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1. INTRODUCTION

Topp and Leone [19] introduced a family of distributions with finite support

whose cumulative distribution function (cdf) is given by

(1.1) F (x|θ, β) =











0 , x < 0
(

x
β

(

2 − x
β

)

)θ

, 0 ≤ x < β

1 , x ≥ β

, θ > 0 ,

and the probability density function (pdf) is given by

(1.2) f(x|θ, β) =
2θ

β

(

1 − x

β

)(

x

β

(

2 − x

β

))θ−1

, 0 < x < β , θ > 0 .

For simplicity, we denote this distribution by TL (θ, β). Topp–Leone (T-L)

distribution is a continuous unimodal distribution with bounded support; this

makes it appropriate for modeling lifetime of distributions with finite support.

Topp and Leone [19] did not provide any motivation for this family of distribu-

tions except to saying that it could be used to model failure data. Nadarajah

and Kotz [15] showed that this distribution exhibit bathtub failure rate functions

with widespread applications in reliability. Moreover, Ghitany et al. [10] showed

that T-L distribution possesses some attractive reliability properties such as the

bathtub-shape hazard rate, decreasing reversed hazard rate, upside-down mean

residual life, and increasing expected inactivity time. Moments for T-L distribu-

tion were derived by Nadarajah and Kotz [15]. Zghoul [21] provided expressions

for moments of ordered statistics from T-L distribution. Recently, Bayoud [6]

derived admissible minimax estimates for the shape parameter of the T-L distri-

bution under squared and linear-exponential loss functions. A reflected version of

the Generalized T-L distribution was used by Van Drop and Kotz [20] to fit the

U.S. income data for the year 2001 for Caucasian, Hispanic and Afro American

populations.

Classical and Bayesian inferences of the parameters of T-L distribution

have not yet been studied in the presence of censored samples. In this pa-

per, we study classical and Bayesian estimations for the shape parameter of

the T-L distribution when the sample is progressive Type II censored. A Type

II progressive censoring scheme can be expressed as follows: suppose that n

units are placed on a life test at time zero and the experimenter decides before-

hand the quantity m, the number of failures to be observed. When the first

failure time X1:m:n is observed, R1 of the remaining n − 1 surviving units are

randomly selected and removed. At the second observed failure time X2:m:n,

R2 of the remaining n − R1 − 2 surviving units are randomly selected and re-

moved. This experiment terminates at the time Xm:m:n when the mth failure
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is observed, and the remaining Rm = n − R1 − R2 − ··· − Rm−1 − m surviving

units are all removed. The sample {X1:m:n, X2:m:n, ..., Xm:m:n} is called progres-

sively Type II censored sample of size m from a sample of size n with censoring

scheme {R1, R2, ..., Rm}. The values {m; R1, R2, ..., Rm} are determined prior to

the study. Note that, if R1 = R2 = ··· = Rm = 0, so that n = m, then the pro-

gressively Type II censoring scheme reduces to the case of complete sample. Also

note that if R1 = R2 = ··· = Rm−1 = 0, so that Rm = n − m, then the censoring

scheme reduces to a conventional Type II censoring scheme. Readers may refer

to [2] for more details about the progressive censoring.

The rest of this paper is organized as follows. In Section 2, we provide

the model assumptions based on the progressive Type II censoring. The MLE is

studied in Section 3. We propose an approximate MLE (AMLE) in Section 4.

The Bayes estimate and the construction of the credible interval are discussed in

Section 5. In Section 6, data analysis and some simulation studies are carried out

to investigate the performance of the proposed estimation methods. Finally, we

conclude the paper in Section 7.

2. MODEL ASSUMPTIONS

Let X1:m:n, X2:m:n, ..., Xm:m:n be a progressively Type II censored sample

from T-L lifetime distribution (1.2), with {m; R1, R2, ..., Rm} being the progres-

sive censoring scheme. The likelihood function based on the observed progressive

Type II censored sample D = {x1:m:n, x2:m:n, ..., xm:m:n} is given by:

(2.1) L(D|θ, β) = c

(

2θ

β

)m m
∏

i=1

(

1 − xi:m:n

β

)

u(θ−1) (xi:m:n)
[

1 − uθ (xi:m:n)
]Ri

,

where

c = n(n − 1 − R1)(n − 2 − R1 − R2)···
(

n −
m−1
∑

i=1

(Ri + 1)

)

, 0 < xi:m:n < β ,

and

u (xi:m:n) =
xi:m:n

β

(

2 − xi:m:n

β

)

∈ (0, 1) ∀i = 1, 2, ..., m .

The log-likelihood function, l(D|θ, β) = lnL(D|θ, β), may be written from (2.1)

as:

(2.2) l(D|θ, β) ∝ m ln(θ) +
m
∑

i=1

θ lnu (xi:m:n) +
m
∑

i=1

Ri ln
[

1 − uθ (xi:m:n)
]

.
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3. MAXIMUM LIKELIHOOD ESTIMATE

Equating the partial derivative of the log-likelihood function l(D|θ, β) in

(2.2) to zero, we have that:

(3.1)
∂l(D|θ, β)

∂θ
=

m

θ
+

m
∑

i=1

lnu (xi:m:n)−
m
∑

i=1

uθ (xi:m:n)

1−uθ (xi:m:n)
lnu (xi:m:n)Ri = 0 .

The MLE of θ is the solution of the likelihood equation (3.1). Since (3.1) is

a non-linear equation, a numerical technique is needed. Newton-Raphson method

is proposed to obtain the MLE iteratively. A suitable initial guess for the iter-

ative method will be proposed in the next section. However, numerical results,

presented in Section 6, show that the numerical MLE converges to the true pa-

rameter quite accurately without showing any problem with convergence.

4. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATE

The likelihood equation (3.1), as mentioned in the previous section, does

not admit explicit solution for the shape parameter. Therefore, we expand the

function gi (θ) = uθ(xi:m:n)
1−uθ(xi:m:n)

in a first-order Taylor series around vi = ln pi

ln u(xi:m:n) ,

where pi = 1 −∏m
j=m−i+1

j+
Pm

i=m−j+1
Ri

1+j+
Pm

i=m−j+1
Ri

for i = 1, 2, ..., m. We may then con-

sider the following approximation:

(4.1) gi (θ) ≈ uvi (xi:m:n)

1 − uvi (xi:m:n)
+ (θ − vi)

uvi (xi:m:n)

[1 − uvi (xi:m:n)]2
lnu (xi:m:n) .

Using the approximation in (4.1), (3.1) is roughly:

(4.2)

m

θ
+

m
∑

i=1

lnu (xi:m:n) −

−
m
∑

i=1

uvi (xi:m:n)

1−uvi (xi:m:n)

[

1+
(θ − vi)

1−uvi (xi:m:n)
lnu (xi:m:n)

]

lnu (xi:m:n)Ri = 0 .

From (4.2), we obtain the AMLE of θ as a solution of the quadratic equa-

tion:

Aθ2 + Bθ + m = 0 ,

where

A = −
m
∑

i=1

uvi (xi:m:n)

[1 − uvi (xi:m:n)]2
[lnu (xi:m:n)]2 Ri

and
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B =
m
∑

i=1

lnu (xi:m:n)

[

1 − Ri
uvi (xi:m:n)

1 − uvi (xi:m:n)

[

1 − vi
lnu (xi:m:n)

1 − uvi (xi:m:n)

]]

.

Therefore, the AMLE, say θ̂AMLE, is obtained as

(4.3) θ̂AMLE =
−B −

√
B2 − 4Am

2A
,

which is the only positive root. This procedure has been used, for example, by

Balakrishnan and Aggarwala [2], Balakrishnan and Varadan [3], Balosooriya and

Balakrishnan [4] and Kim and Han [12].

It is worth mentioning that the proposed AMLE (4.3) may provide a con-

venient starting value for the iterative solution for the MLE in (3.1).

5. BAYESIAN INFERENCE

In this section, we discuss the Bayes estimate and the associated credible

interval for the shape parameter. The squared error loss function (SELF) is

considered, which is defined as

L(θ̂) =
(

θ − θ̂
)2

,

where θ̂ is the estimator of θ.

5.1. Prior and posterior analysis

The shape parameter θ is positive. So, it is assumed that θ has an Expo-

nential prior with pdf:

g (θ) = ae−aθ , θ > 0 and a > 0 .

This prior is conjugate when the complete sample is considered; see [6].

It follows, from (2.1) and the prior pdf, that the posterior density function

of θ can be written as:

(5.1)

π (θ|D, β) =
L(D|θ, β)g (θ)

∞
∫

0

L(D|θ, β)g (θ) dθ

=
θme−aθ

∏m
i=1 uθ (xi:m:n)

[

1 − uθ (xi:m:n)
]Ri

K
,
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where K =
∞
∫

0

θme−aθ
∏m

i=1 uθ (xi:m:n)
[

1 − uθ (xi:m:n)
]Ri dθ, the normalizing con-

stant.

Under the SELF, the Bayes estimate of θ, say θ̂B(a), is the posterior mean,

which is given by:

(5.2) θ̂B(a) = Eπ (θ|D, β) =
1

K

∞
∫

0

θm+1e−aθ
m
∏

i=1

uθ (xi:m:n)
[

1 − uθ (xi:m:n)
]Ri

.

It is obvious that (5.2) cannot be evaluated explicitly. Therefore, we propose two

approaches to approximate (5.2): Lindley’s procedure and the MCMC using the

importance sampling technique.

5.2. Lindley’s approximation

Lindley [14] proposed an approximation procedure to evaluate the ratio of

two integrals, such that the Bayes estimate in (5.2) takes a form containing no

integrals. This procedure has been used by several authors in the literature to

obtain the Bayes estimates for various distributions; see, for instance, Press [18].

Consider:

(5.3) I(D, a) =

∫

y(θ)el(θ)+τ(θ)dθ
∫

el(θ)+τ(θ)dθ

where l is the log-likelihood function of the observed sample, y(θ) is a continuous

function in θ, and τ(θ) = ln g(θ) where g (θ) is the prior pdf of θ.

Based on Lindley’s procedure, the ratio (5.3) is approximated by:

(5.4) I(D, a) ≈ y
(

θ̂
)

+
1

2
(ŷθθ + 2ŷθ τ̂θ) σ̂θθ +

1

2

(

ŷθσ̂
2
θθ l̂θθθ

)

where yθθ denotes the second derivative of the function y(θ) with respect to θ,

ŷθθ represents the same expression evaluated at θ = θ̂MLE, τ̂θ = ∂
∂θ

τ(θ)|
θ=θ̂MLE

,

l̂θθ = ∂2l
∂θ2 |θ=θ̂MLE

, l̂θθθ = ∂3l
∂θ3 |θ=θ̂MLE

and σ̂θθ = − 1
l̂θθ

.

Hence, the approximate Bayes estimate can be obtained using Lindley’s

procedure, by substituting y(θ) = θ, l=log-likelihood function (2.2) and g (θ) =

ae−aθ in Lindley’s approximation (5.4), as:

(5.5) θ̂B,L (a) ≈ θ̂MLE +
a

l̂θθ

+
1

2

l̂θθθ

l̂2θθ
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where θ̂MLE is the MLE of θ,

l̂θθ =
∂2l

∂θ2
|
θ = θ̂MLE

= − m

θ̂2
MLE

−
m
∑

i=1

[lnu (xi:m:n)]2
uθ̂MLE (xi:m:n)

[

1 − uθ̂MLE (xi:m:n)
]2 Ri ,

and

l̂θθθ =
∂3l

∂θ3
|
θ=θ̂MLE

=
2m

θ̂3
MLE

−
m
∑

i=1

[lnu (xi:m:n)]3
uθ̂MLE (xi:m:n)

[

1 + uθ̂MLE (xi:m:n)
]

[

1 − uθ̂MLE (xi:m:n)
]3 Ri .

5.3. MCMC method

Unfortunately, Lindley’s procedure fails to construct credible intervals for

the unknown parameter. Hence, we propose to use the importance sampling

technique to approximate the Bayes estimate and to construct the associated

credible interval. Similar procedure was used, for example, by Chen et al. [7],

Kundu and Pradhan [13], Pradhan and Kundu [16] and [17]. To implement the

importance sampling technique, we rewrite the posterior pdf (5.1) as follows:

π(θ|D, β) ∝ f1(θ|D)f2(θ)

where

f1(θ|D) =
[a −∑m

i=1 lnu(xi:m:n)]m

Γ(m + 1)
θme−θ[a−

Pm
i=1

ln u(xi:m:n)]

which is clearly a gamma density function with the shape parameter (m + 1) and

scale parameter [a −∑m
i=1 lnu(xi:m:n)]−1; and

f2(θ) =
m
∏

i=1

[

1 − uθ(xi:m:n)
]Ri .

Therefore, (5.2) can be written as:

(5.6) θ̂B (a) =

∞
∫

0

θf1(θ|D)f2(θ)dθ

∞
∫

0

f1(θ|D)f2(θ)dθ

.

Now, we propose the following algorithms, along the line of Kundu and Pradhan

[13], to compute the approximate Bayes estimate and to construct the associated

credible interval for the parameter θ.
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5.3.1. Algorithm 1 (BE)

Step 1) Generate a random sample of size M from f1(θ|D), gamma density

function with the shape parameter (m + 1) and scale parameter

[a −∑m
i=1 lnu(xi:m:n)]−1, say θ1, θ2, ..., θM ;

Step 2) Compute f2(θj) =
∏m

i=1[1 − uθj (xi:m:n)]Ri , for j = 1, 2, ..., M ;

Step 3) Under the assumption of SELF, a simulation consistent estimate

of θ can be obtained using the importance sampling technique as:

θ̂B,IS (a) =

∑M
j=1 θjf2(θj)
∑M

j=1 f2(θj)
.

Using this algorithm, it is possible to construct the Bayes estimate of any function

of θ, say H(θ) as:

Ĥ(θ) =

∑M
j=1 H(θj)f2(θj)
∑M

j=1 f2(θj)
, provided that Ĥ(θ) is defined at all j = 1, 2, ..., m .

Now, to compute the credible interval of θ. Let, for 0 < p < 1, θp be such that

P (θ ≤ θp|D, β) =
θp
∫

0

π(θ|D, β)dθ = p, where π(θ|D, β) is the posterior pdf defined

in (5.1).

5.3.2. Algorithm 2 (credible interval)

Here, we use the sample θ1, θ2, ..., θM that is obtained from Algorithm 1.

Step 1) Compute wj =
f2(θj)PM

j=1
f2(θj)

for j = 1, 2, ..., M ;

Step 2) Arrange the set {(θ1, w1), (θ2, w2), ..., (θM , wM )} as
{

(θ(1), w[1]), (θ(2), w[2]), ..., (θ(M), w[M ])
}

,

where θ(1) ≤ θ(2), ...,≤ θ(M);

Step 3) The 100(1 − α)% credible interval for θ is given by:
(

θ̂α
2
, θ̂1−α

2

)

where θ̂p is a simulation consistent Bayes estimate for θp, which

is given by θ(Mp) such that Mp is the integer satisfying:

Mp
∑

j=1

w[j] ≤ p <

Mp+1
∑

j=1

w[j] .
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Proposition 5.1. The posterior pdf π(θ|D, β) in (5.1) is log-concave.

Proof: Since u(xi) = xi

β
(2 − xi

β
) > 0, then it is easy to see that:

∂2 lnπ(θ|D, β)

∂θ2
= −

[

m

θ2
+

m
∑

i=1

[lnu (xi:m:n)]2
uθ (xi:m:n)

[1 − uθ (xi:m:n)]
2 Ri

]

< 0

for any θ, this proves the result.

Since the posterior distribution (5.1) is log-concave, then one can apply

Devroye’s algorithm introduced in Devroye [8] to generate a sample from the

posterior distribution, say θ1, θ2, ..., θM . Based on this sample and under the

SELF, the approximate Bayes estimate of θ is given by:

θ̂MCMC = Ê(θ|D) =
1

M

M
∑

j=1

θj .

The 100(1−α)% credible interval of θ can be computed by ordering θ1, θ2, ..., θM

as θ(1) ≤ θ(2) ≤ ... ≤ (θM ) and taking the interval as:

(

θ(M(α
2
)), θ(M(1−α

2
))

)

.

6. SIMULATION STUDY AND DATA ANALYSIS

6.1. Simulations

In this section, we present some simulation studies to observe the behavior

of the proposed estimation methods for different sample sizes, different priors and

for different censoring schemes. We have considered three sample sizes, n = 15,

25 and 50; and three progressive Type II censoring schemes with m = 5, namely,

(n − m, 0, 0, 0, 0), (0, 0, 0, 0, n − m) and (R1, R2, R3, R4, R5) where Ri = n−m
m

for

i = 1, 2, ..., 5.

In all cases, the parameter β is assumed without loss of generality to equal

1. Simulations are performed for three values of the shape parameter, namely,

θ = 0.5, θ = 1 and θ = 10. For a given n, m and (R1, R2, ...Rm), we have generated

a sample for the given censoring scheme. The AMLE is computed for the shape

parameter based on the method proposed in Section 3. We use this AMLE as a

starting value to obtain the MLE iteratively by using Newton-Raphson method

as discussed in Section 2. The approximate Bayes estimate is computed for
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the shape parameter using Lindley’s procedure and the importance sampling

technique based on 1000 importance sampling. For Bayesian estimation, the

following priors are considered: Prior 0: assuming a = 0.0001, a very small value,

and Prior 1: informative prior with a ≈ 1/θ and a ≈ 2/θ, separately, since E(θ) =

1/a. The expected value and the corresponding mean squared error (MSE) of the

proposed estimates are computed over 1000 replications. The results are reported

in Tables 1, 2 and 3 when θ = 0.5, θ = 1 and θ = 10, respectively.

From Tables 1, 2 and 3, it is clear that as the sample size increases, the

MSE decreases for all estimation methods. This verifies the consistency of the

proposed methods. It is also obvious that the AMLE and the approximate Bayes

estimates under Prior 1 perform, in terms of MSE, better than the iterative MLE

and the approximate Bayes estimates under Prior 0. For fixed sample size n,

fixed θ and for any censoring scheme, the approximate Bayes estimates under

Prior 1 with a ≈ 2/θ outperform the other estimates in terms of the MSE. It

is noticeable that the AMLE performs better than the MLE in all cases. The

approximate Bayes estimates under Prior 0 do not perform as efficiently as the

other estimates.

Table 1: Expected value of the proposed estimators
and the corresponding MSE when θ = 0.5.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 2 a = 4 a = 10−4
a = 2 a = 4 a = 10−4

15

(0,0,0,0,10)
0.532 0.521 0.530 0.483 0.587 0.528 0.488 0.586
0.0204 0.0193 0.0170 0.0112 0.0353 0.0175 0.0132 0.0356

(2,2,2,2,2)
0.534 0.477 0.534 0.481 0.593 0.533 0.488 0.593
0.0235 0.0167 0.0192 0.0120 0.0394 0.0200 0.0141 0.0392

(10,0,0,0,0)
0.533 0.517 0.543 0.472 0.623 0.540 0.483 0.624
0.0308 0.0286 0.0252 0.0125 0.0604 0.0254 0.0166 0.0607

25

(0,0,0,0,20)
0.522 0.516 0.524 0.497 0.555 0.515 0.490 0.548
0.0145 0.0141 0.0131 0.0105 0.0190 0.0137 0.0123 0.0188

(4,4,4,4,4)
0.523 0.474 0.527 0.493 0.562 0.524 0.493 0.558
0.0167 0.0128 0.0150 0.0111 0.0226 0.0155 0.0122 0.0225

(20,0,0,0,0)
0.524 0.509 0.541 0.494 0.587 0.537 0.497 0.588
0.0252 0.0232 0.0230 0.0131 0.0360 0.0225 0.0153 0.0364

50

(0,0,0,0,45)
0.509 0.507 0.514 0.500 0.532 0.476 0.452 0.505
0.0078 0.0077 0.0075 0.0063 0.0102 0.0093 0.0097 0.0117

(9,9,9,9,9)
0.508 0.470 0.515 0.498 0.534 0.494 0.474 0.520
0.0087 0.0076 0.0084 0.0075 0.0111 0.0099 0.0094 0.0114

(45,0,0,0,0)
0.503 0.491 0.527 0.497 0.561 0.522 0.495 0.563
0.0135 0.0133 0.0138 0.0114 0.0215 0.0133 0.0120 0.0221
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Table 2: Expected value of the proposed estimators
and the corresponding MSE when θ = 1.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 1 a = 2 a = 10−4
a = 1 a = 2 a = 10−4

15

(0,0,0,0,10)
1.08 1.06 1.08 0.978 1.13 1.07 0.989 1.13
0.1010 0.0946 0.0816 0.0524 0.1231 0.0842 0.0632 0.1228

(2,2,2,2,2)
1.08 0.969 1.08 0.974 1.15 1.08 0.990 1.15
0.1060 0.0760 0.0853 0.0513 0.1427 0.0884 0.0628 0.1434

(10,0,0,0,0)
1.09 1.06 1.11 0.956 1.19 1.10 0.981 1.20
0.1500 0.1370 0.1160 0.0509 0.2014 0.1190 0.0684 0.2032

25

(0,0,0,0,20)
1.03 1.02 1.04 0.994 1.09 1.02 0.973 1.08
0.0611 0.0594 0.0549 0.0443 0.0709 0.0559 0.0504 0.0751

(4,4,4,4,4)
1.03 0.937 1.04 0.985 1.10 1.04 0.981 1.10
0.0694 0.0548 0.0619 0.0465 0.0792 0.0648 0.0507 0.0784

(20,0,0,0,0)
1.04 1.01 1.08 0.986 1.16 1.07 0.993 1.16
0.1020 0.0960 0.0925 0.0527 0.1368 0.0917 0.0612 0.1388

50

(0,0,0,0,45)
1.02 1.05 1.03 0.996 1.06 0.953 0.903 0.990
0.0352 0.0347 0.0340 0.0245 0.0356 0.0384 0.0372 0.0390

(9,9,9,9,9)
1.02 0.947 1.04 0.991 1.07 1.00 0.947 1.04
0.0387 0.0326 0.0374 0.0260 0.0466 0.0431 0.0352 0.0470

(45,0,0,0,0)
1.01 0.992 1.06 0.983 1.12 1.05 0.979 1.13
0.0628 0.0600 0.0639 0.0408 0.0920 0.0618 0.0427 0.0930

Table 3: Expected value of the proposed estimators
and the corresponding MSE when θ = 10.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 0.1 a = 0.2 a = 10−4
a = 0.1 a = 0.2 a = 10−4

15

(0,0,0,0,10)
10.7 10.5 10.5 9.6 11.5 10.6 9.8 11.4
11.1 10.6 8.9 4.9 13.0 9.4 5.9 12.8

(2,2,2,2,2)
10.8 9.6 10.7 9.6 11.7 10.7 9.7 11.7
12.2 8.9 9.7 5.1 14.7 9.9 6.1 14.7

(10,0,0,0,0)
10.8 10.5 11.0 9.4 12.2 10.9 9.6 12.3
15.0 13.4 11.5 5.2 21.3 11.9 6.9 21.5

25

(0,0,0,0,20)
10.5 10.3 10.5 10.0 10.9 10.3 9.8 10.8
5.8 5.6 5.2 4.1 7.4 5.5 4.8 7.6

(4,4,4,4,4)
10.5 9.5 10.6 10.0 11.1 10.5 10.0 11.0
6.5 4.9 5.9 4.5 8.6 6.1 5.0 8.7

(20,0,0,0,0)
10.4 10.1 10.7 9.8 11.8 10.7 9.9 11.8
9.4 8.9 8.6 5.3 14.9 8.4 6.1 15.1

50

(0,0,0,0,45)
10.1 10.1 10.2 10.1 10.6 9.5 9.2 9.9
3.1 3.1 3.0 2.7 3.9 3.8 3.9 4.2

(9,9,9,9,9)
10.2 9.4 10.3 10.1 10.6 9.9 9.6 10.3
3.8 3.2 3.7 3.0 4.5 4.3 3.8 4.8

(45,0,0,0,0)
10.1 9.9 10.6 10.0 11.2 10.5 10.0 11.3
6.3 6.0 6.5 4.4 10.2 6.2 4.7 10.4
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6.2. Data analysis

In this section, we analyze real and simulated data sets using the proposed

estimation methods for illustrative purposes.

6.2.1. Real data

We analyze the failure time (in mileage) of eighteen military carriers pre-

sented by Grubbs [11] as follows:

162, 200, 271, 302, 393, 508, 539, 629, 706, 777,

884, 1101, 1182, 1463, 1603, 1984, 2355, 2880 .

First, it was checked whether the T-L distribution can be used or cannot to

analyze this data set. The MLE of β is 2880, the maximum order statistic, and

the MLE of θ is 1.133 . The Bayes estimate of θ, under the SELF, is 1.125

when a = 1, see [6]. It is obvious that the MLE and the Bayes estimate are

almost the same. The Kolmogorov-Smirnov (KS) distance between the empirical

distribution function and the fitted distribution function, using the MLEs, has

been used to check the goodness of fit. The KS statistic value is 0.135, and the KS

critical value is 0.309 at at n = 18 and α = 0.05. Accordingly, one cannot reject

the hypothesis that the data are coming from T-L distribution. We consider the

following censoring schemes, assuming m = 6:

Scheme 1) (R1 = R2 = ··· = R5 = 0, R6 = 12).

Scheme 2) (R1 = R2 = ··· = R5 = R6 = 2).

Scheme 3) (R1 = 12, R2 = ··· = R5 = R6 = 0).

Based on Schemes 1, 2 and 3, we have generated the following progressive

Type II censored samples:

D = (162, 200, 271, 302, 393, 508) ,

D = (162, 271, 393, 508, 539, 884)
and

D = (162, 302, 508, 777, 884, 1463) ,

respectively. The proposed estimates and the credible interval for the shape

parameter are computed and reported in Table 4. It is observed from Table 4 that

all estimates are in quite similar agreement and close to the estimates obtained

using the complete sample. The approximate Bayes estimates dominate the other

estimates when the hyper-parameter a is assumed to equal 1. The associated

credible intervals for the shape parameter are satisfactory in all the cases.
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Table 4: Real Data Analysis.

Estimate
Censoring Scheme

Scheme 1 Scheme 2 Scheme 3

θ̂MLE 1.169 1.303 1.241

θ̂AMLE 1.153 1.289 1.236

θ̂B,L(a)

a = 0.5 1.205 1.346 1.307
a = 1 1.163 1.290 1.246
a = 3.5 0.996 1.066 1.002

θ̂B,IS(a)

a = 0.5 1.151 1.307 1.285
a = 1 1.128 1.287 1.246
a = 3.5 1.085 1.141 1.053

90% Credible Interval
a = 0.5 (0.76, 1.51) (0.69, 1.49) (0.79, 1.85)
a = 1 (0.74, 1.47) (0.66, 1.47) (0.77, 1.84)
a = 3.5 (0.66, 1.38) (0.58, 1.27) (0.65, 1.48)

6.2.2. Simulated data

We analyze the following simulated data set presented by Genc [9] assuming

θ = 0.3 and β = 1:

0.1425, 0.2707, 0.2783, 0.0718, 0.4537, 0.0615, 0.0047, 0.3454, 0.4428, 0.1909,

0.1028, 0.0013, 0.0592, 0.5413, 0.2442, 0.0001, 0.0002, 0.0178, 0.0114, 0.5388

We consider the following censoring schemes, assuming m = 4:

Scheme 1) (R1 = R2 = R3 = 0, R4 = 16).

Scheme 2) (R1 = R2 = R3 = R4 = 4).

Scheme 3) (R1 = 16, R2 = R3 = R4 = 0).

Based on Schemes 1, 2 and 3, we have generated the following progressive

Type II censored samples:

D = (0.0001, 0.0002, 0.0013, 0.0047),

D = (0.0001, 0.0047, 0.01114, 0.0178)
and

D = (0.0001, 0.0013, 0.0718, 0.2707) , respectively.

The proposed estimates and the credible interval are computed and reported

in Table 5. It is clear from Table 5 that all estimates are quite similar, and

the approximate Bayes estimates dominate the other when the hyper-parameter

a = 5. It is also observed that the credible intervals are satisfactory under all the

cases.
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Table 5: Simulated Data Analysis.

Estimate
Censoring Scheme

Scheme 1 Scheme 2 Scheme 3

θ̂MLE 0.3699 0.4381 0.3664

θ̂AMLE 0.3694 0.4266 0.3662

θ̂B,L(a)

a = 0.75 0.3901 0.4651 0.4041
a = 3.5 0.3674 0.4294 0.3720
a = 5 0.3550 0.4100 0.3546

θ̂B,IS(a)

a = 0.75 0.3541 0.4731 0.3972
a = 3.5 0.3792 0.4120 0.3675
a = 5 0.3530 0.4054 0.3555

90% Credible Interval
a = 0.75 (0.25, 0.46) (0.23, 0.46) (0.24, 0.58)
a = 3.5 (0.24, 0.47) (0.21, 0.44) (0.22, 0.56)
a = 5 (0.23, 0.45) (0.21, 0.42) (0.22, 0.51)

7. CONCLUSIONS

In this article, classical and Bayesian point estimations were proposed for

the shape parameter of the Topp–Leone distribution when the sample is pro-

gressive Type II censored. It was observed that the MLE cannot be derived in

explicit form. Hence, an approximate MLE was proposed. Bayes estimate of the

shape parameter cannot be obtained in explicit form. Lindley’s procedure and the

importance sampling technique were proposed to obtain the approximate Bayes

estimate and to construct the credible interval for the shape parameter. The

performance of the different estimation methods was compared by Monte Carlo

simulations. It was observed that the approximate Bayes estimates, based on the

informative prior with a ≈ 2/θ, outperform the other estimates in terms of the

MSE. It was also noticed that the AMLE performs well and dominates the MLE

in terms of the MSE in all cases.
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