see that




(
2X +

z2

1−
α
2

n

)
−
√

∆

2
,

(
2X +

z2

1−
α
2

n

)
+
√

∆

2





is an interval estimator for λ with confidence coefficient 1 − α, where

∆ =
z2
1−α

2

n

(
z2
1−α

2

n
+ 4X

)
,

see Shao [30].

b) The Wald interval. We know that λ̂ = X is the maximum likelihood

estimator for λ, so

Q =
X − λ√

X
n

∼ N(0, 1) , n→ ∞ .

So,


X − z1−α

2

√
X

n
, X + z1−α

2

√
X

n





is an interval estimator for λ with confidence coefficient 1 − α. Sometimes X −
z1−α

2

√
X
n can be less than zero. In this case, we use the interval estimator



max



0 , X − z1−α

2

√
X

n



, X + z1−α

2

√
X

n



 .
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2.2. Exact interval estimator

Let X1, X2, ..., Xn be a random sample from a Poisson distribution with

mean λ. Let Y =
n∑

i=1

Xi. We know that Y is a sufficient statistic for λ and Y ∼

Poisson(nλ). Then, an exact interval estimator for λ with confidence coefficient

1 − α is given by

(
1

2n
χ2

2y, α

2

,
1

2n
χ2

2(y+1),1−α

2

)
.

For y = 0, we take χ2
0,1−α

2

= 0 (Casella and Berger [9]). Although an exact con-

fidence interval estimator exists, it is still of interest to compare asymptotic and

exact estimators. The readers are referred to Agresti and Coull [1]. They show

that approximate approaches are better than the “exact” approach for interval

estimation of the binomial distribution. Because Poisson distribution is a discrete

distribution similar to the binomial distribution, it is of interest to investigate the

performance of different interval estimators.

2.3. Bootstrap confidence intervals

Here, we use the percentile bootstrap method (see Davison and Hinkley

[11] for details) to construct confidence intervals for λ. The percentile bootstrap

method is popular: for example, Ibrahim and Kudus [19] used it to construct

confidence intervals for the median of a three-parameter Weibull distribution.

The percentile bootstrap method can be applied as follows:

1. For a random sample X1, X2, ..., Xn from a Poisson distribution with

mean λ, compute the maximum likelihood estimate λ̂ = X.

2. Random select n observations from X1, X2, ..., Xn with replacement.

3. Repeat step 2 B times to generate B bootstrap samples, sayXj
1,X

j
2,...,X

j
n,

1 ≤ j ≤ B.

4. Compute the maximum likelihood estimate λ̂j = X
j

of λ for each of the

bootstrap samples in step 3.

5. Based on λ̂1, λ̂2, ..., λ̂B, a 100(1− α) percentile bootstrap confidence in-

terval is

(
2λ̂− λ̂b, 2λ̂− λ̂a

)
,

where a = (B + 1)α
2 and b = (B + 1)

(
1 − α

2

)
.
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3. BAYESIAN CREDIBLE INTERVALS

In this section, we discuss four Bayesian credible intervals for the Pois-

son mean. Bayesian credible intervals incorporate problem-specific contextual

information from the prior distribution into estimates, whereas classical interval

estimators are based solely on the data. In real applications, we should em-

ploy Bayesian approaches whenever strong prior information exist. This could

provide good coverage and relatively narrow intervals for the parameter. We

consider Bayesian credible intervals for the Poisson distribution under different

priors.

3.1. Posterior distributions under different priors

The efficiency of Bayesian framework is largely dependent upon the choice

of an appropriate prior distribution. The prior information is combined to the cur-

rent information to update the belief regarding a particular characteristic of the

data. The prior information can be of two types; informative and non-informative

priors. Though, the choice of a prior depends upon the circumstances of the study,

the search for a suitable prior is always of interest. We utilize both informative

and non-informative priors for our posterior analysis.

Let X1, X2, ..., Xn be a random sample from Poisson(λ). The prior and

posterior distributions considered are as follows:

(a) For the uniform prior,

π(λ) ∝ 1 , λ > 0 ,(3.1)

the posterior distribution is

π (λ|x) =
n
P

n

i=1
xi+1

Γ

(
n∑

i=1

xi

) λ(
P

n

i=1
xi+1)−1e−nλ ,

[
Gamma

(
n∑

i=1

xi + 1, n

)]
.(3.2)

(b) For Jeffreys prior,

π(λ) ∝ λ−
1

2 , λ > 0 ,(3.3)
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the posterior distribution is

π (λ|x) =
n
P

n

i=1
xi+

1

2

Γ

(
n∑

i=1

xi +
1

2

) λ(
P

n

i=1
xi+

1

2
)−1e−nλ ,

[
Gamma

(
n∑

i=1

xi +
1

2
, n

)]
.(3.4)

(c) For the exponential prior,

π(λ) = ae−aλ , λ > 0 , a > 0 ,(3.5)

where a is a hyper parameter, the posterior distribution is

π (λ|x) =
(n+ a)

P
n

i=1
xi+1

Γ

(
n∑

i=1

xi

) λ(
P

n

i=1
xi+1)−1e−(n+a)λ ,

[
Gamma

(
n∑

i=1

xi + 1, n+ a

)]
.(3.6)

(d) For the gamma prior,

π(λ) =
ab

Γ(b)
λb−1e−aλ , λ > 0 , a > 0 , b > 0 ,(3.7)

where a and b are hyper parameters, the posterior distribution is

π (λ|x) =
(n+ a)(

P
n

i=1
xi+b)

Γ

(
n∑

i=1

xi

) λ(
P

n

i=1
xi+b)−1e−(n+a)λ ,

[
Gamma

(
n∑

i=1

xi + b, n+ a

)]
.(3.8)

(e) For the chisquare prior,

π(λ) =
λ

b

2
−1e−

λ

2

Γ
(

b
2

)
2

b

2

, λ > 0 , b > 0 ,(3.9)

where b is a hyper parameter, the posterior distribution is

π (λ|x) =

(
n+

1

2

)(
P

n

i=1
xi+

b

2
)

Γ

(
n∑

i=1

xi

) λ(
P

n

i=1
xi+

b

2
)−1e−(n+ 1

2
)λ ,

[
Gamma

(
n∑

i=1

xi +
b

2
, n+

1

2

)]
.(3.10)
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For more discussion, see Feroze and Aslam [15].

In the following, we find Bayesian credible intervals based on the derived

posteriors.

3.2. Equal tails credible intervals

Table 1 presents the 1 − α equal tails credible intervals.

Table 1: The 1 − α equal tails credible intervals under the different
priors and posteriors.

Priors Pivotal quantity Lower bound Upper bound

Uniform 2nλ 1
2n
χ2

2(
P

n

i=1
xi+1), 1−α

2

1
2n
χ2

2(
P

n

i=1
xi+1), α

2

Jeffreys 2nλ 1
2n
χ2

2(
P

n

i=1
xi+

1

2 ), 1−α

2

1
2n
χ2

2(
P

n

i=1
xi+

1

2 ), α

2

Exponential 2(n+ a)λ 1
2(n+a) χ

2
2(
P

n

i=1
xi+1), 1−α

2

1
2(n+a) χ

2
2(
P

n

i=1
xi+1), α

2

Gamma 2(n+ a)λ 1
2(n+a) χ

2
2(
P

n

i=1
xi+b), 1−α

2

1
2(n+a) χ

2
2(
P

n

i=1
xi+b), α

2

Chisquare 2
(
n+ 1

2

)
λ 1

2(n+ 1

2 )
χ2

2(
P

n

i=1
xi+

b

2 ), 1−α

2

1

2(n+ 1

2 )
χ2

2(
P

n

i=1
xi+

b

2 ), α

2

3.3. Jeffreys prior credible intervals

The non-informative Jeffreys prior plays a special role in the Bayesian anal-

ysis, see, for example, Berger [5]. In particular, Jeffreys prior is the unique first-

order probability matching prior for a real-valued parameter with no nuisance

parameter, see Ghosh [16]. In our setting, simple calculations show that the

Fisher information about µ is I(µ) = n
(
µ+ bµ2

)−1
and thus Jeffreys prior is

proportional to

I
1

2 (µ) = n
1

2

(
µ+ bµ2

)− 1

2 .

Denoting the posterior distribution by J , the (1−α) Jeffreys credible interval for

µ can be written as

(Jα, J1−α) ,(3.11)

where J1−α and Jα are, respectively, the 1 − α and α quantiles of the posterior

distribution based on n observations (Cai [8]). By (3.3) and (3.4), we can rewrite
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(3.11) as
(
Gα/2,

P
n

i=1
xi+

1

2
,n , G1−α/2,

P
n

i=1
xi+

1

2
,n

)
.

For more discussion, see Brown et al. [6].

3.4. HPD credible intervals

The set {θ : π (θ|x) ≥ k} is called highest posterior density, where k is cho-

sen so that

1 − α =

∫

{θ:π(θ|x)≥k}
π(θ|x) dθ .

See Casella and Berger [9]. If the posterior pdf, π(θ|x), is unimodal then the HPD

set would be an interval, say (θHL, θHU ) (Berger [5]). In this case, we construct

HPD credible intervals for parameters of interest in the square:

π(θHL|x) = π(θHU |x) ,

∫ θHU

θHL

π(θ|x) dθ = 1 − α .

3.5. Relative surprise credible intervals

Relative surprise credible intervals for θ, as discussed in Evans [12], are

based on a particular approach to assessing the null hypothesis H0 : θ = θ0. For

this, we compute the observed relative surprise (ORS) defined by

π

(
π (θ|x)

π(θ)
>
π (θ0|x)

π (θ0)

∣∣x
)
.(3.12)

We see that (3.12) compares the relative increase in belief for θ, from a priori to

a posteriori. Other approaches to measuring surprise are discussed in Good [17].

For estimation purposes, one may consider ORS in (3.12) as a function of θ0 and

select a value which minimizes this quantity as the estimator, called the least

relative surprise estimator (LRSE). Moreover, to obtain a 1 − α-credible region

for θ, we simply invert (3.12) in the standard way to obtain the (1 − α)-relative

surprise credible interval provided that

π

(
π (θ|x)

π(θ)
>
π (θ0|x)

π (θ0)

∣∣∣∣x
)

≤ 1 − α .

It can be proved that if the posterior pdf π (θ|x) is unimodal then the credible

set is of the form (θRL, θRU ) such that

π (θRL|x)

π(θ)
=
π (θRU |x)

π(θ)
,

∫ θRU

θRL

π(θ|x) dθ = 1 − α .
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Relative surprise credible regions are shown to minimize, among Bayesian

credible regions, the prior probability of covering a false value from the prior.

Such regions are also shown to be unbiased in the sense that the prior probability

of covering a false value is bounded above by the prior probability of covering

the true value. Relative surprise credible regions are shown to maximize both

the Bayes factor in favor of the region containing the true value and the relative

belief ratio, among all credible regions with the same posterior content (Evans

and Shakhatreh [13]).

3.6. Reparameterizations

A basic principle of inference is that inferences about a parameter of interest

should be invariant under reparameterizations: for example, whatever rule we

use to obtain a (1 − α)-credible region, B1−α, for a parameter of interest, θ, the

rule should yield the region Ψ (B1−α) for any one-to-one, sufficiently smooth,

reparameterization ψ = Ψ(θ). Relative surprise credible inferences satisfy this

principle. For greater detail, see Evans and Shakhatreh [13] and Baskurt and

Evans [3].

4. COMPARISON OF CONFIDENCE INTERVALS

In this section, we compare the interval estimators of Sections 2 and 3: the

Wald (WA) interval estimator, the score (SC) interval estimator, the exact (EX)

interval estimator, Jeffreys (Jef) prior credible estimator, the bootstrap (Boot)

interval estimator, the HPD credible interval estimator, the relative surprise (RS)

credible interval estimator and the equal tails (EQ) credible interval estimator.

Note that the HPD, RS and the EQ credible interval estimators depend on the

chosen prior. Others do not depend on the chosen prior.

The comparison is based on coverage probabilities and coverage lengths

computed by simulation. Each coverage probability and coverage length was

computed over ten thousand replications of the simulated sample. Throughout,

the level of significance was taken to be five percent.

The parameters of the priors can be chosen either arbitrarily or using em-

pirical Bayes (EB) estimation. EB estimation is discussed in the Appendix. But

our simulations showed that both arbitrary choice and EB estimation gave the

same results. So, we choose the prior parameters arbitrarily as a = 3 and b = 2.
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4.1. Comparison based on coverage probability

Here, we compare the interval estimators based on their coverage probabil-

ities. Figures 1 to 9 in Nadarajah et al. [25] show how the coverage probabilities

vary with respect to sample size and λ for the classical interval estimators and

for the priors and posteriors given by (3.1)–(3.10). The following observations

can be drawn from the figures:

• among the classical interval estimators, the WA, SC and EX estimators

have the coverage probabilities acceptably close to the nominal level;

• among the classical interval estimators, the Boot estimator has the cov-

erage probabilities unacceptably further away from the nominal level;

• among the Bayesian credible estimators with the uniform prior, the Jef,

HPD and EQ estimators have the coverage probabilities acceptably close

to the nominal level;

• among the Bayesian credible estimators with the uniform prior, the RS

estimator has the coverage probabilities unacceptably further away from

the nominal level;

• among the Bayesian credible estimators with other priors, the Jef es-

timator has the coverage probabilities acceptably close to the nominal

level;

• among the Bayesian credible estimators with other priors, the RS, EQ

and HPD estimators have the coverage probabilities unacceptably fur-

ther away from the nominal level;

• the Boot estimator and the EQ credible interval estimator generally

underestimate the coverage probability;

• the RS credible interval estimator generally overestimates the coverage

probability;

• the HPD credible interval estimator sometimes underestimates and some-

times overestimates the coverage probability.

Although these observations are limited to the ranges of λ and n specified

by Figures 1 to 9 in Nadarajah et al. [25], they held for other values too.

4.2. Comparison based on coverage length

Here, we compare coverage lengths of the interval estimators. Figures 10

to 18 in Nadarajah et al. [25] show how the coverage lengths vary with respect

to sample size and λ for the classical interval estimators and for the priors and
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posteriors given by (3.1)–(3.10). The following observations can be drawn from

the figures:

• the coverage lengths for each estimator generally increase with increasing

λ;

• the coverage lengths generally decrease with increasing n except for the

HPD and RS credible interval estimators;

• the coverage lengths for the HPD credible interval estimator sometime

increase with n and sometimes decrease with n;

• also the coverage lengths for the RS credible interval estimator sometime

increase with n and sometimes decrease with n;

• the coverage lengths appear largest for the HPD and RS credible interval

estimators;

• the coverage lengths appear smallest for the WA, SC, EX, Jef, Boot and

EQ estimators;

• among the Bayesian credible estimators, the coverage lengths appear

largest for those with the exponential prior.

Although these observations are limited to the ranges of λ and n specified

by Figures 10 to 18 in Nadarajah et al. [25], they held for other values too.

5. REAL DATA APPLICATIONS

Here, we present an analysis of the “Flying-bomb Hits in London During

World War II”data reported by Feller [14]. The city was divided into five hundred

and seventy six small areas of one-quarter square kilometers each, and the number

of areas hit exactly k times was counted. There were a total of five hundred and

thirty seven hits, so the average number of hits per area was 0.93. The observed

frequencies in Table 2 are remarkably close to a Poisson distribution as we shall

show now.

Table 2: Flying-bomb hits in London during World War II.

Hits 0 1 2 3 4 5+

Observed 229 211 93 35 7 1

We fitted the Poisson, negative binomial and geometric distributions to the

data in Table 2. The smallest chisquared statistic, the smallest Akaike informa-



258 S. Nadarajah, M. Alizadeh and S.F. Bagheri

tion criterion and the smallest Bayesian information criterion were obtained for

the Poisson distribution. The quantile–quantile plots for the three fits shown in

Figure 19 in Nadarajah et al. [25] show that the Poisson distribution has the

points closest to the straight line.

For the fit of the Poisson distribution, λ̂ = 0.9288194 with standard error

0.04015632. Using these estimates, the confidence intervals of Sections 2 and 3

can be computed. They are shown in Table 3.

Table 3: Bayesian and non-Bayesian confidence intervals
for the mean number of hits.

Intervals Lower bound Upper bound Upper−Lower

WA 0.85338 1.01093 0.15755
SC 0.85011 1.00752 0.15741
EX 0.85343 1.00916 0.15573
Jeffreys 0.8526 1.01006 0.15746
Bootstrap 0.84375 1.01215 0.1684
HPD.u 0.46441 1.39323 0.92882
RS.u 0.46441 1.39323 0.92882
EQ.u 0.85343 1.01097 0.15754
HPD.e 0.46441 1.39323 0.92882
RS.e 0.46441 1.39323 0.92882
EQ.e 0.85048 1.00747 0.15699
HPD.g 0.46441 1.39323 0.92882
RS.g 0.46441 1.39323 0.92882
EQ.g 0.85379 1.01107 0.15728
HPD.c 0.46441 1.39323 0.92882
RS.c 0.46441 1.39323 0.92882
EQ.c 0.85352 1.01099 0.15747

We see that the coverage length is smallest for the EX estimator, second

smallest for the EQ credible interval estimator, third smallest for the SC estima-

tor, fourth smallest for the Jef credible interval estimator, fifth smallest for the

WA estimator, sixth smallest for the bootstrap estimator and the largest for the

HPD and RS credible interval estimators. These observations are consistent with

the results in Section 4.2.

6. CONCLUDING REMARKS

The estimation of Poisson mean is of great importance because of wide

spread applications of the Poisson distribution. We have compared seventeen

different interval estimators for the Poisson mean. They were compared in terms
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of coverage probabilities and coverage lengths computed using simulations and

a real data application. We have given various recommendations for choosing

among the seventeen interval estimators. Some of them are: WA, SC and EX

estimators are the best classical interval estimators in terms of coverage proba-

bilities; Jef estimator is the best Bayesian credible interval estimator in terms of

coverage probabilities; WA, SC, EX, Boot estimators are the best classical inter-

val estimators in terms of coverage lengths; Jef and EQ estimators are the best

Bayesian credible interval estimators in terms of coverage lengths.

ACKNOWLEDGMENTS

This research was partially supported by a research project grant from

City University of Hong Kong (Project No. 9380058). An earlier version of this

research was presented at APARM2012 in Nanjing, China. The authors would

like to thank the Editor and the referee for careful reading and for their comments

which greatly improved the paper.

APPENDIX: EMPIRICAL BAYES ESTIMATION

When the prior parameters are unknown, we may use another type of

Bayesian estimation for estimating them without knowing or assessing the prior

(subjective) distribution. The parameters of the (subjective) prior are estimated

from the data. This method of estimation is called empirical Bayes (EB) estima-

tion. For more details on EB estimation, see Maritz and Lwin [23].

In the following, we apply the EB method, in order to obtain an estimator

for θ based on observed data. Suppose X1, X2, ..., Xn ∼ P (λ) is the observed

data. Let λ ∼ Gamma(a, b) denote the prior distribution. Then, λ̂ = X. Using

S = nλ̂ ∼ P (nλ), we can write

f(s|λ) =
e−nλ(nλ)s

s!
(6.1)

for s = 0, 1, .... By using (6.1), we have

f(s) =

∫ ∞

0
f(s|λ) g(λ) dλ

=

∫ ∞

0

e−nλ(nλ)s

s!

ba

Γ(a)
λa−1e−bλ dλ

=
(s+ a− 1)!

s!(a− 1)!

(
b

b+ n

)a(
n

b+ n

)s
,
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the probability mass function of a negative binomial random variable with pa-

rameters p = b
b+n and r = a. The expectation and variance of a negative binomial

random variable with parameters p and r are rq
p and rq

p2 , respectively. Using these,

the EB estimators of the prior parameters can be obtained as

• â = µ2

σ2−µ
and b̂ = nµ

σ2−µ
for the gamma prior;

• b̂ = n
µ for the exponential prior;

• â = µ
n for the chisquare prior.
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