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Abstract:

• We study functional varying coefficient model in which both the response and the
predictor are functions of a common variable such as time. We demonstrate the esti-
mation of the slope function for the case of sparse and noise-contaminated longitudinal
data. So far, a few methods have been introduced based on varying coefficient model.
To estimate the slope function, we consider a regularization method using a repro-
ducing kernel Hilbert space framework. Despite the generality of the regularization
method, the procedure is easy to implement. Our numerical results show that the
introduced procedure performs well in some senses.
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1. INTRODUCTION

Due to rapid development of science and technology, it is possible to col-

lect data that are naturally functions. This type of data , that are referred as

functional data, has many applications in various fields of science, including, for

example, environmental science, chemometrics, engineering, biomedical studies,

public health, and econometrics. Functional data analysis deals with situations

in which the individual observed data are infinite-dimensional, such as curves.

See Ramsay and Silverman (2002, 2005) and Ferraty and Vieu (2006) for com-

prehensive discussions on methods and applications for functional data.

Functional linear model is one of the most useful methods to explore the

relationship between two sets of observations. There are various types of func-

tional linear model that have been widely studied in the literature. In this pa-

per, we consider a functional linear model where one observe a random sample

{(Xi, Yi) : i = 1, 2, ..., n} corresponds to functional varying coefficient model, i.e.,

(1.1) Y (t) = α(t) + β(t)X(t) + Z(t),

where α and β are smoothed functions, and Z(t) is a noise term with zero

mean and finite variance. Without loss of generality, we assume that E [X(t)] =

E [Y (t)] = 0, then the functional linear model (1.1) becomes,

(1.2) Y (t) = β(t)X(t) + Z(t).

Relation (1.2) models Y via X pointwisely, and allows β to vary with time. Fan and

Zhang (2008) have provided a review of statistical methods proposed for various

varying coefficient models according to three approaches. These approaches are

based on polynomial spline, smoothing splines and local polynomial smoothing.

See also Wu et al. (1998), Huang et al. (2002, 2004), Hoover et al. (1998), Chiang

et al. (2001), Wu and Chiang (2000), and Kauermann and Tutz (1999). Fan and

Zhang (1999), Wang and Xia (2009), and Lin and Ying (2001) applied another

approaches for varying coefficient models. Most of these papers did not examine

sparse and irregular designs and face some problems in implementing these designs.

In many experiments though, for example most longitudinal studies, the

functional trajectories of the involved smooth random processes are not directly

observable. In these cases, the observed data are noisy, sparse and irregularly

spaced measurements of these trajectories.

Following the notation in Yao et al. (2005a), let Ui j and Vi j the jth obser-

vations of the random trajectories Xi(·) and Yi(·) at a random time points Ti j ,

respectively, where Ti j are independently drawn from a distribution on compact

domain T ⊂ R. Assume that Ui j and Vi j are contaminated with measurement

errors εi j and ǫi j , respectively. These errors are assumed to be i.i.d. with mean
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zero and finite variance σ2
X

for εi j and σ2
Y

for ǫi j . Therefore, the models may be

represented in the following forms:

(1.3)
Uij = Xi(Tij) + εij , j = 1, ..., m; i = 1, ..., n ,

Vij = Yi(Tij) + ǫij , j = 1, ..., m; i = 1, ..., n .

Functional data analysis of model (1.3) has been extended by Yao et. al (2005a,

2005b). See also Li and Hsing (2010), and Yang et. al (2011). Şentürk and

Müller (2010), and Şentürk and Nguyen (2011) have considered functional varying

coefficient in model (1.1). The model given in Şentürk and Müller (2010) is

a model with one covariate process that incorporates a history index. Their

estimation approach is based on least square estimation. Şentürk and Nguyen

(2011) have studied a model with error-prone time-dependent variables and time-

invariant covariates. They used covariance representation techniques to estimate

the slope function. More references that studied varying coefficient models for

model (1.3) include Şentürk and Müller (2008), Noh and Park (2010), Chiou et

al. (2012), and Şentürk et al. (2013).

In this paper, we assume that the slope function β belongs to a reproducing

kernel Hilbert space (RKHS) H, and investigate the regularization method for

estimating β. By simulation, we show that our estimation method perform well

as sampling frequency and sample size increase. We do our simulation study

in two different settings. One is when locations are same and equidistant for

all curves, that is, T1j = T2j = ··· = Tnj = 2j
2m+1 for all j = 1, 2, ..., m. Another

setting is when Tij are independently sampled from T . These settings are referred

as common design and stochastic design, respectively (see Cai and Yuan (2011)).

The paper is organized as follows. In section 2, our estimation procedure is

introduced. The numerical results are given in Section 3. Section 4 collects the

obtained results and discusses possible extensions of our work.

2. ESTIMATION PROCEDURE

In this section, we introduce a regularization method for estimating the

slope function β using a reproducing kernel Hilbert space (RKHS) framework.

First, we review some basic facts of RKHS. A Hilbert space H of functions on

a set T with inner product 〈·, ·〉H is called an RKHS if there exists a bivariate

function K(·, ·) on T × T such that for every t ∈ T and f ∈ H,

(i) K(·, t) ∈ H,

(ii) f(t) = 〈 f, K(·, t) 〉
H

.
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Relation (ii) is termed the reproducing property of K, and K is called reproducing

kernel of H. Every reproducing kernel determine unique RKHS. In addition, an

RKHS has unique reproducing kernel. For any s1, ..., sm′ , s′1, ..., s
′
n′ ∈ T and

a1, ..., am′ , b1, ..., bn′ ∈ R, we have

(2.1) 〈
m′

∑

i=1

aiK(·, si),
n′

∑

j=1

bjK(·, s′j)〉H =
m′

∑

i=1

n′

∑

j=1

aibjK(si, s
′
j)

More details on RKHS can be found in Aronszajn (1950), Berlinet and Thomas-

Agnan (2004) and Wahba (1990).

Now, we investigate the method of regularization to estimate β. We assume

that β ∈ H(K), where H(K) is an RKHS with reproducing kernel K. We estimate

β via

(2.2) β̂λ = arg min
β∈H(K)

{

ℓmn(β) + λ‖β‖2
H(K)

}

where

ℓmn(β) =
1

nm

n
∑

i=1

m
∑

j=1

(Vij − Uijβ(Tij))
2

and λ > 0 is tuning parameter that control tradeoff between fidelity to the data

measured by ℓmn and smoothness of the solution measured by RKHS norm.

Remark 1. We can define minimization problem (2.2) in more general

sense. For example, one may replace ‖β‖2
H(K) by J(β) and then define

β̂λ = arg min
β∈H(K)

{ℓmn(β) + λJ(β)}

where the penalty functional J is a squared semi-norm on H(K) such that the

null space

H0(K) = {g ∈ H(K) : J(g) = 0}

be a finite dimensional linear subspace of H(K).

The representer theorem gives the solution of regularization problem (2.2)

in a finite dimensional subspace, although it is taken over an infinite dimensional

subspace (see Wahba 1990).

Theorem 1. Consider minimization problem (2.2), then there exist con-

stants aij , i = 1, ..., n, j = 1, ..., m, such that

β̂λ(t) =
n

∑

i=1

m
∑

j=1

aijK(t, Tij).
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The proof of this Theorem is similar to that of Theorem 1.3.1 in Wahba

(1990) and so we omit it.

In order to see how calculate this estimate, let T := [0, 1] and H := Wr
2

where Wr
2 is the rth order Sobolev–Hilbert space:

Wr
2 =

{

g : [0, 1] → R | g, g(1), ..., g(r−1)are absolutely continuous

and g(r) ∈ L2([0, 1])
}

.

Sobolev spaces have many applications in nonparametric function estimation.

The smoothness of a function that belongs to some Sobolev spaces is guaranteed

by existing its derivatives in some orders. To further study about Sobolev spaces

see, for example, Adams (1975). There are various norms that we can equip

to Wr
2 so that Wr

2 be an RKHS (see Berlinet and Thomas-Agnan (2004)). If

we endow Wr
2 with squared norm ‖g‖2

Wr

2

=
r−1
∑

k=0

(∫

g(k)
)2

+
∫

[g(r)]
2
, then it is an

RKHS with reproducing kernel

Kr(s, t) =
1

(r!)2
Br(s)Br(t) +

(−1)r−1

(2r)!
B2r(|s − t|),

where Br(.) is the rth Bernoulli polynomial. By Theorem 1, it suffices to consider

β of the following form:

β(t) =
n

∑

i=1

m
∑

j=1

aijKr(t, Tij)

for some a = [a11, ..., a1m, a21, ..., anm]′ ∈ R
nm. Using equation (2.1) yields

‖β‖2
Wr

2

=
n

∑

i1=1

m
∑

j1=1

n
∑

i2=1

m
∑

j2=1

ai2j2ai1j1Kr(Ti1j1 , Ti2j2)

= a′Pa

where

P =











P11 P12 P13 ··· P1n

P21 P22 P23 ··· P2n

...
...

. . .
...

...
Pn1 Pn2 Pn3 ··· Pnn











and

Pi1i2 = [Kr(Ti1j1 , Ti2j2)]1≤j1,j2≤m
, 1 ≤ i1, i2 ≤ n

Define U = [U11, ..., U1m, U21, ..., Unm]′ and V = [V11, ..., V1m, V21, ..., Vnm]′ then

(2.3) ℓmn(β) + λ‖β‖2
Wr

2

=
1

nm
‖V − U ◦ (Pa)‖2

ℓ2
+ λa′Pa,

where A ◦ B is the Hadamard product of two matrices A and B. So finding

minimizer of left hand side of (2.3) over Wr
2 is equivalent to finding a vector
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a ∈ R
nm which minimizes right hand side of (2.3). Let Q be an nm× nm matrix

such that

(the ith column of Q) = (the ith column of P) ◦ (U ◦ U)), i = 1, 2, ..., nm

It can be seen that the minimizer of (2.3) is

a = (Q + nmλI)−1 (U ◦ V)

3. SIMULATION STUDY

In our simulation study, we carried out a set of simulation studies to em-

phasize the practical implementation of our methodology. Let true slope function

be

β(t) =
50

∑

k=1

ζkφk(t), t ∈ [0, 1],

where ζ1 = 0.3, φ1(t) = 1, ζk = 4(−1)k+1k−2 and φk(t) = cos((k−1)πt) for k ≥ 1.

It is clear that this function belongs to the second order Sobolev space (r = 2).

Random functions Xi’s are generated independently as follows:

X(t) =
√

2 sin(πt)ξ1 +
√

2 cos(πt)ξ2, t ∈ [0, 1],

where ξ1 and ξ2 are independent random variables with ξi ∼ N(0, i), i = 1, 2. The

response trajectories are generated according to model (1.2) with

Z(t) =
√

2 sin(πt)Z1 +
√

2 cos(πt)Z2, t ∈ [0, 1],

where Z1 and Z2 are i.i.d. random variables from N(0, 0.1). Design points are

selected based on common or random design. Noisy observations of each curve

obtain according to model (1.3) in each curve.

The fifty curves from X(t) and Y (t) were given in the top panels of Figure 1,

the left panel for X(t) and the right panel for Y (t). The lower panels of Figure 1

shows the observed data for m = 5 random design points based on stochastic

design, the left panel for U and the right panel for V .

We use integrated squared error, ‖β̂λ − β‖2
L2

=
∫ 1
0

(

β̂λ(t) − β(t)
)2

dt, to

assess goodness of fit of the model. The integrated squared error, ‖β̂λ − β‖2
L2

, as

a function of smoothing parameter λ is shown in Figure 2 for both designs, the

right panel for stochastic design, and the left panel for common design. The best

choice for smoothing parameter is the value of λ that minimizes ‖β̂λ − β‖2
L2

.
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Figure 1: The top panels give 50 simulated curves, the left panel for X

and the right panel for Y . Noisy observations at 5 random lo-
cation based on stochastic design are shown in the lower panels,
the left panel for U and the right panel for V .

Figure 2: Sensitivity of integrated squared error, ‖β̂λ − β‖2

L2
, with respect

to smoothing parameter λ for both designs. The right panel for
stochastic design, and the left panel for common design.

We calculated ‖β̂λ−β‖2
L2

for different combinations of n ∈ {25, 50, 100, 200}
and m ∈ {3, 5, 10, 20}. Table 1 presents the obtained value of the smoothing
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parameter for each simulated data set. As we see in Table 1, the smoothing pa-

rameter for common design is much greater than the smoothing parameter for

stochastic design. This is because, in the stochastic design we observe random

functions X and Y in many different points over whole of n samples, while in the

common design, we observe random functions X and Y in only m equidistant

points. In addition, the results of a Monte Carlo approximations of ‖β̂λ − β‖2
L2

for common and stochastic design are reported in Tables 2 and 3 respectively.

It can be seen from both Tables that the averaged integrated squared error and

variance of estimated slope function decrease as either m or n increases. On

the other hand, the values of ‖β̂λ − β‖2
L2

for stochastic design is smaller than

that is for common design. These results imply that stochastic design has better

performance than common design.

Table 1: The value of smoothing parameter for common and stochastic design.

Type of design n

m

3 5 10 15 20

common design
25

8× 10−5 2.5× 10−5 3.5× 10−6 5× 10−7 10−7

stochastic design 5× 10−7 10−7 5× 10−8 2× 10−8 10−8

common design
50

7.5× 10−5 2× 10−5 3× 10−6 5× 10−7 9× 10−8

stochastic design 10−7 5× 10−8 1.5× 10−8 4× 10−9 2× 10−9

common design
100

7× 10−5 1.5× 10−5 2.5× 10−6 4.5× 10−7 8.5× 10−8

stochastic design 2.5× 10−8 7.5× 10−9 2.5× 10−9 10−9 5.5× 10−10

common design
200

6.5× 10−5 10−5 2× 10−6 4× 10−7 8× 10−8

stochastic design 7.5× 10−9 2.5× 10−9 6.5× 10−10 4.5× 10−10 3.5× 10−10

Table 2: Averaged integrated squared error ‖β̂λ − β‖2

L2
and variance of β̂λ

(in the parentheses) for common design.

n

m

3 5 10 15 20

25 0.7683 (0.0091) 0.4967 (0.0085) 0.3167 (0.0074) 0.2498 (0.0064) 0.2136 (0.0051)
50 0.7628 (0.0050) 0.4882 (0.0041) 0.3112 (0.0033) 0.2458 (0.0031) 0.2108 (0.0027)

100 0.7596 (0.0024) 0.4854 (0.0019) 0.3085 (0.0015) 0.2436 (0.0013) 0.2098 (0.0011)
200 0.7538 (0.0012) 0.4827 (0.0009) 0.3029 (0.0007) 0.2400 (0.0006) 0.2054 (0.0004)

Table 3: Averaged integrated squared error ‖β̂λ − β‖2

L2
and variance of β̂λ

(in the parentheses) for stochastic design.

n

m

3 5 10 15 20

25 0.3435 (0.1335) 0.2866 (0.1111) 0.2324 (0.0673) 0.1944 (0.0406) 0.1902 (0.0354)
50 0.2660 (0.0902) 0.2316 (0.0667) 0.1858 (0.0413) 0.1794 (0.0313) 0.1676 (0.0305)

100 0.2111 (0.0569) 0.1812 (0.0392) 0.1609 (0.0258) 0.1528 (0.0214) 0.1487 (0.0172)
200 0.1776 (0.0366) 0.1577 (0.0245) 0.1437 (0.0165) 0.1365 (0.0111) 0.1312 (0.0084)
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4. APPLICATION

The human immune deficiency virus (HIV) attacks immune cells called

CD4+ and leads to AIDS. CD4+ cells are a specific kind of white blood cell and

are a necessary part of the immune system. They lead the attack against infec-

tions. The CD4+ cell count measures the number of CD4+ cells in a sample of

blood. CD4+ cell counts are reported as the number of cells in a cubic millimetre

of blood. A normal CD4+ cell count is around 1100 cells per cubic millimetre of

blood. The CD4+ cell counts can vary time to time. When someone is infected

with HIV the number of CD4+ cells they have goes down. So an infected person’s

CD4+ cell number can be used to monitor disease progression.
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Figure 3: The top panel provides observed individual trajectories and the
smooth estimate of the mean function for CD4+ cell counts.
The bottom panel includes observed individual trajectories and
the smooth estimate of the mean function for CES-D scores.

The CES-D scale is a short self-report scale designed to measure depressive

symptomatology during the past week. A higher score indicates greater depressive

symptoms. It is interesting to explore whether there is an association between
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depressive symptoms and CD4+ cell counts over time. The data, reported by

Kaslow et al. (1987), recorded CD4+ cell counts, CES-D scores and other vari-

ables over time for a total of 369 infected men enrolled in the Multicenter AIDS

Cohort Study. The measurements were scheduled at each half-yearly visit. But

because of missing appointments among other factors, the actual measurement

times are random, irregular and sparse. For both CD4+ and CES-D the num-

ber of observations ranged from 1 to 12, with a median of 6 measurements per

subject, yielding a total of 2376 records.

In this dataset, both the CD4+ cell counts and CES-D scores are considered

as functions of time since seroconversion (time when HIV becomes detectable).

We model the response process CD4+ cell counts and the predictor process CES-

D scores via functional varying coefficient model (1.1). Individual trajectories

of CD4+ cell counts and CES-D scores are shown in Figure 3, along with the

smooth estimated mean functions of CD4+ cell counts and CES-D scores. The

estimated mean function of CD4+ cell counts shows a drastic decreasing from

seroconversion to around 2 years after seroconversion. Also the estimated mean

function of CES-D scores is decreasing in this period.

We used 5-fold cross-validation to choose the smoothing parameter λ. The

procedure is as follows. Divide the data into 5 roughly equal parts at random.

For each part, fit the model with parameter λ to the remaining 4 parts. Let

β̂
(−k)
λ be the estimated slope function by dropping the kth part, k = 1, 2, ..., 5.

The cross-validation error is given by

CV (λ) =
1

5

5
∑

k=1

∑

i∈ kth part

1

mi

mi
∑

j=1

(

Vij − µ̂Y (Tij) − [Uij − µ̂X(Tij)]β̂
(−k)
λ (Tij)

)2
,

where mi is number of measurements for ith subject and, µ̂X(t) and µ̂Y (t) are

the smooth estimates of mean function for CD4+ cell counts and CES-D scores

respectively. To estimate the mean function under sparse and irregular designs,

we refer the readers to Yao et al. (2005a), Li and Hsing (2010), and Cai and Yuan

(2011). Now calculate CV (λ) for different values of λ and choose the optimal

value of λ as the minimal of CV (λ). Here we obtained λ = 100.

The estimated slope function β̂ and intercept function α̂ are displayed in

Figure 4, where we used α̂(t) = µ̂Y (t)− µ̂X(t)β̂(t) to estimate the intercept func-

tion. Since the value of CES-D and the estimated slope function are small with

respect to the value CD4+ cell counts, the shapes of µ̂Y (t) and α̂(t) are obtained

almost similar. In Figure 5, we provided difference µ̂Y (t) − α̂(t). By comparing

Figures 4 and 5 we see that there is a minor association between CD4+ cell counts

and CES-D scores in earlier and later times. In addition the association in other

times is negligible.
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Figure 4: The left panel shows the estimated slope function and
the right panel displays the estimated intercept function.

Figure 5: The difference µ̂Y (t) − α̂(t).

5. CONCLUSIONS AND EXTENSIONS

We have presented a regularization method to estimate the slope function

in functional varying coefficient model using an RKHS approach. Our procedure

is easy to implement in the numerical scheme and do not need resorting some

numerical techniques to compute the slope function. As we saw in the simula-

tion study, increasing either m or n leads to improved estimates, in the sense of

integrated squared error and variance. In this paper, we have assumed that all

sampling points on each curve are same. We note that this assumption is not

necessary and we may have different sampling points on each curves. Let mi be
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the sampling frequency on ith curve. It is suffice to define

β̂λ = arg min
β∈H

{

ℓmn(β) + λ‖β‖2
H

}

where

ℓmn(β) =
1

n

n
∑

i=1

1

mi

mi
∑

j=1

(Vij − Uijβ(Tij))
2

and then use the given procedure with some mild modifications.

Obtaining rates of convergence and studying optimality of the estimators,

in some sense, are interesting problems in nonparametric function estimation.

Şentürk and Müller (2010) have given rate of convergence for functional varying

coefficient model with sparse and noise-contaminated data in the supremum of

absolute error sense but they have not studied optimality of their estimators.

Another interesting problem is estimating derivatives of β(t) in this model. These

ideas will be explored in future works.
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