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1. INTRODUCTION

The Rayleigh distribution is a continuous probability distribution serving

as a special case of the well-known Weibull distribution. This distribution has

long been considered to have significant applications in fields such as survival

analysis, reliability theory and especially communication engineering.

When considering the complete Rayleigh model, the probability density

function is given by

(1.1) f(x; θ) = 2θxe−θx2

, x, θ > 0 ,

using the parametrization of the distribution as proposed by Bhattacharya and

Tyagi (1990), and is denoted by X ∼ Rayleigh(θ). The parameter θ is a scale

parameter, and characterizes the lifetime of the object under consideration in

application.

Mostert (1999) did extensive work concerning the censored model, and

showed that the censored Rayleigh model is relatively easy to use compared to

other more complex models (such as the Weibull- and compound Rayleigh mod-

els). In certain types of applications, it is not uncommon that some observations

may cease to be observed due to machine failure, budgetary constraints, and the

likes. To compensate for such events, right censored analyses utilizes information

only obtained from the first d observations. Thus, the right censored sample con-

sists of n observations, where only d lifetimes (d an integer), x1 < x2 < ... < xd

are measured fully, while the remainder n− d are censored. These n− d censored

observations are ordered separately and are denoted by xd+1 < xd+2 < ... < xn.

In the context of reliability analysis (for example), a lifetime would be the time

until a unit / machine fails to operate successfully.

In the paper of Soliman (2000), a family of non-informative priors were

introduced:

(1.2) g(θ) =
1

θm
, m, θ > 0 ,

and was termed a“quasi-density”prior family. This paper explores the application

of this prior family with regards to the right censored Rayleigh model. Different

known prior densities are contained within (1.2), namely the Jeffreys prior (m =1),

Hartigan’s prior (m = 3), and a third prior illustrating the diminishing effect of

the prior density family — this is termed a “vanishing” prior (some large value

of m, chosen arbitrarily such that m = 10). The choice of m would be up to

the practitioner to determine the extent of the objectivity required. It is worth

noting that Hartigan’s prior (m = 3) is known as an asymptotically invariant prior

as well. Liang (2008) provides valuable contributions when considering relevant

choices of hyperparameters.
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Mostert (1999) showed that the likelihood of the censored Rayleigh model

is given by

L(θ) ∝ (2θ)due−θT

where T =
∑n

i=1 x2
i ∼ gamma(n

2 , θ). The quantity u is defined as u =
d
∏

i=1

xi, see

Mostert (1999) for further details. It can be shown that the posterior distribution

results in

(1.3) g(θ|T ) =
T d−m+1

Γ(d − m + 1)
θ(d−m+1)−1e−θT

which characterizes a gamma(d − m + 1, T ) distribution, where Γ(·) denotes the

gamma function. Note that, since the posterior distribution is always a proper

distribution, it ensures the need of restrictions on the parameter space. In order

for (1.3) to be well-defined, it is thus assumed throughout that m < d + 1.

Together with Soliman (2000), Mostert (1999) compared the Bayesian es-

timators under the linear exponential (LINEX) loss function and squared-error

loss (SEL) function, and Dey and Dey (2011) did similar work for the complete

model by applying Jeffreys prior and a loss function as proposed by Al-Bayyati

(2002). This paper extends concepts in the literature for the censored Rayleigh

model by considering this new loss function, namely the Al-Bayyati loss (ABL),

and comparing it to other known results.

Gruber (2004) proposed a method where a balanced loss function is used

in a Bayesian context. A balanced loss function is where a weighted loss value

is constructed by substituting each estimate into its corresponding loss function

and determining some weighted value thereof. In this paper an extension of this

methodology is considered, by obtaining a new estimator as a weighted value of

the Bayesian estimator under either SEL or ABL, and some other estimate of the

unknown parameter (in this case, θ). This is also known as a shrinkage based

estimation approach.

The focus of this paper is the evaluation of the ABL estimator in terms of its

performance by considering its risk efficiency in comparison to the SEL estimator,

and also the effect of the parameter m, the prior density family degree. In this

respect the following proposal is adopted:

1. Obtain the Bayes estimator under SEL, and evaluate under ABL;

2. Obtain the Bayes estimator under ABL, and evaluate under SEL; and

3. Obtain shrinkage estimators of both SEL and ABL estimators by com-

bining the Bayesian estimators with some prespecified point estimate

of the parameter, and evaluate under SEL.

In Section 2 the respective Bayesian estimators are determined and the

risk (expected loss) are studied comparatively. The effect of risk efficiency is
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also investigated, and a shrinkage approach is also then considered. In section 3

an illustrative example involving a simulation study and a real data analysis

presented, and section 4 contains a discussion and some final conclusions.

2. SQUARED-ERROR LOSS (SEL) & AL-BAYYATI LOSS (ABL)

2.1. Parameter estimation under SEL & ABL

This section explores the Bayesian estimators under the loss functions for

the model discussed in the introduction. The SEL is defined by

(2.1) LSEL(θ̂, θ) = (θ̂ − θ)2

and the loss function proposed by Al-Bayyati (2002):

(2.2) LABL(θ̂, θ) = θc(θ̂ − θ)2 , c ∈ R .

SEL is a widely used loss function due to its attractive feature of symme-

try — where the function focuses on the size of the loss rather than the direction

(over- or underestimation) of the loss. The ABL introduces the additional param-

eter c, which assists in determining a flatter loss function (albeit still symmetric)

or the alternative, and it specifically generalizes the SEL (2.1). c can also be

considered the order of weighting of the quadratic component. Under SEL, the

(posterior) risk function has the following form:

RSEL(θ̂, θ) =

∫

∞

0
LSEL(θ̂, θ)g(θ|T )dθ

= θ̂2
SEL − 2θ̂SEL

Γ(d − m + 2)

Γ(d − m + 1)T
+

Γ(d − m + 3)

Γ(d − m + 1)T 2
.

From (1.3) the Bayesian estimator θ̂SEL is given by the posterior mean of

θ:

(2.3) θ̂SEL =
d − m + 1

T
.

Since (1.1) indicates that the parameter θ must be positive, a restriction implied

by (2.3) is that m < d + 1 (corresponding to the restriction discussed in the In-

troduction regarding the posterior distribution). Under ABL, the (posterior) risk
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function has the following form:

RABL(θ̂, θ) =

∫

∞

0
LABL(θ̂, θ)g(θ|T )dθ

= θ̂2
ABL

Γ(d − m + c + 1)

Γ(d − m + 1)T c
− 2θ̂ABL

Γ(d − m + c + 2)

Γ(d − m + 1)T c+1

+
Γ(d − m + c + 3)

Γ(d − m + 1)T c+2
.

The Bayesian estimator θ̂ABL is

(2.4) θ̂ABL =
d − m + c + 1

T
.

Similar to the case of the SEL estimator, m < d+ c+1 for positive c, and m+ c <

d + 1 for negative c in order for the gamma function to be well-defined.

2.2. Comparing the risk of SEL and ABL

The three different prior degrees are of interest here, namely the Jeffreys

prior (m = 1), Hartigan’s prior (m = 3), and the vanishing prior (m = 10). The

posterior risk of the two loss functions was compared against each other for certain

parameter values — notably for increasing values of θ and for the three different

values of m.

The risk was determined empirically by simulating 5000 samples of sizes

n = 30, 40 and 50 each, using the inverse-transform method and uniform (0, 1)

random variates. From each of these obtained samples, the parameter was es-

timated under SEL and ABL (with c = 0.5), and the average loss of all 5000

samples was determined. The value of d was set at d = 0.2n, which implies that

20% of lifetimes have been observed. There are practical examples were a cen-

soring of between 70% and 90% have been observed (see Stablein, Carter, and

Novak (1981)), which is why, as an illustration, a censoring of 80% is used.

In Figures 1 to 3 it is seen that the shape of the functions do not change

for different values of m, but it is observed that the risk is increasing for larger

m values. Also, as the sample size n increases, the magnitude of the risk is

decreasing. From the simulation it is evident that for positive c, SEL has least

risk and would thus be preferable. An effective way of comparing the risk of

different loss functions is by determining the risk efficiency — which is explored

in the next section.
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Figure 1: Simulated risk for SEL and ABL (n = 30).

Figure 2: Simulated risk for SEL and ABL (n = 40).



440 J.T. Ferreira, A. Bekker and M. Arashi

Figure 3: Simulated risk for SEL and ABL (n = 50).

2.3. Risk efficiency between SEL and ABL

Risk efficiency is a method that provides an intuitive way of determining

which estimator — under a certain loss function — performs better than the

other. The form of the risk function considered is

R∗

L(θ̂est, θ) = ET (L(θ̂est, θ)) =

∫

∞

0
L(θ̂est, θ)f(T )dT

using the distribution of T . Here, L denotes the loss function under which the

risk efficiency is calculated, and θ̂est denotes its estimator of θ. The risk efficiency

is then given by:

REL(θ̂L, θ̂y) ≡
R∗

L(θ̂y, θ)

R∗

L(θ̂L, θ)

translating to, the risk efficiency of θ̂L with respect to θ̂y under L loss (θ̂y de-

notes an estimator under any other loss function than L). This is similar as

the approach by Dey (2011). Now, θ̂L denotes the estimator for the parameter

that needs to be estimated under loss L, and θ̂y denotes the estimator for the

parameter under the loss y. The interpretation of this expression is that when

REL(θ̂L, θ̂y) > 1, the estimator θ̂L is preferable under L loss than that of θ̂y.
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2.3.1. SEL vs. ABL under SEL

The risk efficiency for the estimators derived in section 2.1 under SEL are

given by:

RESEL(θ̂SEL, θ̂ABL) =
R∗

SEL(θ̂ABL, θ)

R∗

SEL(θ̂SEL, θ)
.

The expressions required by above equation are obtained as:

R∗

SEL(θ̂ABL, θ) =

∫

∞

0
LSEL(θ̂ABL, θ)f(T )dT

= θ2

(

(d − m + 1 + c)2

(n
2 − 1)(n

2 − 2)
− 2

d − m + 1 + c

(n
2 − 1)

+ 1

)

and

R∗

SEL(θ̂SEL, θ) =

∫

∞

0
LSEL(θ̂SEL, θ)f(T )dT

= θ2

(

(d − m + 1)2

(n
2 − 1)(n

2 − 2)
− 2

d − m + 1

(n
2 − 1)

+ 1

)

.

The risk efficiency of θ̂sel with respect to θ̂abl under SEL is then

(2.5)

RESEL(θ̂SEL, θ̂ABL) =
R∗

SEL(θ̂ABL, θ)

R∗

SEL(θ̂SEL, θ)

=

(

(d−m+1+c)2

(n

2
−1)( n

2
−2) − 2d−m+1+c

(n

2
−1) + 1

)

(

(d−m+1)2

(n

2
−1)( n

2
−2) − 2d−m+1

(n

2
−1) + 1

) .

An interesting characteristic of this equation (2.5) is that it is independent

from the sample information i.e. independent of xi. It is only dependent on n, d,

c, and m.

Figure 4 illustrates the risk efficiency (2.5) for arbitrary parameter values.

Since the function is not dependent on sample information, no simulation from

(1.1) is required. A sample size of n = 30 was specified along with d = 0.2n and

for different values of c. The risk efficiency values is plotted against values of m,

the prior family degree. It is of special interest that for negative values of c, the

ABL estimator performs better than that of the SEL counterpart for small values

of m. The converse holds when this “threshold” value of m is reached, where the

more efficient estimator becomes the SEL estimator.
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Figure 4: Risk efficiency of SEL- and ABL estimator under SEL.

2.3.2. ABL vs. SEL under ABL

The risk efficiency for SEL and ABL under ABL is given by:

REABL(θ̂ABL, θ̂SEL) =
R∗

ABL(θ̂SEL, θ)

R∗

ABL(θ̂ABL, θ)
.

The expressions required by above equation are obtained as:

R∗

ABL(θ̂SEL, θ) =

∫

∞

0
LABL(θ̂SEL, θ)f(T )dT

= θc+2

(

(d − m + 1)2

(n
2 − 1)(n

2 − 2)
− 2

d − m + 1

(n
2 − 1)

+ 1

)

and

R∗

ABL(θ̂ABL, θ) =

∫

∞

0
LABL(θ̂ABL, θ)f(T )dT

= θc+2

(

(d − m + 1 + c)2

(n
2 − 1)(n

2 − 2)
− 2

d − m + 1 + c

(n
2 − 1)

+ 1

)
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again using the relations derived in section (2.3.1). The risk efficiency of θ̂abl

versus θ̂sel under ABL is:

(2.6)

REABL(θ̂ABL, θ̂SEL) =
R∗

ABL(θ̂SEL, θ)

R∗

ABL(θ̂ABL, θ)

=

(

(d−m+1)2

(n

2
−1)( n

2
−2) − 2d−m+1

(n

2
−1) + 1

)

(

(d−m+1+c)2

(n

2
−1)( n

2
−2) − 2d−m+1+c

(n

2
−1) + 1

) .

It is observed that this last result is the reciprocal of the (2.5). Figure 5 illustrates

this result; where the converse of the discussion of (2.5) holds.

Figure 5: Risk efficiency of SEL- and ABL estimator under ABL.

2.4. Shrinkage estimation approach

Gruber (2004) proposed a method where a balanced loss function is used

for Bayesian analysis. A balanced loss function is where a weighted loss value

is constructed by substituting each estimate into its corresponding loss function

and determining some weighted value thereof. As a slight twist on this approach,

consider obtaining a new estimator as a weighted value of the Bayesian estimator
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under either SEL or ABL, and some other estimate of the unknown parameter

(in this case, θ). This is also known as a shrinkage based estimation approach.

Define the SEL-based Bayesian shrinkage estimator by

(2.7) θ̂S1
= λθ̂SEL + (1 − λ)θo , 0 ≤ λ ≤ 1 ,

and the ABL-based Bayesian shrinkage estimator by

(2.8) θ̂S2
= λθ̂ABL + (1 − λ)θo , 0 ≤ λ ≤ 1 .

where θo is a pre-specified point realization of θ. Similar as in the case of the

SEL- and ABL estimators, these two newly proposed estimators ((2.7) and (2.8))

is compared in terms of their risk functions. The analysis here is only considered

under the SEL. For the SEL-based shrinkage Bayesian estimator we have from

(2.1) and (2.7)

R∗

SEL(θ̂S1
, θ) = ET

(

λθ̂SEL − λθ + λθ + (1 − λ)θ0 − θ
)2

= λ2

(

θ2

(

(d − m + 1)2
(

n
2 − 1

) (

n
2 − 2

) −
2(d − m + 1)
(

n
2 − 1

) + 1

))

+ (1 − λ2)(θ0 − θ)2

+ 2λ(1 − λ)
(

θ0ET (θ̂SEL) − θET (θ̂SEL) − θθ0 + θ2)
)

where ET (θ̂SEL) = (d − m + 1) θ

(n

2
−1)

, using the expected value of the gamma

distribution of T . The ABL-based shrinkage Bayesian estimator is, from (2.2)

and (2.8), given by

R∗

SEL(θ̂S2
, θ) = ET

(

λθ̂ABL − λθ + λθ + (1 − λ)θ0 − θ
)2

= λ2

(

θ2

(

(d − m + 1 + c)2
(

n
2 − 1

) (

n
2 − 2

) −
2(d − m + 1 + c)

(

n
2 − 1

) + 1

))

+ (1 − λ2)(θ0 − θ)2

+ 2λ(1 − λ)
(

θ0ET (θ̂ABL) − θET (θ̂ABL) − θθ0 + θ2)
)

where ET (θ̂ABL) = (d − m + 1 + c) θ

(n

2
−1)

. When this method is repeated with

ABL as the underlying loss functions, similar expressions are obtained but in a

scaled form (stemming from the scaling value θc from the ABL), and is omitted

here.
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2.4.1. Risk comparison under SEL and ABL for shrinkage estimators

A similar approach was followed as in Dey (2011) and as discussed in section

2.2, but in this instance the shrinkage estimators were considered with the true

risk. Again because of the inferential nature of the ABL, it is only discussed here

for the SEL. Two viewpoints were considered: the first of which was for different

prior point estimates and for varying λ, and the second was for fixed prior point

estimate, different values of m, and for varying λ. This was all considered in the

same simulated data setting as in section 2.2, with the addition that the “true”

value of θ was 10. An underestimated value, an overestimated value, together

with the MLE of θ was considered; i.e. θ0 = 7, 7.7625, and 15 (here, θ̂MLE = d
T

).

Figure 6 illustrates the effect of these different prior point estimates and m = 1,

whilst Figure 7 illustrates for different values of m and the prior point estimate

equal to the MLE of the censored Rayleigh distribution. The two figures illustrate

these effects.

Figure 6: Risk under SEL for shrinkage estimators θ̂S1
and θ̂S2

,
different θ0, and varying λ (m = 1 (fixed)).

As can be seen in both cases, least risk can be obtained for some nonzero

and nonunity value of λ, except for the case depicted in Figure 7 when m = 10.
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This however makes little practical sense if not viewed in comparison with that

of the “original” risk for only the Bayesian estimators. In the next section, this

comparison is explored with reference to the risk efficiency.

Figure 7: Risk under SEL for shrinkage estimators θ̂S1
and θ̂S2

,
different m, and varying λ (θ0 = MLE (fixed)).

2.4.2. Risk efficiency under SEL and ABL for shrinkage estimators

Now, the risk efficiency for the shrinkage estimators was determined under

these two loss functions. The following comparisons are considered:

(2.9) RESEL(θ̂SEL, θ̂S1
) =

R∗

SEL(θ̂S1
, θ)

R∗

SEL(θ̂sel, θ)

and

(2.10) REABL(θ̂ABL, θ̂S2
) =

R∗

ABL(θ̂S2
, θ)

R∗

ABL(θ̂ABL, θ)
.

The same parameter choices as used previously was employed here, and

different values of θ0 were chosen arbitrarily, to assist with the comparison.
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The prior density degree was m = 1, the Jeffreys prior, and the true value of

θ from which the observations were simulated from, is 10. Three values were con-

sidered: a value that underestimates the true value of θ, the MLE, and a value

that overestimated the true value of θ. Two considerations were examined and is

illustrated by the respective figures below. Figure 7 illustrates the risk efficiency

under SEL for varying λ, and these different prior point estimates. Figure 8 il-

lustrates the same, but for the case where the underlying loss function is ABL.

For these illustrative purposes, the ABL constant c was set to 0.5.

Figure 8: Risk efficiency under SEL for shrinkage estimators θ̂S1

and θ̂S2
, different θ0, and varying λ.

Figure 8 clearly shows that there is indeed some shrinkage estimator value

(i.e. 0 ≤ λ ≤ 0.25) that is more appropriate to use than the the true corresponding

Bayesian estimator (for a risk efficiency value of < 1). This seems only true for the

case of underestimation (θ0 = 7). For the case of the MLE and overestimation

(θ0 = 15), only the Bayesian estimate seems appropriate. Figure 9 shows the

reciprocal results, where the shrinkage estimator seems more appropriate to use

in overestimation.
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Figure 9: Risk efficiency under ABL for shrinkage estimators θ̂S1

and θ̂S2
, different θ0, and varying λ.

3. ILLUSTRATIVE EXAMPLES

3.1. Simulation study

In this section, the RMSE (root mean square error) comparison of the

SEL estimator (2.3), the ABL estimator (2.4), and the shrinkage counterparts

(2.7) and (2.8) is calculated via simulation. It is known that an estimator with

least RMSE is considered preferable. As the parameter θ in (1.1) indicates a

lifetime, it is important to use an estimator which estimates the true value of the

population parameter as closely as possible, otherwise the chosen estimator may

overestimate or underestimate the value too severely, resulting in catastrophic

events in real life. For example, when estimating the lifetime of an airplane

engine, underestimating the lifetime is much less serious than overestimating the

lifetime of the engine. By using the RMSE the estimator which exhibits the

smallest error in estimation can be determined.
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The RMSE is given by RMSE =

√

√

√

√

√

p
∑

i=1

(θ̂est−θ)
2

p
, where p denotes the num-

ber of observations of θ. θ̂est denotes the estimated value of θ under a specific

loss function. The following steps outline the method followed in this simulation.

1. Simulate p = 5000 random samples from (1.1) for a given value of θ.

From each simulated sample, determine θ̂est under SEL, ABL, and both

considered shrinkage estimators (for the shrinkage estimators, the value

of θ0 = MLE). Then, calculate the value of the RMSE.

2. Repeat Step 1 for a successive range of θ values, in this case, θ = 1...40.

3. Plot the RMSE for all four estimators upon the same set of axis. The

estimator with lowest RMSE is considered the preferable estimator.

Figure 10 and 11 shows the results for different choices of λ.

Figure 10: Root mean square error for θ̂est under SEL, ABL, S1

and S2 where θ0 = MLE, and varying θ (m = 1 (fixed),
c = 0.5, λ = 0.5).

It is observed that the SEL estimator is preferable for the considered

Rayleigh model against that of the ABL estimator, and both considered shrinkage
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estimators. The SEL estimator is also preferable to its corresponding shrinkage

estimator, and the ABL estimator is also preferable to its corresponding shrink-

age estimator. These are for the cases when the MLE and the Bayesian estimate

carries equal weight in the shrinked estimator.

Figure 11: Root mean square error for θ̂est under SEL, ABL, S1

and S2 where θ0 = MLE, and varying θ (m = 1 (fixed),
c = 0.5, λ = 0.1).

Figure 11 shows the case when the weight of the shrinkage estimators are

skewed toward the MLE. Even in this case, both Bayesian estimates are preferred

compared to their respective shrinkage estimators.

3.2. Practical application: gastrointestinal tumor group

The results are illustrated using gastrointestinal tumor study group data,

obtained from Stablein, Carter, and Novak (1981) from a clinical trial in the

treatment of locally advanced nonresectable gastric carcinoma. Mostert (1999)

showed that the Rayleigh model is suitable for this data — it is also of censored

nature which applies here. The sample size is n = 45, and the number of fully
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observed lifetimes is d = 37, where T = 133.643. The MLE of θ was used as the

estimate θ0. Table 1 below gives the parameter estimates under different loss

function ((2.3) and (2.4)) for different parameter combinations.

Table 1: Parameter estimates under SEL and ABL for the real data set,
for different values of m and c.

Value of m Estimate value c = −1 c = −0.5 c = 0.5 c = 1

θ̂SEL = 0.27685

m = 1 θ̂MLE = 0.27685

θ̂ABL 0.26937 0.27311 0.28059 0.28433

θ̂SEL = 0.26189

m = 3 θ̂MLE = 0.27685

θ̂ABL 0.25440 0.25815 0.26563 0.26937

θ̂SEL = 0.20951

m = 10 θ̂MLE = 0.27685

θ̂ABL 0.20203 0.20577 0.21325 0.21699

This example aims to emphasize the effect of the shrinkage effect of the

respective shrinkage estimators ((2.7) and (2.8)) and was achieved via a boot-

strapping approach. By using the bootstrap method, a sampling distribution

of the mentioned estimators can be constructed, and determined whether the

estimator has a convergent nature — also, to have small standard error. The

convergent nature of the bootstrap in parameter estimation is expected to illus-

trate the shrinkage effect to determine which estimator seems more appropriate

for the given data set.

As mentioned, the performance of the estimator was studied via bootstrap-

ping from the sample k = 1000 times. Thus, 1000 samples were drawn from the

original sample with replacement, and for each of the drawn samples, the estima-

tor under SEL was computed, and the risk value. The risk value was computed

via

R∗

(

θ̂SEL, θ
)

=
1

k

k
∑

i=1

(

θ̂S1,i − θ
)2

where θ̂S1,i is the shrinkage estimator (2.3) for the ith bootstrapped sample, and θ

the fixed sample parameter (determined via reparametrization of the mean of the

distribution, equal to µ = 1
2

√

π
θ
, thus θ = π

(2µ)2
). This risk value was determined

for increasing λ and graphed correspondingly, and is presented in Figure 12. It can

be concluded that the estimator is indeed accurate and stable; in addition, from

visual inspection it is observed that the estimator indeed has a small standard

error. However, because of its near-convergent nature as λ → 1, in this example,

θ̂SEL is preferred to that of the MLE. This is in accordance with the RMSE
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study in the preceeding section. This could be attributed to the shrinkage effect

present in the shrinkage expression (2.7).

Figure 12: Bootstrap estimated values of θ̂S1,i, for m = 1
and increasing λ.

4. CONCLUSION

This paper explored the behaviour of the loss function proposed by Al-

Bayyati (2002) by comparing it to the well-known squared error loss function.

Bayes- and shrinkage estimators were derived. Their performance was studied

under each of the mentioned loss functions in terms of their respective risk. It

was observed that for positive values of c, the Al-Bayyati loss parameter, the risk

of SEL was lower than that of ABL. Another focus of this paper was the effect of

the prior family degree m. It was observed that the risk of both SEL and ABL

became larger as m increased. In a risk efficiency perspective, it was seen that

negative values of c results in the ABL estimator being more efficient under SEL

since the risk is then smaller. The reciprocal result holds when the underlying

loss function is the ABL. When the underlying loss is ABL, then for positive

values of c the SEL estimator performs better in terms of risk.
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After proposing shrinkage estimators (where the derived Bayesian estima-

tors are combined in linear fashion with some pre-specified point estimate of the

parameter) their risk and risk efficiency was also studied. It was observed that for

underestimation of the parameter, the shrinkage estimator yielded lower risk than

that of only the Bayesian estimator itself. For overestimation, only the Bayesian

estimator performed better than the shrinkage estimator. In the risk efficiency

setting it was observed that there does exist some values of λ which results in the

shrinkage estimator under ABL performing better than the SEL estimator when

the underlying loss function is SEL.

As a simulation study the RMSE was determined for each of the proposed

estimators and subsequently compared. It was seen that the estimator under SEL

remains preferable when considering the RMSE criterion. A numerical example

also followed showing the applicational use of the estimators to a real data set.

ACKNOWLEDGMENTS

The authors wish to acknowledge the Office of the Dean of the Faculty of

Natural and Agricultural Sciences, University of Pretoria, for their financial assis-

tance toward this study. In addition, the support from STATOMET, Department

of Statistics, Faculty of Natural and Agricultural Sciences, University of Preto-

ria is also humbly acknowledged. Finally the anonymous reviewer is thanked for

his/her constructive comments and suggestions for greatly improving the quality

of this paper.

REFERENCES

[1] Al-Bayyati, H.N. (2002). Comparing methods of estimating Weibull failure
models using simulation, Unpublished PhD thesis, College of Administration and
Economics, Baghdad University, Iraq.

[2] Bhattacharya, S.K. and Tyagi, R.K. (1990). Bayesian survival analysis
based on the Raleigh model, Trabajos de Estadistica, 5(1), 81–92.

[3] Delaportas, P. and Wright, D.E. (1991). Numerical prediction for the two-
parameter Weibull distribution, The Statistician, 40, 365–372.

[4] Dey, S. (2011). Comparison of relative risk functions of the Rayleigh distri-
bution under Type II censored samples: Bayesian approach, Jordan Journal of

Mathematics and Statistics, 4(1), 61–68.



454 J.T. Ferreira, A. Bekker and M. Arashi

[5] Dey, S. and Dey, T. (2011). Rayleigh distribution revisited via an extension of
Jeffreys prior information and a new loss function, Revstat, 9(3), 213–226.

[6] Gruber, M.H.J. (2004). The efficiency of shrinkage estimators with respect
to Zellner’s balanced loss function, Communications in Statistics — Theory and

Methods, 33(2), 235–249.

[7] Liang, F.; Paulo, R.; German, G.; Clyde, M.A. and Berger, J.O. (2008).
Mixtures of g priors for Bayesian variable selection, Journal of the American

Statistical Association, 103, 401–414.

[8] Mostert, P.J. (1999). A Bayesian method to analyse cancer lifetimes using
Rayleigh models, Unpublished PhD thesis, University of South Africa.

[9] Soliman, A.A. (2000). Comparison of LINEX and quadratic Bayes estimators
for the Rayleigh distribution, Communications in Statistics — Theory and Meth-

ods, 29(1), 95–107.

[10] Stablein, D.M.; Carter, W.H. and Novak, J.W. (1981). Analysis of sur-
vival data with nonproportional hazard functions, Controlled Clinical Trials, 2,
149–159.


