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Abstract:

• One notion of stochastic comparisons of non-negative random variables based on ra-
tios of nth derivative of Laplace transforms (n-Laplace transform order or shortly
≤

n-Lt-r order) is introduced by Mulero et al. (2010). In addition, they studied
some of its applications in frailty models. In this paper, we have focused on some
further properties of this order. In particular, we have shown that ≤

n-Lt-r order
implies dual weak likelihood ratio order (≤DWLR order). Moreover, ≤

n-Lt-r order,
under certain circumstances, implies likelihood ratio order (≤lr order). Finally, the
L(n) (L̄(n))-class of life distribution is proposed and studied. This class reduces to
L (L̄)-class if we take n = 0.
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1. INTRODUCTION, DEFINITIONS AND IMPLICATIONS

There are several stochastic orders that have been introduced in the liter-

ature based on Laplace transforms. For example, Laplace transform order (≤Lt

order) compares two random variables via their Laplace transforms. Moreover,

Laplace transform ratio order (≤Lt-r order) and reverse Laplace transform ra-

tio order (≤r-Lt-r order) which are presented based on ratios of Laplace trans-

forms, studied by Shaked and Wong (1997). Recently, Li et al. (2009) introduced

differentiated Laplace transform order (≤d-Lt-r order) which is based on ratio

of derivative of Laplace transforms, and then, Mulero et al. (2010) generalized

differentiated Laplace transform order to n-Laplace transform order. In addi-

tion, one can see Rolski and Stoyan (1976), Alzaid et al. (1991) and Shaked

and Shanthikumar (2007) for more details. The main purpose of this article is

to study the n-Laplace transform ratio order. The L (L̄)-class of life distributions

states that
∫∞
0 e−stF̄ (t) dt ≥ (≤)

∫∞
0 e−stḠ(t) dt, where Ḡ(t) = e−t/µ, t ≥ 0 and

µ =
∫∞
0 F̄ (t) dt which was introduced by Klefsjo (1983). He presented results

concerning closure properties under some of this class reliability operations, un-

der shock models and a certain cumulative damage model. Mitra et al. (1995),

Sengupta (1995), Bhattacharjee and Sengupta (1996), Chaudhuri et al. (1996),

Lin (1998), Lin and Hu (2000) and Klar (2002) have studied this topic.

Here, we give some preliminaries and definitions and study some new results

that are used to present our main results. Various properties and its relationships

to other stochastic orders, will be described in the next section.

Throughout the paper, we assume that X and Y are absolutely continuous

and non-negative random variables and use the term increasing in place of non-

decreasing.

For any absolutely continuous and non-negative random variable X with

density function f and survival function F̄ , the Laplace transform of f is given

by LX(s) =
∫∞
0 e−stf(t) dt, s > 0, and the Laplace transform of F̄ is defined as

L∗
X(s) =

∫ ∞

0
e−stF̄ (t) dt , s > 0 .

It is easy to see that LX(s) = 1 − sL∗
X(s). For absolutely continuous and non-

negative random variable Y with density function g and survival function Ḡ,

LY (s) and L∗
Y (s) can be defined similar to LX(s) and L∗

X(s) respectively.

Think of X as representing the length of an interval. Let this interval

be subject to a poissonian marking process with intensity s. Then the Laplace
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transform LX(s) is the probability that there are no marks in the interval.

P{X has no marks} = E
(

P{X has no marks} |X
)

= E
(

P{the number of events in the interval X is 0 |X}
)

= E
(

e−sX
)

= LX(s) .

Note that

P{there are n events in the interval X |X} =
(sX)n

n!
e−sX ,

P{the number of events in the interval X is 0 |X} = e−sX ,

so,

E
(

P{there are n events in the interval X |X}
)

= (−1)n sn

n!
L

(n)
X (s) ,

and
E
(

P{the number of events in the interval X is 0 |X}
)

= LX(s) .

Example 1.1 (Thinning of a Renewal Stream). Assume that for a ran-

dom point process the lengths of the time intervals between the points which are

independent and equally distributed random variables with probability density f

and Laplace transform LX(s). Such a point process is called a renewal stream.

The process is subject to the following thinning operation. Each point is kept

with probability 1 − p and is removed with probability p and the removal of dif-

ferent points are independent. We will derive the Laplace transform L
(n)
Y (s) for

the time intervals in the new stream. Let Y be the length of the time interval

from a point to the next in the thinned stream and let X be the length of the

time interval from the same point to the next in the original stream of points.

By conditioning with respect to whether the next point is kept or removed we

get, if a catastrophe risk is added as described above,

L
(n)
Y (s) = P (n catastrophe in X)

= (1 − p) . P (n catastrophe in X)

+ p . P (n catastrophe in X) P (n catastrophe in Y ) ,

we have used the fact that if the next point is removed the process starts from

scratch again. Thus we have

L
(n)
Y (s) = (1 − p)L

(n)
X (s) + p L

(n)
X (s)L

(n)
Y (s) ,

which gives

L
(n)
Y (s) =

(1 − p)L
(n)
X (s)

1 − p L
(n)
X (s)

.
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If, for instance, X has an exponential distribution with parameter λ, which is the

case if the stream is a Poisson process,

L
(n)
X (s) = (−1)n

∫ ∞

0
λ xne−x(s+λ) = (−1)n λn!

(s + λ)n+1

and

L
(n)
Y (s) =

(−1)n (1 − p)λn!

(s + λ)n+1 − (−1)np λn!
.

For instance, if n = 0 then

LY (s) =
(1 − p)λ

s + λ(1 − p)
,

thus the lengths of the time intervals in the new stream have exponential distri-

butions with parameter λ(1 − p).

Thinning of streams of points appears in many applications in operations

research, in technology and in biology. For instance, consider the stream of

customers arriving at a supermarket, and make this stream thinner by considering

only those customers which buy a certain item.

Example 1.2 (Waiting Time for the M/G/1 System). In this system, the

customers arrive according to a Poisson process with parameter λ. There is one

service station and we assume the queue discipline is “first come-first served”. Let

Xn be the waiting time of customer number n which the density function of Xn

is denoted by fn. We now assume that the customers on arrival at the system

are marked with probability 1− s. If the waiting time Xn of customer number n

is t, the conditional probability that m marked customer arrive during this time

is

∞
∑

k=0

e−λt (λt)k

k!
.

(

k
m

)

(1 − s)msk−m ,

so,

P (m marked customer during Xn) =

=

(

1 − s

s

)m ∞
∑

k=0

(λs)k

k!

(

k
m

)
∫ ∞

0
e−λt tkfn(t) dt

=

(

1 − s

s

)m ∞
∑

k=0

(λs)k

k!

(

k
m

)

(−1)k L
(k)
Xn

(s) .

Recall that X is said to be smaller than Y in the Laplace transform or-

der (denoted by X ≤Lt Y ), if LX(s) ≥ LY (s), ∀ s > 0. Shaked and Wong (1997)

established and extensively investigated stochastic orderings based on ratios of
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Laplace transform. They said that X is smaller than Y in the Laplace trans-

form ratio order (and denoted by X ≤Lt-r Y ) if LX(s)
LY (s)

(

1−sL∗
X(s)

1−sL∗
Y

(s)

)

is increasing

in s > 0. Also, X is smaller than Y in the reverse Laplace transform ratio order

(denoted by X ≤r-Lt-r Y ) if 1−LX(s)
1−LY (s)

(

L∗
X(s)

L∗
Y

(s)

)

is increasing in s > 0. It is evident

that X ≤Lt-r (≤r-Lt-r) Y implies X ≤Lt Y .

Li et al. (2009) introduced a new stochastic order upon Laplace transform

with applications. They said that X is smaller than Y in the differentiated

Laplace transform ratio order (denoted by X ≤d-Lt-r Y ) if
L′

X(s)

L′
Y

(s)
is increasing in

s > 0. They demonstrated that

X ≤d-Lt-r Y =⇒ X ≤Lt-r (≤r-Lt-r) Y .

For two random variables X and Y with densities f and g and survival functions

F̄ and Ḡ respectively, we say that X is smaller than Y in the likelihood ratio

order (X ≤lr Y ) if g(t)
f(t) is increasing in t and say that X is smaller than Y in the

hazard rate order (X ≤hr Y ) if Ḡ(t)
F̄ (t)

is increasing in t. For more details of other

stochastic orders one can see Shaked and Shanthikumar (2007).

Indeed, their new order has been constructed using the first derivative of the

Laplace transform of density functions rather than the own Laplace transform.

In order to clarify and further to determine how does the comparison affect,

Mulero et al. (2010) considered, in general, the nth derivative of the Laplace

transform. As a useful observation, for example, the order based on ratios of the

Laplace transform as it increases or decreases, may be important to present much

information about comparison of two random variables. Moreover, as shown in

the continue, for a special shock model, it is highly motivated to be considered in

the case of comparison of number of shocks according to ≤lr order. Thus, they

introduced a new partial orderings as below:

Definition 1.1. We say that X is smaller than Y in n-Laplace transform

ratio (denoted by X ≤n-Lt-r Y ) if

L
(n)
X (s)

L
(n)
Y (s)

is increasing in s > 0 ,(1.1)

in which n ≥ 0 is an integer and L
(n)
X (s) denotes nth derivative of LX(s) and

similarly for Y .

We can define ≤n-Lt∗-r order for nth derivative of L∗
X(s) in a same manner.

Example 1.3. As pointed out in Mulero (2010), when Xi∼Gamma(αi, βi),

i = 1, 2, then X1 ≤n-Lt-r X2 holds if for every n ≥ 0, β1 ≥ β2 and α2 ≥ α1.

It can be seen in this case that if α1 = α2 = 1 and β1 ≥ β2 then X1 ≤n-Lt∗-r X2.
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2. MAIN RESULTS

In this section, we present some results for ≤n-Lt-r order and then we discuss

≤n-Lt-r order for shock models. The same results can be obtained for ≤n-Lt∗-r.

2.1. Basic properties

First of all, stochastic orders which have connections to ≤n-Lt-r order have

been described.

Theorem 2.1. Let X1 and X2 be absolutely continuous and non-negative

iid random variables with density functions f1(·) and f2(·) respectively, and n be

a non-negative integer. Then for any n, we have:

(a) If X1 ≤lr X2 then X1 ≤n-Lt-r X2.

(b) If f1 and f2 are both bounded on [0,∞) then for all n, X1 ≤n-Lt-r X2

implies that X1 ≤lr X2.

(c) If X1 ≤n+1-Lt-r X2 then X1 ≤n-Lt-r X2.

Proof: As we know that a non-negative function h(x, y) is said to be TP2

(RR2) if
∣

∣

∣

∣

h(x1, y1) h(x1, y2)
h(x2, y1) h(x2, y2)

∣

∣

∣

∣

≥(≤) 0

for every x1 ≤ x2 and y1 ≤ y2.

(a) It is easy to verify, that tne−st is RR2 in s > 0 and in t > 0. So, by

Karlin (1968, Lemma 1.1 on p. 99) it follows that
∫ ∞

0
tne−stfj(t) dt ,

is RR2 in j ∈ {1, 2} and in s > 0, that is,
∫∞
0 tne−stf2(t) dt
∫∞
0 tne−stf1(t) dt

,

is decreasing in s > 0. Hence we have the result.

(b) Let X1 ≤n-Lt-r X2, so, by Widder (1946), we have

lim
n→∞

L
(n)
X1

(s)
∣

∣

s=n+1
t

= f1(t) ,

and similarly we have for Y . So, f2(t)
f1(t) is increasing in t > 0.
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(c) Since

−L
(n)
Xi

(s) =

∫ ∞

s
L

(n+1)
Xi

(t) dt

=

∫ ∞

0

[

L
(n+1)
Xi

(t) 1(s,∞)(t)
]

dt ,

and L
(n+1)
Xi

(s) is TP2(i, t) and 1(s,∞)(t) is TP2(t, s), so, by “basic composition

theorem” in Karlin (1968), L
(n)
Xi

(s) is TP2(i, s), and thus
L

(n)
X2

(s−1)

L
(n)
X1

(s−1)
is increasing in

s > 0.

Note that the inverse of the above theorem necessarily does not establish,

for this case, see the following example:

Example 2.1. Let P (X= 0) = P (X= 1) = 1
2 and P (Y = 0) = 2

4 , P (Y = 1)

= 1
4 , P (Y = 2) = 1

4 . It is clear that X ≤lr Y is invalid, but X ≤n-Lt-r Y and

X ≤n-Lt∗-r Y are true.

There is no relationship between ≤n-Lt-r and ≤n-Lt∗-r orderings which is

mentioned by Shaked and Wong (1997).

Example 2.2. Let P (X= 1) = P (X= 2) = P (X= 3) = 1
3 and P (Y = 0)

= P (Y = 1) = 1
4 and P (Y = 2) = 1

2 . Then, X ≤n-Lt-r Y and X ≤n-Lt∗-r Y are

not hold.

The inverse of part (c) of Theorem 2.1 is not necessarily established. This

review is the following example:

Example 2.3. Let P (X= 1) = 3
4 , P (X= 2) = P (X= 3) = 1

8 , P (Y = 1)

= 1
4 and P (Y = 2) = 3

4 . Then,

(i) for n = 1, Li et al. (2009) showed that X ≤1-Lt-r Y ,

(ii) for n = 2, we have, d
ds

L
(n)
X

(s)

L
(n)
Y

(s)
= 1

2
68e−s−18e−2s−108e−3s

(1+12e−s)
, which for s = 0.1

is equal to −1.4, for s =1 is equal to 1.59 and for s =10 gives 0.0015,

so X 6≤2-Lt-r Y .

The next result can be easily built and thus is presented only with proof of

part (c).
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Theorem 2.2.

(a) Let {Xj} and {Yj} be two sequences of random variables such that

Xj → X and Yj → Y in distribution. If Xj ≤n-Lt-r Yj , j = 1, 2, ...,

then X ≤n-Lt-r Y .

(b) Let X and Y be non-negative random variables with moments µi and νi,

i = 1, 2, ..., respectively, (µ0 = ν0 = 1). Then, X ≤n-Lt-r Y if and

only if
∞
∑

i=0

(−s)i

i! µn+i

∞
∑

i=0

(−s)i

i! νn+i

is increasing in s > 0 .

(c) Let X, Y and Θ be random variables such that [X |Θ = θ] ≤n-Lt-r

[Y |Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤n-Lt-r Y .

Proof: We only present the proof of part (c). The proof of parts (a) and

(b) is clear.

With similar arguments to Theorem 5.B.8 of Shaked and Shanthikumar

(2007) we have

L
(n)
X (s)

L
(n)
Y (s)

=
EΘ

(

L
(n)
[X|Θ](s)

)

EΘ

(

L
(n)
[Y |Θ](s)

) .

On the other hand d
ds

L
(n)
[X|θ]

(s)

L
(n)

[Y |θ′]
(s)

≥ 0, if and only if

L
(n+1)
[X|θ] (s) L

(n)
[Y |θ′](s) − L

(n)
[X|θ](s) L

(n+1)
[Y |θ′] (s) ≥ 0 ,

for all θ and θ′ in the support of Θ. Consequently,

EΩ

(

L
(n+1)
[X|θ] (s) L

(n)
[Y |θ′](s) − L

(n)
[X|θ](s) L

(n+1)
[Y |θ′] (s)

)

≥ 0 ,

where Ω = (θ, θ′), and the proof is complete.

Theorem 2.3. Let f(t) and g(t) be both bounded on [0,∞). If X≤n-Lt-r Y,

then X ≤DWLR Y .

Proof: If X ≤n-Lt-r Y , then
L

(n)
X

(s)

L
(n)
Y

(s)
≥ E(Xn)

E(Y n) so,

lim
n→∞

L
(n)
X (s)

L
(n)
Y (s)

∣

∣

∣

∣

s=n+1
t

≥ lim
n→∞

E(Xn)

E(Y n)
= c

where 0 < c ≤ 1. So by Widder (1946), if f(t) and g(t) are both bounded on

[0,∞), then we have f(t) ≥ cg(t), from which we conclude X ≤DWLR Y . (Note

that if c > 1 then
∫

f(t) dt ≥ 1.)
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2.2. Shock models

A device is subjected to shocks arriving according to a Poisson process

with parameter λ. Then the lifetime T1 of the system is given by T1 =
N1
∑

j=1
Xj ,

where N1 denote the number of shocks survived by the system and Xj is the

random interval time between the j − 1 and j th shocks. Suppose further that

the device has probability P̄k = P (N1> k) for all k ∈ N of surviving the first k

shocks, where 1 = P̄0 ≥ P̄1 ≥ ... . Also, let pk+1 = P̄k − P̄k+1, k = 0, 1, 2, ..., then,

the probability function of the device is given by

f(t1) =
∞
∑

k=0

e−λt1(λt1)
k

k!
λpk+1 .

The survival function of this device is given by

F̄ (t1) =
∞
∑

k=0

e−λt1(λt1)
k

k!
P̄k .

Consider another device which is also subjected to shocks arriving according to a

Poisson process with the same parameter λ. Then the lifetime T2 of the system

is given by T2 =
N2
∑

j=1
Yj , where N2 denote the number of shocks survived by the

system and Yj is the random interval time between the j − 1 and j th shocks.

The device has probability Q̄k = P (N2 >k) for all k ∈ N of surviving the first

k shocks, where 1 = Q̄0 ≥ Q̄1 ≥ ... . Also, qk+1 = Q̄k − Q̄k+1, k = 0, 1, 2, ..., then,

the probability function of the device is given by

g(t2) =
∞
∑

k=0

e−λt2(λt2)
k

k!
λqk+1 .

The corresponding survival function of this device is given by

Ḡ(t2) =
∞
∑

k=0

e−λt2(λt2)
k

k!
Q̄k .

Theorem 2.4. Let N1, N2, T1 and T2 be random variables as above. If

N1 ≤lr N2 then T1 ≤n-Lt-r T2.

Proof: Let us denote L
(n)
Ti

(s) = L
(n)
i (s), i = 1, 2. We have

L
(n)
i (s) =

∞
∑

k=0

(−1)n (n + k)!

k!

λk+1

(λ + s)n+k+1
pk+1 ,

in which (−1)n (n+k)!
k!

λk+1

(λ+s)n+k+1 is RR2(s, k) and pk+1 is TP2(k, i), so, by Karlin

(1968, Lemma 1.1 on p. 99) it follows that L
(n)
i (s) is RR2(s, i), therefore

L
(n)
2 (s)

L
(n)
1 (s)

is decreasing in s > 0, or equivalently, T1 ≤n-Lt-r T2.



Properties of n-Laplace Transform Ratio Order 239

3. L(n)-CLASS

The L (L̄)-class of life distributions for which
∫∞
0 e−stF̄ (t) dt ≥ (≤)

∫∞
0 e−st Ḡ(t) dt, where Ḡ(t) = e−t/µ, t ≤ 0 and µ =

∫∞
0 F̄ (t) dt has been intro-

duced by Klefsjo (1983). He presented results concerning closure properties

under some usual reliability operations and studied some shock models and a

certain cumulative damage model. The L-class is strictly larger than the well

known HNBUE class (the harmonic new better than used in expectation class

of life distributions) in which a life distribution F is said to be HNBUE if
∫∞
t F̄ (x) dx ≤ µ exp(− t

µ) for all t ≥ 0. The L-class of life distributions has at-

tracted a great deal of attention (for more details see Lin 1998).

3.1. Basic properties of L(n)-class

We will define the class L(n) (L̄(n))-class of life distributions based on nth

derivative of Laplace transform in the same manner of L (L̄)-class.

Definition 3.1. Let X be a non-negative random variable with life dis-

tribution F , survival function F̄ = 1−F and finite mean µ =
∫∞
0 F̄ (t) dt. We say

that the life distributions F belongs to the L(n)-class if

∫ ∞

0
tne−stF̄ (t) dt ≥ n!

(

µ

1 + sµ

)n+1

, for s ≥ 0 .(3.1)

If the reversed inequality holds we shall say that F belongs to the L̄(n)-class.

Theorem 3.1.

(a) If X ∈ L(n)-class and X ∈ L̄(n)-class, then X has exponential distri-

bution with mean µ.

(b) L(n) ⊂ L(n−1) for all n = 1, 2, ... .

(c) L(n) = L
(n)
0 ∪L

(n)
+ , in which L

(n)
+ denote the class of all distributions F

having support SF ⊂ (0,∞), mean µ < ∞, and satisfying the relation

(3.1). Also, denote by L
(n)
0 = {F0}, where F0 is the degenerate at 0.

(d) F ∈ L(n) if and only if
∫∞
0 tne−stf(t) dt ≤ n! µn

(1+sµ)n+1 .

Proof: (a) By assumptions

∫ ∞

0
tne−st

(

F̄ (t) − e−t/µ
)

dt = 0 .(3.2)
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Due to statistical completeness property of the exponential distribution, it follows

that F̄ (t) = e−t/µ, ∀ t ≥ 0.

(b) By equation (3.1), the random variable X belongs to L(n)-class if

∫ ∞

0
tne−st

(

F̄ (t) − e−t/µ
)

dt ≥ 0 ,

that gives
∫ ∞

x

∫ ∞

0
tne−st

(

F̄ (t) − e−t/µ
)

dt ds ≥ 0 ,

so
∫ ∞

0
tn−1

(

F̄ (t) − e−t/µ
)

∫ ∞

x
te−st ds dt ≥ 0 ,

therefore
∫ ∞

0
tn−1e−xt

(

F̄ (t) − e−t/µ
)

dt ≥ 0 ,

which means X ∈ L(n−1)-class.

(c) Using (3.1) we conclude that for all s ≥ 0

n!

(

µ

1 + sµ

)n+1

≤
(

1 − F (0)
)

∫ ∞

0
tne−stdt ,

from which we get
(

µ

1 + sµ

)n+1

≤
1

sn+1

(

1 − F (0)
)

,

hence, µn+1 ≤
(

1 − F (0)
)(

µ + 1
s

)n+1
. Letting s → ∞ yields µn+1F (0) ≤ 0, and

with similar discuss to Lin (1998) obtain the result.

(d) Using L
(n)
X (s) = nL∗

X
(n−1)(s) − sL∗

X
(n)(s) for all n = 1, 2, 3, ..., the de-

sired result follows.

Theorem 3.2. If X has distribution function F and Y has exponential

distribution with mean µ, such that E(Xn) = E(Y n), then, Y ≤n-Lt∗-r X implies

that X ∈ L(n).

Proof: Note that Y ≤n-Lt∗-r X so,
L∗

Y
(n)(s)

L∗
X

(n)(s)
is increasing in s ≥ 0. Hence,

∫ ∞

0
tne

−t(s+ 1
µ

)
dt

∫ ∞

0
tne−stF̄ (t) dt

≥ lim
s→0

∫ ∞

0
tne

−t(s+ 1
µ

)
dt

∫ ∞

0
tne−stF̄ (t) dt

= 1 ,

which means X is in L(n).
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We are going to give another interesting characterization of the L
(n)
+ -class

through the equilibrium transformation, which will be used to estimate the mo-

ments of F ∈ L
(n)
+ and to characterize the exponential distribution. Let X be a

non-negative random variable with distribution function F and finite mean µ > 0.

Then the equilibrium transformation Fe of F is defined by

Fe(x) =
1

µ

∫ x

0
F̄ (t)dt for x ≥ 0 .

The distribution Fe is known by the names equilibrium distribution and let the

random variable with distribution function Fe is denoted by Xe.

Theorem 3.3. Let X be a positive random variable with distribution

function F and finite mean µ > 0. If X ∈ L
(n)
+ and E(Xne−sX) ≥ E(Xn

e e−sXe)

then X ∈ L
(n−1)
+ .

Proof: Note that

E(Xne−sX) ≥ E(Xn
e e−sXe) ⇐⇒

⇐⇒
1

µ

∫ ∞

0
tne−stF̄ (t) dt ≤

∫ ∞

0
tne−stf(t) dt

⇐⇒
1

µ

∫ ∞

0
tne−stF̄ (t) dt ≤ n

∫ ∞

0
tn−1e−stF̄ (t) dt − s

∫ ∞

0
tne−stF̄ (t) dt

⇐⇒
1 + sµ

µ

∫ ∞

0
tne−stF̄ (t) dt ≤ n

∫ ∞

0
tn−1e−stF̄ (t) dt ,

since X ∈ L
(n)
+ then

∫∞
0 tn−1e−stF̄ (t) ≥ (n − 1)! ( µ

1+sµ)n that means X ∈ L
(n−1)
+ .

Block and Savits (1980) considered

an(s) =
(−1)n

(n)!
L∗

X
(n)(s) , n = 0, 1, 2, ... , s > 0 ,

and set αn+1(s) = sn+1an(s) for n = 0, 1, 2, ..., s > 0. So, X ∈ L(n) if and only if

αn+1(s) ≥

(

sµ

1 + sµ

)n+1

.

Block and Savits (1980) supposed that
{

Ns(t), t ≥ 0
}

be a Poisson process with

rate s > 0. They showed, if X is a random variable with survival function F̄ (u),

then

αn+1(s) = s

∫ ∞

0

e−su(su)n

n!
F̄ (u) du

= s

∫ ∞

0
P
{

Ns(u) = n
}

F̄ (u) du

= s

∫ ∞

0
P
{

Ns(u) > n
}

dF (u)

= P
{

Ns(X) > n
}

.
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Furthermore, if Y1, Y2, ... are the (exponential) arrival times for the process, then

αn+1(s) = P

(

n+1
∑

i=1

Yi ≤ X

)

=

∫ ∞

0
G(n+1)(u) dF (u) ,(3.3)

where Ḡ(u) = exp(−su), u ≥ 0. Thus (3.3) shows that the {αn(s), n ≥ 1} are

the discrete survival probabilities for a special case of the random threshold cu-

mulative damage model of Esary et al. (1973).

3.2. L(n) (L̄(n)) class for discrete life distributions

Let ξ be a strictly positive integer valued random variable and denote P̄k =

P (ξ > k), k = 0, 1, 2, ..., the corresponding survival probabilities. Also, suppose

that 1 = Q̄0 ≥ Q̄1 ≥ Q̄2 ≥ ... denote the corresponding survival probabilities of a

geometric distribution with mean

µ =

∞
∑

k=0

Q̄k =

∞
∑

k=0

P̄k ,

that is,

Q̄k = (1 − 1/µ)k , k = 0, 1, 2, ... .

Since the discrete counterpart to Laplace transform is the probability generating

function, we consider the following natural definition:

Definition 3.2. A discrete life distribution and its survival probabilities

P̄k, k = 0, 1, 2, ..., with finite mean
∞
∑

k=0

P̄k = µ are in L(n) (L̄(n)) class if

∞
∑

k=n

k!

(k − n)!
P̄k pk−n ≥ (≤)

n! µ(µ−1)n

(

p + (1−p)µ
)n+1 , for 0 ≤ p ≤ 1 .

Example 3.1. Let P̄0 = 1, P̄1 = 1
2 , P̄2 = 1

4 , P̄3 = 1
5 and P̄k = 0 for k =

4, 5, 6, ... . Then P̄k is belong to L-class but is not belong to L(1).

Preservation of L(n) and L̄(n) classes under mixture and convolutions are

studied as follow:

Mixtures:

Let {FΘ} be a family of life distribution, where Θ is random variable with

distribution H(θ), the mixture F of FΘ according to H is F (t) =
∫

FΘ(t) dH(θ).

If each FΘ is an exponential distribution and therefore DFR, then F is DFR

that follows F not in L(n).
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Consider Ḡ(t) =
∫

ḠΘ(t) dH(θ), t ≥ 0, where ḠΘ(t) = exp(−t/µΘ) in which

µΘ =
∫∞
0 F̄Θ(t)dt and µ =

∫∞
0 F̄ (t)dt. If every FΘ is in L̄(n) so,

∫ ∞

0
tne−st

(

Ḡ(t) − F̄ (t)
)

dt =

∫ ∞

0
tne−st

∫

θ

(

ḠΘ(t) − F̄Θ(t)
)

dH(θ) dt

=

∫

θ

∫ ∞

0
tne−st

(

ḠΘ(t) − F̄Θ(t)
)

dt dH(θ) ≥ 0 .

Convolutions:

Let θ1 and θ2 be two independent random variables with life distributions

F1 and F2 with means µ1 and µ2, respectively, belonging to L(n) class. If Ḡ1(t) =

exp (−t/µ1), t ≥ 0, and Ḡ2(t) = exp (−t/µ2), t ≥ 0, then θ1 + θ2, that has life

distribution F1 ∗F2, belongs to L(n), too. With a similar argument to Klefsjo

(1983), by using properties of the Laplace transform of convolutions we get

∫ ∞

0
tne−st F1 ∗F2(t) dt ≥

∫ ∞

0
tne−st G1 ∗G2(t) dt ,

due to the fact G1 ∗G2 is IFR, it follows that θ1 + θ2 is in L(n) class. Note

that since G1 ∗G2 is IFR then it also follows that L̄(n) class is not closed under

convolutions.
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