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Abstract:

• A simple generalisation of the classical Hill estimator of a positive extreme value index
(EVI) has been recently introduced in the literature. Indeed, the Hill estimator can
be regarded as the logarithm of the mean of order p = 0 of a certain set of statistics.
Instead of such a geometric mean, we can more generally consider the mean of order
p (MOP) of those statistics, with p real, and even an optimal MOP (OMOP) class
of EVI-estimators. These estimators are scale invariant but not location invariant.
With PORT standing for peaks over random threshold, new classes of PORT-MOP
and PORT-OMOP EVI-estimators are now introduced. These classes are dependent
on an extra tuning parameter q, 0 ≤ q < 1, and they are both location and scale
invariant, a property also played by the EVI. The asymptotic normal behaviour of
those PORT classes is derived. These EVI-estimators are further studied for finite
samples, through a Monte-Carlo simulation study. An adequate choice of the tuning
parameters under play is put forward, and some concluding remarks are provided.
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1. INTRODUCTION

Given a sample of size n of independent, identically distributed random

variables (RVs), Xn := (X1, ..., Xn), with a common cumulative distribution func-

tion (CDF) F , let us denote by X1:n ≤ ··· ≤ Xn:n the associated ascending order

statistics. As usual in a framework of extreme value theory (EVT), let us fur-

ther assume that there exist sequences of real constants {an > 0} and {bn ∈ R}
such that the maximum, linearly normalised, i.e. (Xn:n − bn) /an, converges in

distribution to a non-degenerate RV. Then, the limit distribution is necessarily

of the type of the general extreme value (EV) CDF, given by

(1.1) EVξ(x) =

{
exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,
exp(− exp(−x)), x ∈ R, if ξ = 0.

The CDF F is said to belong to the max-domain of attraction of EVξ, and we

consider the common notation F ∈ DM (EVξ). The parameter ξ is the extreme

value index (EVI), the primary parameter of extreme events.

The EVI measures the heaviness of the survival function or right tail-

function

(1.2) F (x) := 1 − F (x),

and the heavier the right tail, the larger ξ is. Let us further use the notation Ra

for the class of regularly varying functions at infinity, with an index of regular

variation equal to a ∈ R, i.e. positive measurable functions g(·) such that for all

x > 0, g(tx)/g(t) → xa, as t→ ∞ (see Bingham et al., 1987, among others, for

details on the theory of regular variation). In this paper we work with Pareto-

type underlying models, i.e. with a positive EVI, a quite common assumption

in many areas of application, like bibliometrics, biostatistics, computer science,

insurance, finance, social sciences and telecommunications, among others. The

right-tail function F , in (1.2), belongs then to R−1/ξ. Indeed, and more generally,

(1.3) F ∈ DM (EVξ>0) =: DM+ ⇐⇒ F ∈ R−1/ξ,

a result due to Gnedenko (1943).

For the class of Pareto-type models in (1.3), the most well-known EVI-

estimators are the Hill (H) estimators (Hill, 1975), which are the averages of the

log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n.

We can thus define the H-class of EVI-estimators as:

(1.4) H(k) := H(k;Xn) :=
1

k

k∑

i=1

Vik, 1 ≤ k < n.
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We can further write

H(k) =
k∑

i=1

ln

(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏

i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n.

The Hill estimator is thus the logarithm of the geometric mean (or mean of order

0) of

Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n.

Brilhante et al. (2013) considered as basic statistics, the mean of order p (MOP)

of Uik, 1 ≤ i ≤ k, for p ≥ 0. More generally, Gomes and Caeiro (2014) considered

those same statistics for any p ∈ R, i.e. the class of statistics

Mp(k) =





(
1
k

k∑
i=1

Up
ik

)1/p

, if p 6= 0,

(
k∏

i=1
Uik

)1/k

, if p = 0,

and the following associated class of MOP EVI-estimators:

(1.5) Hp(k) = Hp(k;Xn) ≡ MOP(k) :=





(
1 − M−p

p (k)
)
/p, if p < 1/ξ,

lnM0(k) = H(k), if p = 0,

with H0(k) ≡ H(k), given in (1.4). This class of MOP EVI-estimators depends

now on this tuning parameter p ∈ R, it is highly flexible, but, as often desired, it is

not location-invariant, depending strongly on possible shifts in the model under-

lying the data. To make the EVI-estimators Hp(k), in (1.5), location-invariant,

it is thus sensible to use the peaks over a random threshold (PORT) technique

now applied to the MOP EVI-estimation. The PORT methodology, introduced

in Araújo Santos et al. (2006) and further studied in Gomes et al. (2008a), is

based on a sample of excesses over a random threshold Xnq :n, nq := ⌊nq⌋ + 1,

where ⌊x⌋ denotes the integer part of x, i.e. it is based on the sample of size

n(q) = n− nq, defined by

(1.6) X(q)
n :=

(
Xn:n −Xnq :n, ..., Xnq+1:n −Xnq :n

)
.

After the introduction, in Section 2, of a few technical details in the field

of EVT and a brief reference to the most simple minimum-variance reduced-

bias (MVRB) EVI-estimators, the corrected-Hill (CH) EVI-estimators introduced

and studied in Caeiro et al. (2005), we refer a class of optimal MOP (OMOP)

EVI-estimators recently studied in Brilhante et al. (2014). We further introduce

the new classes of PORT-MOP and PORT-OMOP EVI-estimators. Section 3 is

essentially dedicated to consistency and asymptotic normal behaviour of these

new classes of EVI-estimators, with a brief reference to the known asymptotic
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behaviour of the CH and MOP EVI-estimators. Section 4 is dedicated to the

finite sample properties of the new classes of estimators, comparatively to the

behaviour of the aforementioned MVRB and even PORT-MVRB EVI-estimators,

done through a small-scale simulation study. In Section 5, we refer possible

methods for the adaptive choice of the tuning parameters (k, p, q), either based

on the bootstrap or on heuristic methodologies, and provide some concluding

remarks.

2. PRELIMINARY RESULTS IN THE AREA OF EVT

In the area of EVT and whenever working with large values, i.e. with the

right tail of the model F underlying the available sample, the model F is usu-

ally said to be heavy-tailed whenever (1.3) holds. Moreover, with the notation

F←(t) := inf{x : F (x) ≥ t} for the generalised inverse function of F , the condition

F ∈ D+
M is equivalent to say that the tail quantile function U(t) := F←(1 − 1/t)

is of regular variation with index ξ (de Haan, 1984). We thus assume the validity

of any of the following first-order conditions:

(2.1) F ∈ D+
M ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ.

The second-order parameter ρ (≤ 0) rules the rate of convergence in the first-order

condition, in (2.1), and can be defined as the non-positive parameter appearing

in the limiting relation

(2.2) lim
t→∞

lnU(tx) − lnU(t) − ξ lnx

A(t)
= ψρ(x) :=





xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,

which is assumed to hold for every x > 0, and where |A| must then be of regular

variation with index ρ (Geluk and de Haan, 1987). For related details on the

topic, see Beirlant et al. (2004) and de Haan and Ferreira (2006).

Whenever dealing with bias reduction in the field of extremes, it is usual

to consider a slightly more restrict class than D+
M, the class of models

(2.3) U(t) = C tξ
{
1 +A(t)/ρ+ o(tρ)

}
, A(t) = ξβtρ,

as t→ ∞, where C > 0, ξ > 0, ρ < 0 and β 6= 0 (Hall and Welsh, 1985). This

means that the slowly varying function L(t) in U(t) = tξL(t) is assumed to behave

asymptotically as a constant. To assume (2.3) is equivalent to choose A(t) = ξβtρ,

ρ < 0, in the more general second-order condition in (2.2). Models like the log-

Gamma (ρ = 0) are thus excluded from this class. The standard Pareto (ρ = −∞)

is also excluded. But most heavy-tailed models used in applications, like the EVξ,

in (1.1), the Fréchet, F (x) = exp(−x−1/ξ), x ≥ 0, both for ξ > 0, and the well-

known Student’s t CDFs, among others, belong to Hall–Welsh class.
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2.1. The CH class of EVI-estimators

Due to its simplicity and just as mentioned above, the most popular EVI-

estimators, consistent only for non-negative values of ξ, are Hill estimators in

(1.4). We further consider the simplest class of CH EVI-estimators, the one

introduced in Caeiro et al. (2005),

(2.4) CH(k) = CH(k;Xn) := H(k)

(
1 − β̂(n/k)ρ̂

1 − ρ̂

)
.

The estimators in (2.4) can be second-order MVRB EVI-estimators, for adequate

levels k and an adequate external estimation of the vector of second-order param-

eters, (β, ρ), in (2.3), algorithmically given in Gomes and Pestana (2007), among

others, i.e. the use of CH(k), and an adequate estimation of (β, ρ), enables us to

eliminate the dominant component of the bias of the Hill estimator, H(k), keeping

its asymptotic variance. Like that, and theoretically, CH(k) outperforms H(k)

for all k.

We again suggest the use of the class of β-estimators in Gomes and Martins

(2002) and the simplest class of ρ-estimators in Fraga Alves et al. (2003). In the

simulations, we have considered only models with |ρ| ≤ 1. Indeed, this is the

case where alternatives to the H-class of EVI-estimators are welcome due to the

high bias of H EVI-estimators for moderate up to large values of k, including

the optimal k in the sense of minimal root mean square error (RMSE). In such

cases, we suggest the use of the tuning parameter τ = 0 in the simplest class of

ρ-estimators in Fraga Alves et al. (2003), given by

(2.5) ρ̂τ (k) ≡ ρ̂τ (k;Xn) := min

(
0,

3(R
(τ)
n (k;Xn) − 1)

R
(τ)
n (k;Xn) − 3

)
,

and dependent on the statistics

R(τ)
n (k;Xn) :=

(
M

(1)
n (k;Xn)

)τ −
(
M

(2)
n (k;Xn)/2

)τ/2

(
M

(2)
n (k;Xn)/2

)τ/2 −
(
M

(3)
n (k;Xn)/6

)τ/3
, τ ∈ R,

with the usual notation abτ = b ln a if τ = 0, and where

M (j)
n (k;Xn) :=

1

k

k∑

i=1

{lnXn−i+1:n − lnXn−k:n}j , j = 1, 2, 3.

As already suggested in previous papers, we have here decided for the computa-

tion of ρ̂τ (k) at k = k1, given by k1 = ⌊n1−ǫ⌋, ǫ = 0.001, the threshold used in

Caeiro et al. (2005) and Gomes and Pestana (2007).
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For the estimation of the scale second-order parameter β, in (2.3), and

again on the basis of a sample Xn, we consider

(2.6) β̂ρ̂(k) ≡ β̂ρ̂(k;Xn) :=

(
k

n

)ρ̂ dρ̂(k) D0(k) −Dρ̂(k)

dρ̂(k) Dρ̂(k) −D2ρ̂(k)
,

dependent on the estimator ρ̂ = ρ̂0(k1;Xn), with ρ̂τ (k) defined in (2.5), and

where, for any α ≤ 0,

dα(k) :=
1

k

k∑

i=1

(
i

k

)−α

and

Dα(k) :=
1

k

k∑

i=1

(
i

k

)−α

Ui, Ui := i
(

ln
Xn−i+1:n

Xn−i:n

)
,

with Ui, 1 ≤ i ≤ k, the scaled log-spacings associated with Xn. Details on the

distributional behaviour of the estimator in (2.6) can be found in Gomes and

Martins (2002) and more recently in Gomes et al. (2008b) and Caeiro et al. (2009).

Interesting alternative classes of estimators of the ‘shape’ and ‘scale’ second-order

parameters have recently been introduced. References to those classes can be

found in recent overviews on reduced-bias estimation (Chapter 6 of Reiss and

Thomas, 2007; Beirlant et al., 2012; Gomes and Guillou, 2014).

2.2. The OMOP class of EVI-estimators

Working in the class of models in (2.3) for technical simplicity, Brilhante

et al. (2014) noticed that there is an optimal value p ≡ p
M

= ϕρ/ξ, with

(2.7) ϕρ = 1 − ρ/2 −
√
ρ2 − 4ρ+ 2

/
2 ∈

(
0, 1 −

√
2/2
)
,

which maximises the asymptotic efficiency of the class of estimators in (1.5).

They then considered the MOP EVI-estimator associated with the optimal p ≡ p
M

estimated through p̂M, based on any initial consistent estimator of ξ and ρ, i.e. an

optimal MOP (OMOP) class of EVI-estimators. Here, we estimate the optimal

k-value for the H EVI-estimation, k0|0 := arg mink RMSE
(
H0(k)

)
, computing, as

given in Hall (1982),

k̂0|0 ≡ k̂0|H0
=
(
(1 − ρ̂)n−ρ̂/

(
β̂
√

−2ρ̂
))2/(1−2ρ̂)

,

the associated observed value of the EVI-estimator H00 := H(k̂0|0), and, with ϕρ

given in (2.7), the OMOP EVI-estimators

(2.8) H∗(k) ≡ H∗(k;Xn) := Hp̂M
(k;Xn), 1 ≤ k < n, p̂

M
= ϕρ̂/H00.

Neither the H nor the CH nor the MOP EVI-estimators are invariant for changes

in location, but they can easily be made location-invariant with the technique in-

troduced in Araújo Santos et al. (2006), briefly discribed in the following Section.
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2.3. The PORT methodology

The EVI-estimators in (1.4), (1.5), (2.4) and (2.8) are scale-invariant, but

not location-invariant, as often desired, due to the fact that the EVI itself enjoys

such a property, i.e. it is location and scale invariant. Indeed, note that a general

first-order condition to have F ∈ DM (EVξ), given in de Haan (1984), can be

written as

(2.9) F ∈ DM (EVξ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
= ψξ(x),

for an adequate function a(·), with an absolute value necessarily in Rξ, and where

ψρ(·) is the Box–Cox function, already defined in (2.2). If a shift s is induced in

data associated with the RV X, i.e. if we consider Y = X + s, the relationship

between the tail quantile functions of Y and X is given by U
Y
(t) = s+ U

X
(t).

Consequently, U
Y
(tx) − U

Y
(t) = U

X
(tx) − U

X
(t) and from (2.9), the EVI, ξ, is

the same for X and Y = X + s, for any shift s ∈ R.

Just as mentioned above, the class of PORT-Hill estimators is based on

the sample of excesses in (1.6). In this article, we shall work with PORT-MOP

and PORT-OMOP EVI-estimators, generally denoted E. They have the same

functional form of the associated EVI-estimators in (1.5) and (2.8) but with the

original sample Xn replaced everywhere by the sample of excesses X
(q)
n , in (1.6).

Consequently, they are given by the functional equations,

(2.10) E(q)(k) := E
(
k;X(q)

n

)
, with E ≡ Hp and E ≡ H∗.

These estimators are now invariant for both changes of location and scale, and

depend on the extra tuning parameter q, which only influences the asymptotic

bias, making them highly flexible and even able to compare favourably with the

MVRB EVI-estimators in (2.4), for a large variety of underlying models in the

domain of attraction for maxima of the EVξ CDF, in (1.1). In the simulation

procedure, we further include the PORT-MVRB EVI-estimators,

(2.11) CH(q)(k) = CH
(
k;X(q)

n

)
,

studied by simulation in Gomes et al. (2011a, 2013), with X
(q)
n and CH

(
k;Xn

)

respectively given in (1.6) and (2.4).
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3. ASYMPTOTIC BEHAVIOUR OF EVI-ESTIMATORS

Consistency of the Hill EVI-estimators, H ≡ H0, written both in (1.4) and

(1.5), is achieved in the whole D+
M whenever we work with intermediate values

of k, i.e.

(3.1) k = kn → ∞, 1 ≤ k < n, and kn = o(n), as n→ ∞.

3.1. Asymptotic normal behaviour of MOP and OMOP EVI-estimators

Let us consider the notation N (µ, σ2) for a normal RV with mean value

µ and variance σ2. Under the aforementioned second-order framework, in (2.2),

and as a generalization of the results in de Haan and Peng (1998), Brilhante et

al. (2013) derived, for the MOP EVI-estimators in (1.5) and 0 ≤ p ≤ 1/(2ξ), the

asymptotic distributional representation,

√
k
(
Hp(k) − ξ

)
d
= N

(
0, ξ2(1−pξ)2

1−2pξ

)
+

(1 − pξ)
√
kA(n/k)

1 − ρ− pξ

(
1 + op(1)

)
,

more generally valid for p ∈ R (Gomes and Caeiro, 2014). For the OMOP EVI-

estimators, in (2.8), Brilhante et al. (2014) got the obvious validity of a similar

asymptotic distributional representation, but with pξ replaced by ϕρ, in (2.7),

i.e.

√
k
(
H∗(k) − ξ

)
d
= N

(
0,

ξ2(1−ϕρ)2

1−2ϕρ

)
+

(1 − ϕρ)
√
kA(n/k)

1 − ϕρ − ρ

(
1 + op(1)

)
.

The asymptotic variance increases when p moves away from p = 0, but the bias

decreases and, at optimal levels in the sense of minimal RMSE, the OMOP EVI-

estimators outperform the H EVI-estimators.

Under the same conditions as before, but with CH(k) given in (2.4) and

assuming that (2.3) holds, an adequate estimation of the second-order parameters,

(β, ρ), enables to guarantee that
√
k
(
CH(k) − ξ

)
can be asymptotically normal

with variance also equal to ξ2 but with a null mean value. Indeed, from the

results in Caeiro et al. (2005), we know that it is possible to get

√
k
(
CH(k) − ξ

)
d
= N

(
0, ξ2

)
+ op

(√
kA(n/k)

)
.

On the basis of the results in the aforementioned papers, and generally

denoting by E(k) any of the EVI-estimators in (1.5) and (2.8), we can state the

following theorem.
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Theorem 3.1. (de Haan and Peng, 1998; Caeiro et al., 2005; Brilhante et

al., 2013, 2014). Under the validity of the first-order condition, in (2.1), and for

intermediate sequences k = kn, i.e. if (3.1) holds, the classes of EVI-estimators

Hp(k), in (1.5), for p < 1/ξ, and the EVI-estimators in (2.4) and (2.8) are con-

sistent for the estimation of ξ. If we assume the validity of the second-order

condition in (2.2) and additionally assume that we are working with values of

k such that λ
A

:= limn→∞

√
k A(n/k) is finite, we can then guarantee that for

p < 1/(2ξ) whenever dealing with Hp(k),

√
k (E(k) − ξ)

d−→
n→∞

N
(
λ

A
b•, σ

2
•

)
,

where

b
Hp

=
1 − pξ

1 − ρ− pξ
, b

H∗
=

1 − ϕρ

1 − ρ− ϕρ
,

σ2
Hp

=
ξ2(1 − pξ)2

1 − 2pξ
, σ2

H∗
=
ξ2(1 − ϕρ)

2

1 − 2ϕρ
.

If we further assume to be working in Hall–Welsh class of models in (2.3), and

estimate β and ρ consistently through β̂ and ρ̂, with ρ̂− ρ = op(1/ lnn), we get

the aforementioned normal behaviour also for E = CH, in (2.4), but now with

b
CH

= 0 and σ2
CH

= σ2
H

= ξ2.

Remark 3.1. Note again that σ2
H
< σ2

Hp
for all ξ > 0 and 0 6= p < 1/ξ.

The other way round, b
H
≥ b

Hp
for all ξ. And as can be seen in Brilhante et

al. (2013; 2014), at the optimal p, Hp(k) can asymptotically outperform H(k) at

optimal levels in the sense of minimal RMSE, in the whole (ξ, ρ)-plane. As far as

we know, such a property is so far achieved only by this class of EVI-estimators.

See also Paulauskas and Vaiciulis (2013).

3.2. Asymptotic behaviour of PORT-MOP EVI-estimators

Note first that if there is a possible shift s in the model, i.e. if the CDF

F (x) ≡ Fs(x) = F (x; s) depends on (x, s) through the difference x− s, the pa-

rameter ξ does not change, as mentioned above in Section 2.3, but the parameter

ρ, as well as the A-function, in (2.2), depend on such a shift s, i.e. ρ = ρs, A = As,

and

(As(t), ρs) :=





(
− ξs/U0(t),−ξ

)
, if ξ + ρ0 < 0 ∧ s 6= 0,

(
A0(t) − ξs/U0(t), ρ0

)
, if ξ + ρ0 = 0 ∧ s 6= 0,

(
A0(t), ρ0

)
, otherwise.
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Further details on the influence of such a shift in
(
β, ρ,A(·)

)
and on the estima-

tion of ‘shape’ and ‘scale’ second-order parameters can be found in Henriques-

Rodrigues et al. (2014, 2015).

To study the asymptotic properties of the PORT-MOP (and PORT-OMOP)

EVI-estimators for p 6= 0, it is convenient to study first the behaviour of the statis-

tics,

(3.2) Wp(k; q) :=
1

k

k∑

i=1

(
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p

, p 6= 0,

for X = X0 ⌢ F0. Indeed,

(3.3) Hp

(
k;X(q)

n

)
=

1 −W−1
p (k; q)

p
if p 6= 0.

Remark 3.2. Note that with

Qr(k; q) =
1

k

k∑

i=1

(
i

k

)r Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n
,

the statistics studied in Caeiro et al. (2014), we get, with Wp(k; q) given in (3.2),

W1(k; q) = Q0(k; q).

Remark 3.3. It is also worth noting that, as already detected in Fraga

Alves et al. (2009), for invariant versions of the mixed moment, and in Caeiro

et al. (2014), for invariant versions of the Pareto probability weighted moment

EVI-estimators, due to the fact that

X⌊nq⌋+1:n − U0(1/(1 − q)) = Op

(
1/
√
n
)
,

Xnq :n can be replaced by the q-quantile

(3.4) χq := U0(1/(1 − q)).

The asymptotic behaviour of the statistics Wp(k; q), in (3.2), comes then

straightforwardly from the behaviour of the non-shifted statistics, as stated in

the following proposition.

Theorem 3.2. Under the second order framework in (2.2), and for in-

termediate k, i.e. whenever (3.1) holds, we can guarantee, under general broad

conditions, the asymptotic normality of Wp(k; q), in (3.2). Indeed, we can write,

for pξ < 1/2,

(3.5) Wp(k; q)
d
=

1

1 − pξ
+
σp(ξ)N (0, 1)√

k
+
pA0(n/k)(1 + op(1))

(1 − pξ)(1 − pξ − ρ0)

+
pξχq(1 + op(1))

(1 − pξ)(1 − (p− 1)ξ)U0(n/k)
,
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where

(3.6) σ2
p(ξ) :=

(pξ)2

(1 − pξ)2(1 − 2pξ)
.

Proof: It is well-known that U0(Xi:n)
d
= Yi:n, where Y is a standard unit

Pareto RV, with CDF FY (y) = 1 − 1/y, y > 1. Moreover, Yn−i+1:n/Yn−k:n
d
=

Yk−i+1:k, 1 ≤ i ≤ k. Under the second order framework in (2.2), and thinking

on the fact that we are now working with s = 0 due to the location invariance

property of the statistics in (3.2), we can write

Xn−i+1:n

Xn−k:n

d
=

U0

(Yn−i+1:n

Yn−k:n
Yn−k:n

)

U0(Yn−k:n)

d
= Y ξ

k−i+1:k

(
1 +

Y ρ
k−i+1:k

−1

ρ A0(Yn−k:n)(1 + op(1))
)
.

Next, with the notation χq = U0(1/(1 − q)), already introduced in (3.4),

Xn−i+1:n − χq

Xn−k:n − χq
=
Xn−i+1:n

Xn−k:n

(
1 − χq/Xn−i+1:n

1 − χq/Xn−k:n

)

=
Xn−i+1:n

Xn−k:n

(
1 +

χq

Xn−k:n

(
1 − Xn−k:n

Xn−i+1:n

)
(1 + op(1))

)
.

Consequently,

Wp(k; q) :=
1

k

k∑

i=1

(
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p

=
1

k

k∑

i=1

(
Xn−i+1:n

Xn−k:n

(
1 +

χq

Xn−k:n

(
1 − Xn−k:n

Xn−i+1:n

)
(1 + op(1))

))p

,

and we can write

Wp(k; q)
d
=

1

k

k∑

i=1

Y pξ
i:k +

pξχq

U0(n/k)

1

k

k∑

i=1

Y pξ
i:k

Y −ξ
i:k − 1

−ξ (1 + op(1))

+
p

k

k∑

i=1

Y pξ
i:k

Y ρ
i:k − 1

ρ
A0(n/k)(1 + op(1)).

Since, for pξ < 1

1

k

k∑

i=1

Y pξ
i:k

P−→ 1

1 − pξ

and if we further assume that ρ < 0,

1

k

k∑

i=1

Y pξ
i:k

(
Y ρ

i:k − 1

ρ

)
P−→ 1

(1 − pξ)(1 − pξ − ρ)
,

equation (3.5) follows. Moreover, σ2
p(ξ), given in (3.6), is merely the variance of

∑k
i=1 Y

pξ
i:k/k =

∑k
i=1 Y

pξ
i /k.
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We next state the main theoretical result in this article, related to the shift

invariant versions of the EVI-estimators in (1.5) and (2.8), i.e. the shift-invariant

EVI-estimators, generally denoted E(q)(k) in (2.10). Again, the asymptotic vari-

ance is kept at the same level of the unshifted EVI-estimators, but the dominant

component of bias changes only in a few cases.

Theorem 3.3. Under the second order framework in (2.2), with pξ < 1/2,

and for intermediate k, i.e. if (3.1) holds, the asymptotic bias of the PORT-MOP

and PORT-OMOP EVI-estimators, in (2.10), is going to be ruled by

B(t) =





ξχq/U0(t), if ξ + ρ0 < 0 ∧ χq 6= 0,

A0(t) + ξχq/U0(t), if ξ + ρ0 = 0 ∧ χq 6= 0,

A0(t), otherwise,

with χq defined in (3.4). If we assume that
√
k A0(n/k) → λ

A
and/or

√
k/U0(n/k)

→ λ
U
, finite, as n→ ∞, and with E denoting either Hp or H∗, as given in (2.10),

√
k
(
E(q)(k) − ξ

)
d−→

n→∞
N
(
b
E|q, σ

2
E

)
,

where

b
E|q =





ξ(1−pξ)χq

1−(p−1)ξ λU
, if ξ + ρ0 < 0 ∧ χq 6= 0,

1−pξ
1−(p−1)ξ λA

+
ξ(1−pξ)χq

1−(p−1)ξ λU
, if ξ + ρ0 = 0 ∧ χq 6= 0,

1−pξ
1−pξ−ρ0

λ
A
, otherwise.

Proof: For p 6= 0, (3.3) and the use of Taylor’s expansion (1 + x)−1 =

1 − x+ o(x), as x→ 0, enables us to get

H(q)
p (k)

d
= ξ +

σp(ξ)(1 − pξ)2N (0, 1)(1 + op(1))

|p|
√
k

+
(1 − pξ)A0(n/k)(1 + op(1))

(1 − pξ − ρ0)
+
ξ(1 − pξ)χq(1 + op(1))

(1 − (p− 1)ξ)U0(n/k)
.

Consequently, the result in the theorem follows.
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4. FINITE SAMPLE PROPERTIES OF THE EVI-ESTIMATORS

We have implemented multi-sample Monte-Carlo simulation experiments of

size 5000 × 20, i.e. 20 independent replicates with 5000 runs each, for the classes

of MOP and PORT-MOP EVI-estimators associated with p = pℓ = 2ℓ/(5ξ), ℓ =

0, 1, 2, and also for the OMOP and PORT-OMOP EVI-estimators. The values

q = 0 and q = 0.25 were considered. We further proceeded to the comparison with

the MVRB and the PORT MVRB EVI-estimators, for the same values of q as

mentioned above. Sample sizes from n = 100 until n = 5000 were simulated from

a set of underlying models that include the ones shown here as an illustration, the

EV model, with CDF F (x) = EVξ(x), with EVξ(x) given in (1.1), ξ = 0.1, 0.25,

and the Student-tν , with ν = 4, 2 degrees-of-freedom (ξ = 1/ν = 0.25, 0.5). For

details on multi-sample simulation, see Gomes and Oliveira (2001), among others.

For the EV parents, results are presented essentially for q = 0, the value of q

associated with the best performance of the PORT methodology for these models.

For Student parents we consider q = 0.25. This is due to the fact that for the

Student model the left endpoint is infinite and we cannot thus consider q = 0 (see

Araújo Santos et al., 2006, and Gomes et al., 2008a, for further details related to

the topic).

Remark 4.1. Note that, as already stated in the aforementioned articles

dealing with a PORT framework, if there are only positive observed values in

the sample, we gain nothing with the use of the PORT methodology. The other

way round, if there are negative elements in the sample, as happens with EV and

Student models and, in practice, with log-returns in financial data, among other

types of data, the gain is quite high, as we shall see in the following. This is the

main reason for the choice of the aforementioned parents.

4.1. Mean values and mean square error patterns as k-functionals

For each value of n and for each of the above-mentioned models, we have

first simulated the mean value (E) and the RMSE of the estimators under con-

sideration, as functions of the number of top order statistics k involved in the

estimation. Apart from the MOP, Hp, in (1.5), p = 0
(
H0 ≡ H

)
and p = pℓ =

2ℓ/(5ξ), ℓ = 1 (for which asymptotic normality holds), and ℓ = 2 (where only con-

sistency was proved), the OMOP (H∗), in (2.8), and the MVRB (CH) EVI-

estimators, in (2.4), we have also included their PORT versions, respectively

given in (2.10) and (2.11), for the above mentioned values of q.

The results are illustrated in Figure 1, for an EVξ underlying parent, with

ξ = 0.25 and q = 0. In this case, and for all k, there is a clear reduction in
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RMSE, as well as in bias, with the obtention of estimates closer to the target

value ξ, particularly when we consider Hp2
and the associated PORT-version.

However, at optimal levels, even the PORT-H∗ and PORT-Hp1
versions beat the

MVRB EVI-estimators. Indeed, the PORT-Hp1
can even beat the PORT-MVRB

EVI-estimators, as happens in this illustration.
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Figure 1: Mean values (left) and root mean square errors (right) of H,
H∗ (OMOP), CH, and Hp, p = pℓ = 2ℓ/(5ξ), ℓ = 1, 2 (MOP),
together with their PORT versions, associated with q = 0 and
generally denoted •|0, for EV0.25 underlying parents and sam-
ple size n = 1000.

Similar patterns have been obtained for all other simulated models, with

the PORT-MVRB outperforming the PORT-MOP only in a few cases and for

large sample sizes n.

4.2. Mean values and relative efficiency indicators at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.25. We there present,

for different sample sizes n, the simulated mean values at optimal levels (levels

where RMSEs are minima as functions of k) of the EVI-estimators under consid-

eration in this study. Information on standard errors, computed on the basis of

the 20 replicates with 5000 runs each, are available from the authors, upon re-

quest. Among the estimators considered, and distinguishing 3 regions, a first one

with (H, CH, H∗, Hp1
), a second one with the associated PORT versions, (H|0,

CH|0, H∗|0, Hp1
|0), and a third one with (Hp2

, Hp2
|0), for which an asymptotic

normal behaviour is not available, the one providing the smallest squared bias

is underlined and written in bold whenever there is an out-performance of the

behaviour achieved in the previous region.
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Table 1: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.4202 0.3915 0.3646 0.3482 0.3348 0.3212

CH 0.3816 0.3716 0.3533 0.3416 0.3295 0.3174

H
∗

0.3398 0.3351 0.3303 0.3226 0.3167 0.3082

Hp1
0.3059 0.3077 0.3034 0.3013 0.2998 0.2940

H|0 0.3663 0.3464 0.3261 0.3154 0.3053 0.2957

CH|0 0.3510 0.3369 0.3210 0.3114 0.3033 0.2945

H
∗|0 0.3292 0.3208 0.3106 0.3046 0.2980 0.2904

Hp1
|0 0.3052 0.3001 0.2963 0.2928 0.2895 0.2848

Hp2
0.2723 0.2698 0.2669 0.2651 0.2638 0.2620

Hp2
|0 0.2669 0.2650 0.2625 0.2614 0.2603 0.2590

We have further computed the Hill estimator, given in (1.5) when p = 0,

at the simulated value of k0|0 = arg mink RMSE
(
H0(k)

)
, the simulated optimal

k in the sense of minimum RMSE, not relevant in practice, but providing an

indication of the best possible performance of Hill’s estimator. Such an estimator

is denoted by H̃00. For any of the estimators under study, generally denoted E(k),

we have also computed E0, the estimator E(k) computed at the simulated value

of k0|E := arg mink RMSE
(
E(k)

)
. The simulated indicators are

(4.1) REFFE|0 :=
RMSE

(
H̃00

)

RMSE (E0)
.

Remark 4.2. Note that, as usual, an indicator higher than one means

a better performance than the Hill estimator. Consequently, the higher these

indicators are, the better the associated EVI-estimators perform, comparatively

to H̃00.

Table 2: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.246 0.200 0.157 0.133 0.113 0.092

CH 1.3256 1.2374 1.1711 1.1304 1.1008 1.0716

H
∗

1.4391 1.3384 1.2491 1.2021 1.1653 1.1333

Hp1
1.9307 1.7443 1.5646 1.4633 1.3785 1.2999

H|0 1.4875 1.4991 1.5169 1.5309 1.5405 1.5542

CH|0 1.9212 1.8505 1.7790 1.7366 1.6958 1.6633

H
∗|0 1.8966 1.8156 1.7511 1.7217 1.6995 1.6868

Hp1
|0 2.3988 2.2171 2.0478 1.9564 1.8828 1.8230

Hp2
6.4033 5.6755 4.9396 4.4849 4.0943 3.6784

Hp2
|0 7.5643 6.7594 5.9369 5.4315 4.9769 4.4991
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Again as an illustration of the results obtained, we present Table 2. In the

first row, we provide RMSE0, the RMSE of H̃00, so that we can easily recover the

RMSE of all other estimators. The following rows provide the REFF-indicators

for the different EVI-estimators under study. A similar mark (underlined and

bold) is used for the highest REFF indicator, again considering the aforemen-

tioned three regions.

For a better visualization of the results presented in Table 1 and Table 2, we

further present Figure 2. Due to the high REFF-indicators of Hp2
and associated

PORT estimators, we present them in a different scale, at the top of Figure 2,

right, the one related to the REFF-indicators.
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal
levels of the different estimators under study, for an under-
lying EV0.25 parent and sample sizes n = 100(100)500 and
500(500)5000.

Tables 3–4, 5–6 and 7–8 are similar to Tables 1–2, respectively for EV0.1,

Student-t4 and Student-t2 underlying parents.

Table 3: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.2918 0.2644 0.2403 0.2225 0.2089 0.1952

CH 0.2714 0.2544 0.2341 0.2214 0.2076 0.1946

H
∗

0.1895 0.1745 0.1605 0.1516 0.1442 0.1464

Hp1
0.1601 0.1496 0.1396 0.1330 0.1274 0.1315

H|0 0.2404 0.2191 0.2009 0.1895 0.1801 0.1688

CH|0 0.2346 0.2176 0.1989 0.1887 0.1793 0.1689

H
∗|0 0.1611 0.1499 0.1435 0.1441 0.1458 0.14440

Hp1
|0 0.1400 0.1317 0.1278 0.1290 0.1271 0.1291

Hp2
0.1159 0.1149 0.1133 0.1127 0.1114 0.1105

Hp2
|0 0.1131 0.1124 0.1110 0.1104 0.1098 0.1090
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Table 4: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2524 0.2109 0.1732 0.1511 0.1329 0.1136

CH 1.1778 1.1141 1.0684 1.0450 1.0293 1.0186

H
∗

2.0954 1.9436 1.7846 1.6708 1.5618 1.4483

Hp1
3.0221 2.7527 2.4758 2.2837 2.1044 1.9174

H|0 1.4292 1.4185 1.4153 1.4093 1.4006 1.3967

CH|0 1.5680 1.5140 1.4760 1.4509 1.4290 1.4134

H
∗|0 2.5865 2.3621 2.1291 1.9935 1.8775 1.7709

Hp1
|0 3.5906 3.2188 2.8408 2.6229 2.4277 2.2369

Hp2
12.1731 10.5862 9.1739 8.3307 7.6068 6.8415

Hp2
|0 13.3178 11.6827 10.1972 9.2846 8.5188 7.6951

Table 5: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying Student-t4 parents (ξ = 0.25).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.3607 0.3392 0.3167 0.3055 0.2959 0.2862

CH 0.3109 0.3104 0.3005 0.2939 0.2879 0.2805

H
∗

0.3236 0.3135 0.3028 0.2959 0.2891 0.2818

Hp1
0.2964 0.2914 0.2881 0.2844 0.2810 0.2765

H|0.25 0.3078 0.2935 0.2806 0.2728 0.2672 0.2613

CH|0.25 0.2869 0.2783 0.2686 0.2641 0.2599 0.2561

H
∗|0.25 0.2923 0.2861 0.2764 0.2699 0.2658 0.2607

Hp1
|0.25 0.2797 0.2762 0.2709 0.2671 0.2640 0.2599

Hp2
0.2662 0.2646 0.2616 0.2604 0.2589 0.2575

Hp2
|0.25 0.2613 0.2591 0.2570 0.2558 0.2550 0.2539

Table 6: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying Student-t4 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.1830 0.1431 0.1059 0.0854 0.0696 0.0535

CH 1.4349 1.3982 1.3615 1.3223 1.2834 1.2358

H
∗

1.2984 1.2280 1.1625 1.1297 1.1046 1.0822

Hp1
1.7501 1.5845 1.4200 1.3285 1.2554 1.1819

H|0.25 1.6242 1.6823 1.7745 1.8702 1.9850 2.1777

CH|0.25 2.4005 2.5115 2.7219 2.8846 3.1153 3.5054

H
∗|0.25 1.9459 1.9360 1.9712 2.0386 2.1329 2.3108

Hp1
|0.25 2.4223 2.3048 2.2245 2.2166 2.2410 2.3346

Hp2
5.3556 4.7308 4.0399 3.5993 3.2243 2.7827

Hp2
|0.25 6.6674 6.0186 5.2884 4.8145 4.3920 3.8883
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Table 7: Simulated mean values of the semi-parametric EVI-estimators
under consideration, at their simulated optimal levels for under-
lying Student-t2 parents (ξ = 0.5).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.6015 0.5769 0.5560 0.5439 0.5355 0.5257

CH 0.4644 0.5059 0.5117 0.5073 0.5041 0.5019

H
∗

0.5823 0.5671 0.5510 0.5404 0.5324 0.5233

Hp1
0.5553 0.5486 0.5393 0.5325 0.5261 0.5182

H|0.25 0.5203 0.5139 0.5063 0.5037 0.5020 0.5009

CH|0.25 0.4885 0.4940 0.4974 0.4988 0.4995 0.4997

H
∗|0.25 0.5194 0.5142 0.5070 0.5035 0.5018 0.5009

Hp1
|0.25 0.5186 0.5130 0.5078 0.5048 0.5023 0.5011

Hp2
0.5206 0.5168 0.5137 0.5111 0.5086 0.5053

Hp2
|0.25 0.5120 0.5096 0.5072 0.5051 0.5036 0.5018

Table 8: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying Student-t2 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2028 0.1528 0.1078 0.0835 0.0652 0.0470

CH 0.9803 1.4180 1.7059 1.9437 2.2267 2.6414

H
∗

1.1363 1.1047 1.0811 1.0695 1.0666 1.0644

Hp1
1.4333 1.3224 1.2344 1.1957 1.1841 1.1844

H|0.25 1.8476 1.9699 2.2126 2.4120 2.6709 3.0481

CH|0.25 2.4870 2.6495 2.9310 3.1988 3.5307 4.0413

H
∗|0.25 1.9814 2.0820 2.3071 2.5030 2.7652 3.1490

Hp1
|0.25 2.2140 2.2306 2.3726 2.5269 2.7644 3.1234

Hp2
3.7572 3.2811 2.7464 2.4304 2.2496 2.1766

Hp2
|0.25 4.5942 4.1347 3.6354 3.3598 3.2719 3.3502

Remark 4.3. As intuitively expected, Hp|• are decreasing in p, approach-

ing the true value of ξ, or all simulated models.

Remark 4.4. For adequate values of q and p, the PORT-MOP EVI-

estimators are able to outperform the MVRB and even the PORT-MVRB, in

some cases.
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5. AN ADAPTIVE CHOICE OF (k, p, q) AND CONCLUDING

REMARKS

Apart from heuristic choices based on sample path stability, similar to the

ones in Neves et al. (2015), we suggest the use of the double-bootstrap method-

ology, briefly described in the following Section.

5.1. Bootstrap adaptive PORT-MOP EVI-estimation

A reasonably sophisticated and time-consuming algorithm, that has proved

to work properly in many situations, is the double-bootstrap algorithm. The

basic framework for such algorithm is related to the fact that for any class of

EVI-estimators, generally denoted E(k),

(5.1) k0|E(n) = arg min
k

RMSE
(
E(k)

)
= kA|E(n)

(
1 + o(1)

)
,

with kA|E(n) := arg mink ARMSE
(
E(k)

)
and ARMSE standing for asymptotic

root mean square error. The bootstrap methodology can then enable us to consis-

tently estimate the optimal sample fraction, k0|E(n)/n, with k0|E(n) given in (5.1),

on the basis of a consistent estimator of kA|E(n), in a way similar to the one used

in Draisma et al. (1999), Danielson et al. (2001) and Gomes and Oliveira (2001),

for the classical adaptive Hill EVI-estimation, performed through H(k) ≡ H0(k),

in (1.4), in Brilhante et al. (2013), for the MOP EVI-estimation through Hp(k),

in (1.5), in Gomes et al. (2011b, 2012), for second-order reduced-bias estimation,

and in Gomes et al. (2015) for the CH and PORT-CH EVI-estimation.

The bootstrap methodology is applied to sub-samples of size m1 = o(n)

and m2 = m2
1/n, is practically independent on m1 for an adequate PORT EVI-

estimation and it is essentially based on the relationship between the optimal

sample fraction of the EVI-estimator under consideration, and the one of the

auxiliary statistics

Tk,n ≡ T (k|E) := E([k/2]) − E(k), k = 2, ..., n− 1,

which converge in probability to the known value zero, for any intermediate k, and

have an asymptotic behaviour strongly related with the asymptotic behaviour of

E(k). For details, see Gomes et al. (2015), where an algorithm for the optimal

choice of (k, q) is provided for the PORT-MVRB EVI-estimators, in (2.11). In-

deed, for the adaptive choice of (k, p, q) based on minimal bootstrap RMSE, an

algorithm of the type of the one in Gomes et al. (2015) can be conceived with the

inclusion of the MOP and PORT-MOP together with the Hill, the PORT-Hill,

the MVRB and the PORT-MVRB. This is however a topic out of the scope of

this article.
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5.2. Overall comments

A few concluding remarks:

• For both mean values and RMSEs at optimal levels, and for all simulated

models, if we restrict ourselves to the region of values of p where we can

guarantee asymptotic normality, i.e. p < 1/(2ξ), the best results were

obtained for the value of p closer to 1/(2ξ), i.e. p = 2/(5ξ). The OMOP

is not at all competitive with the MOP, regarding both bias and MSE.

• For the simulated models, the MOP can clearly beat the MVRB, be-

ing beaten by the MVRB only for Student-t2 parents. A similar com-

ment applies to the behaviour of the PORT-MOP comparatively to the

PORT-MVRB EVI-estimators.

• The improvement achieved with the use of the PORT-MOP EVI-estima-

tion can be highly significant, as illustrated. Indeed, the PORT-MOP

can, for an adequate (p, q) beat the MVRB EVI-estimators for all k,

being often able to beat the optimal PORT-MVRB. This is surely due

to the small increase in the variance and the high reduction of bias of

the PORT-MOP comparatively with the PORT-MVRB, a topic not yet

investigated, due to the deep involvement of a third-order framework.
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