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Abstract:

• Examples of time series of counts arise in several areas, for instance in epidemiology,
industry, insurance and network analysis. Several time series models for these counts
have been proposed and some are based on the binomial thinning operation, namely
the integer-valued autoregressive (INAR) model, which mimics the structure and the
autocorrelation function of the autoregressive (AR) model.

The detection of shifts in the mean of an INAR process is a recent research subject and
it can be done by using quality control charts. Underlying the performance analysis
of these charts, there is an indisputable popular measure: the run length (RL), the
number of samples until a signal is triggered by the chart. Since a signal is given as
soon as the control statistic falls outside the control limits, the RL is nothing but a
hitting time.

In this paper, we use stochastic ordering to assess:

– the ageing properties of the RL of charts for the process mean of Poisson INAR(1)
output;

– the impact of shifts in model parameters on this RL.

We also explore the implications of all these properties, thus casting interesting light
on this hitting time for a Markov time series of counts.
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1. THE INAR(1) PROCESS

Time series of counts become apparent in areas such as:

• epidemiology — the number of new cases of some infectious and notifi-

able diseases is monitored monthly to assess and surveil the incidence of

acute viral infections such as poliomyelitis, as reported by Zeger (1988)

and Silva (2005, pp. 145–147);

• industry — the monthly number of accidents in a manufacturing plant

(Silva et al., 2009), the number of defects per sample (Weiss, 2009a) and

the number non-conforming units within a sample of finite size counts

(Weiss, 2009b,c) have to be controlled;

• insurance — modelling the number of claim counts is an extremely im-

portant part of insurance pricing (Boucher et al., 2008);

• network analysis — the number of intrusions on computers and network

systems (Weiss, 2009d, p. 11) also requires surveillance.

In some cases, the integer values of the time series are large and continuous-

valued models can be (and are frequently) used. However, when the time series

consists only of small integer numbers, ARMA processes are of limited use for

modelling purposes, namely because the multiplication of an integer-valued ran-

dom variable (r.v.) by a real constant may lead to a non-integer r.v. (Silva, 2005,

p. 22).

A possible way out is to replace the scalar multiplication by a random oper-

ation, such as the binomial thinning operation. This operation can be thought as

the scalar multiplication counterpart in the integer-valued setting which preserves

the integer structure of the process, it is due to Steutel and Van Harn (1979) and

may be stated as follows.

Definition 1.1. Let X be a discrete r.v. with range N0 = {0, 1, ...} and

α a scalar in [0, 1]. Then the binomial thinning operation on X results in the

following r.v.:

(1.1) α ◦ X =
X

∑

i=1

Yi ,

where {Yi : i ∈ N} is a sequence of i.i.d. Bernoulli(α) r.v. independent of X.

In this case α ◦ X emerges from X by binomial thinning, and ◦ represents

the binomial thinning operator. Furthermore, according to Steutel and Van Harn

(1979), α ◦ X also takes values in N0 and: 1 ◦ X = X; 0 ◦ X = 0; α ◦ X | X =
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x ∼ Bin(x, α); E(α ◦ X) = α × E(X), as in scalar multiplication; V (α ◦ X) =

α2 × V (X) + α(1 − α) × E(X), unlike in scalar multiplication.

Several models for time series of counts have been proposed based on the

binomial thinning operation. These models are in general obtained as discrete

analogues of the standard linear time series models. For example, the first-order

integer-valued autoregressive (INAR(1)) model, introduced by McKenzie (1985)

and Al-Osh and Alzaid (1987), mimics the structure and the autocorrelation

function of the real-valued first-order autoregressive AR(1) model.

Definition 1.2. Let {ǫt : t ∈ Z} be a sequence of nonnegative integer-

valued independent and identically distributed (i.i.d.) r.v. with range N0, mean

µǫ and variance σ2
ǫ , and α a scalar in (0, 1). Then {Xt : t ∈ Z} is said to be a

INAR(1) process if it satisfies the recursion

(1.2) Xt = α ◦ Xt−1 + ǫt ,

where: ◦ represents the binomial thinning operator; all thinning operations are

performed independently of each other and of {ǫt : t ∈ Z}; the thinning operations

at time t are independent of {..., Xt−2, Xt−1}; and ǫt and Xt−1 are assumed to be

independent r.v.

Besides taking only nonnegative integer values, the INAR(1) model also

differs from the real-valued AR(1) model because the r.v. ǫt in this latter are usu-

ally interpreted as random noise, whereas in the INAR(1) model they introduce

innovation to the process by keeping the system alive (Weiss, 2009d, p. 283) with

arrivals.

Furthermore, the marginal distribution of the INAR(1) process can be ex-

pressed in terms of the r.v. ǫt (Silva, 2005, p. 35):

(1.3) Xt
d
=

+∞
∑

j=0

αj ◦ ǫt−j

(Al-Osh and Alzaid, 1987), the analogue of the moving average representation of

the real-valued AR(1) model.

In the INAR(1) model setting, choosing an adequate family of distribu-

tions for the r.v. ǫt, say F , so that Xt has a distribution that also belongs to

F , leads us to the class of discrete self-decomposable distributions defined by

Steutel and Van Harn (1979): the r.v. X, with range N0, is said to have a dis-

crete self-decomposable distribution if X = α ◦ X ′ + Xα, where α ◦ X ′ and Xα

are independent, and X ′ is distributed as X.

It is worth mentioning that if ǫt has a discrete self-decomposable distri-

bution such that E(ǫt) = µǫ and V (ǫt) = σ2
ǫ < +∞ then the INAR(1) process is
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second order weakly stationary with constant mean and variance function given

by E(Xt) = µǫ

1−α
and V (Xt) = α µǫ+σ2

ǫ

1−α2 , respectively (Weiss, 2009d, p. 283). More-

over, the INAR(1) and the AR(1) processes have similar autocorrelation function:

ρk = corr(Xt, Xt−k) = α|k|, k ∈ Z (Weiss, 2009d, p. 285).

The class of discrete self-decomposable distributions contains the family of

Poisson distributions (Silva, 2005, p. 35) and the Poisson INAR(1) process can

be defined and characterised.

Definition 1.3. If ǫt
i.i.d.
∼ Poisson(λ), t∈Z, then {Xt = α◦Xt−1+ ǫt : t∈Z}

is said to be a Poisson INAR(1) process.

The Poisson INAR(1) process is a second order weakly stationary process

with marginal distribution

(1.4) Xt ∼ Poisson

(

λ

1 − α

)

, t ∈ Z ,

and can be characterized as follows, according to Weiss (2009d, p. 283).

Proposition 1.1. The Poisson INAR(1) process is a (time-)homogeneous

Markov chain, with state space N0 and one-step transition probability matrix

(TPM) P, which depends on the values of λ and α and whose entries are given

by

pi j ≡ pi j(λ, α)

= P (Xt = j | Xt−1 = i)

=
i

∑

m=0

P (α ◦ Xt−1 = m | Xt−1 = i) × P (ǫt = j − m)(1.5)

=

min{i,j}
∑

m=0

(

i

m

)

αm (1 − α)i−m × e−λ λj−m

(j − m)!
, i, j ∈ N0 .

The calculation of P, for a few values of λ and α, led us to believe that no

particular features are apparent in this matrix. For instance, even though Xt is a

nonnegative r.v., P has no triangular block of zeros in the lower left hand corner

or equal values along a line parallel to the main diagonal, such as the TPM Brook

and Evans (1972) or Morais (2002) dealt with in a quality control setting.

Nevertheless, we managed to identify a peculiar and important feature of

the TPM associated with a Poisson INAR(1) process: P is totally positive of order

2 (TP2), i.e., it is a nonnegative matrix whose 2 × 2 minors are all nonnegative

—

(1.6) pi j × pi′ j′ ≥ pi′ j × pi j′ , i < i′, j < j′

—, as proved in the next section.
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2. DISTINCTIVE FEATURES OF THE POISSON INAR(1)

PROCESS

It is well known that the Poisson and binomial probability functions (p.f.),

• fPoi(λ)(x) = e−λ λx

x! , x ∈ N0 ,

• fBin(n,p)(x) =
(

n
x

)

px (1 − p)n−x, x = 0, 1, ..., n ,

are log-concave in the sense that the likelihood ratio functions

fPoi(λ)(x)

fPoi(λ)(x + 1)
=

x + 1

λ

fBin(n,p)(x)

fBin(n,p)(x + 1)
=

(x + 1)(1 − p)

(n − x)p

are nondecreasing functions of x over the supports of these p.f. That is to say, the

Poisson and binomial distributions have what is also termed the Pólya frequency

of order 2 (PF2) property (Li and Shaked, 1997) or an increasing likelihood ratio

(ILR), 1 the strongest ageing property that we consider here.

Furthermore, according to Casella and Berger (2002, p. 391), the families

of Poisson and binomial p.f. have monotone likelihood ratio, in particular the

following ones:

• {fPoi(ξ)(x) : ξ > 0} ;

• {fBin(ξ,p)(x) : ξ ∈ N} (here p is held fixed in (0, 1));

• {fBin(n,ξ)(x) : ξ ∈ (0, 1)} (n is fixed in N).

For example, for ξ1 ≤ ξ2,

(2.1)
fPoi(ξ1)(x)

fPoi(ξ2)(x)
= e−(ξ1−ξ2) (ξ1/ξ2)

x , x ∈ N0 ,

is a monotone — in this case nonincreasing — function of x. Interestingly enough,

if we consider P (x, ξ) ≡ fPoi(ξ)(x) (or ≡ fBin(ξ,p)(x), fBin(n,ξ)(x)) then P (x, ξ) is

a TP2 function in x and ξ, i.e., the determinant

(2.2)

∣

∣

∣

∣

P (x1, ξ1) P (x1, ξ2)
P (x2, ξ1) P (x2, ξ2)

∣

∣

∣

∣

≥ 0 , x1 < x2, ξ1 < ξ2

(Karlin and Proschan, 1960).

1If you define the likelihood ratio function as P (X=x+1)
P (X=x)

instead, like Kijima (1997, p. 114)

did, then the PF2 property is equivalent to a decreasing likelihood ratio (DLR), as noted by
Kijima (1997, p. 115).
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Incidentally, the monotone likelihood ratio character — or TP2 property —

of a family of p.f. is related to the notion of stochastically smaller in the likelihood

ratio sense (Ross, 1983, p. 281) stated below.

Definition 2.1. Let X and Y be two discrete r.v. with p.f. P (X = x) and

P (Y = x). Then X is said to be stochastically smaller than Y in the likelihood

ratio sense — denoted by X ≤lr Y — iff P (X=x)
P (Y =x) is a nonincreasing function of x

over the union of the supports of the r.v. X and Y (Shaked and Shanthikumar,

1994, pp. 27–28).

Expectedly, if a family of p.f. has monotone nonincreasing (resp. nonde-

creasing) likelihood ratio then the associated r.v. stochastically increase (resp.

decrease) in the likelihood ratio sense — i.e., if ξ1 ≤ ξ2 then X(ξ1) ≤lr X(ξ2)

(resp. X(ξ1) ≥lr X(ξ2)), in short X(ξ) ↑lr with ξ (resp. X(ξ) ↓lr with ξ). For the

families of Poisson and binomial p.f. we have considered:

• X(ξ) ∼ Poi(ξ) ↑lr with ξ (ξ > 0);

• X(ξ) ∼ Bin(ξ, α) ↑lr with ξ (ξ ∈ N, here α is held fixed in (0, 1));

• X(ξ) ∼ Bin(n, ξ) ↑lr with ξ (n fixed in N, ξ ∈ (0, 1)).

After these preliminary notions we can state that Xt ≡Xt(λ, α)∼Poi
(

λ
1−α

)

has the PF2 property and

(2.3) Xt ≡ Xt(λ, α) ↑lr with λ, α .

But what can be said about the Poisson INAR(1) process {Xt ≡ Xt(λ, α) : t ∈ Z}?

• Is the PF2 (resp. TP2) property of the (resp. families of) Poisson and

binomial distributions somehow inherited by a Poisson INAR(1) process

(resp. a family of Poisson INAR(1) processes)?

• If that is the case what are the consequences?

Proper replies to these queries are provided in this and the following sec-

tions.

Proposition 2.1. The Poisson INAR(1) process {Xt : t ∈ Z} satisfies

(2.4) (Xt | Xt−1 = i) ≤lr (Xt | Xt−1 = m) , i ≤ m ,

for any t ∈ Z. Equivalently, (Xt | Xt−1 = i) ↑lr with i, for t ∈ Z, and we write

(2.5) {Xt : t ∈ Z} ∈ Mlr ,

where Mlr stands for the class of stochastic processes that are stochastically

monotone in the likelihood ratio sense.
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We defer the proof of Proposition 2.1 until a few remarks are made.

{Xt : t ∈ Z} ∈ Mlr can be written as P ∈ Mlr, where P obviously denotes

the TPM of this Markov chain. This feature of P obviously means that, if we

associate a p.f. of a discrete r.v. to one of its rows, the corresponding r.v. stochas-

tically increase in the likelihood ratio sense as we progress along the rows of this

stochastic matrix. It also means that

(2.6) P ∈ TP2 ,

as mentioned by Kijima (1997, p. 129, Definition 3.11).

Bearing in mind that the ith row of P corresponds to the probability (row

vector) of the r.v. (Xt+1 | Xt = i) and taking advantage of ≤lr ordering, we are

tempted to investigate whether P ∈ Mlr by checking if
pi j

pi+1 j
↓j , over N0, for any

fixed i ∈ N0; another possibility of proving Proposition 2.1 would be to check

whether P ∈ TP2.

This is not the easiest way of proving that P ∈ TP2, thus the proof of

Proposition 2.1 relies on a different reasoning.

Proof: Let us first note that, for i ∈ N0, (Xt | Xt−1 = i)
st
= Z(i)+ǫt, where:

Z(0)
st
= 0; Z(i)∼Bin(i, α), i∈N; ǫt ∼Poisson(λ); Z(i) and ǫt are independent r.v.

Now, capitalizing not only on the fact that, for i ≤ m (i, m ∈ N0) and α

(held fixed in the interval (0, 1)), Z(i) ≤lr Z(m), but also on the log-concave (or

PF2) character of the p.f. of the summands Z(i) and the independence between

Z(n) and ǫt (n = i, m), we can invoke the basic decomposition formula (Karlin,

1968, p. 17) or the closure of the stochastic order ≤lr under the sum of indepen-

dent r.v. with log-concave densities (Shaked and Shanthikumar, 1994, p. 30) 2 to

conclude that

Z(i) + ǫt ≤lr Z(m) + ǫt, i ≤ m,

thus proving the result.

The stochastic ordering result in the next proposition may be thought as

an extension of the notion of monotone likelihood ratio to the family of Poisson

INAR(1) processes, {{Xt ≡ Xt(λ, α) : t ∈ Z} : (λ, α) ∈ R
+ × (0, 1)}.

Proposition 2.2. Let {Xt(λ, α) : t ∈ Z} be a Poisson INAR(1) process

such that Xt(λ, α) = α ◦ Xt−1(λ, α) + ǫt(λ), for (λ, α) ∈ R
+ × (0, 1). Then

(2.7)

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m) , i ≤ m,

for any 0 < λ1 ≤ λ2, 0 < α1 ≤ α2 < 1 and t ∈ Z.

2For a slightly stronger result, please refer to Shaked and Shanthikumar (1994, p. 30, Theorem
1.C.5).
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Proof: This proposition can be proved in a similar fashion to Proposition

2.1. Thus, let us consider (Xt(λ, α) | Xt−1(λ, α) = i)
st
= Z(i, α) + ǫt(λ), where:

Z(0, α)
st
= 0; Z(i, α) ∼ Bin(i, α), i ∈ N; ǫt(λ) ∼ Poisson(λ); Z(i, α) and ǫt(λ) are

independent r.v.

By taking into account the monotone likelihood ratio of the Poisson and

binomial families, we can add that, for 0 < λ1 ≤ λ2, 0 < α1 ≤ α2 < 1: Z(i, α1) ≤lr

Z(i, α2); ǫt(λ1) ≤lr ǫt(λ2).

If we add to these stochastic ordering results the PF2 character of all the

summands involved and the independence between Z(i, αj) and ǫt(λj), for j =

1, 2, we can use once again the closure of ≤lr under the sum of independent r.v.

with log-concave densities to assert that

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = i) .

Finally, take notice that {Xt(λj , αj) : t ∈ Z} ∈ Mlr, for j = 1, 2, as a con-

sequence, (Xt(λ2, α2) | Xt−1(λ2, α2) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m), for

i ≤ m, and

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m) , i ≤ m.

This ends the proof.

Corollary 2.1. Let P (n, λ, α) ≡ P [Xt(λ, α) = n | Xt−1(λ, α) = i]. Then

P (n, λ, α) is TP2 both as a function of n and λ (with α held fixed) and as a

function of n and α (for fixed λ).

As for the implications of propositions 2.1 and 2.2 — in particular on what

the random time the Poisson INAR(1) process needs to exceed a critical level x

is concerned — we refer the reader to the next sections.

3. VITAL PROPERTIES OF THE HITTING TIMES FOR

POISSON INAR(1) PROCESSES

Hitting times (HT) arise naturally in level-crossing problems in several

areas:

• in reliability theory, HT of appropriate stochastic processes often rep-

resent the time to failure of a device subjected to shocks (and wear),

which fails when its damage level crosses a critical value (Li and Shaked,

1995);
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• in queueing systems, the identity of the first customer whose waiting

time exceeds a critical threshold is a HT and a relevant performance

measure (Greenberg, 1997);

• HT become also apparent while dealing with the problem of the first

detection of words in random sequences of letters from a finite alphabet

(De Santis and Spizzichino, 2014).

Considering the applications of Poisson INAR(1) processes, studying the

HT of these stochastic processes is surely of vital importance.

More than on the distribution of HT, in this section we are interested in

assessing the ageing properties of the HT and the impact of an increase in

• the critical level,

• the initial state, and

• the parameters λ and α

on the associated HT. Needless to say that dealing with a stochastic process with

a TP2 TPM will play a major role in the derivation of all the results.

The conditions under which HT possess specific ageing properties have

been extensively studied by many authors (see e.g.: Brown and Chaganty, 1983;

Assaf et al., 1985; Karasu and Özekici, 1989), and rigorously reported by Li and

Shaked (1997). Furthermore, these conditions are closely related to the stochastic

monotonicity character of the underlying process, as noted by Li and Shaked

(1995).

The next result can be translated as follows in our specific setting: the PF2

property of the Poisson and binomial distributions is shared with a particular

HT. It is a consequence of an important result that can be traced back to Karlin

(1964).

Proposition 3.1. Let: {Xt : t ∈ N0} be a Poisson INAR(1) process with

initial state X0 = 0; HT 0 = min{t ∈ N : Xt > x | X0 = 0} be the random number

of transitions needed to exceed the critical level x (x ∈ N0) starting from the initial

state 0. Then HT 0 ∈ PF2.

Proof: This proposition follows fromTheorem3.1byAssaf et al.(1985),who

pointed out that their result was essentially proved by Karlin (1964, pp. 93–94).

Let us remind the reader that, since HT 0 ∈ PF2, {Xt : t ∈ N0} is said to

be a PF2 process (Shaked and Li, 1997, p. 12). We ought to also mention that

Proposition 3.1 can be referred to as the PF2 Theorem (Shaked and Li, 1997,

p. 12) for the Poisson INAR(1) process.
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The next result translates the stochastic impact of an increase of the critical

value x.

Proposition 3.2. Let: {Xt : t ∈ N} be a Poisson INAR(1) process, where

X1 ∼ Poisson
(

λ
1−α

)

; HTx = min{t ∈ N : Xt > x} be the random time at which

the process exceeds the critical level x (x ∈ N0). Then HTx ↑lr with x.

Proof: Since Xt can be written as a sum of r.v. with PF2 p.f.,

Xt =
t−1
∑

j=0

αj ◦ ǫt−j + αt ◦ X1 , t ∈ N\{1} ,

we can apply Theorem 2 from Karlin and Proschan (1960) and conclude that the

p.f. of HTx,

P (n, x) ≡ P (HTx = n) = P (Xn > x; Xj ≤ x, j = 1, 2, ..., n − 1) , n ∈ N ,

as a function of n and x, is TP2. Consequently, HTx ↑lr with x.

The next proposition shows how the TP2 character of the Poisson INAR(1)

process is crucial to guarantee a specific stochastic decrease of the HT with respect

to the initial value of this process.

Proposition 3.3. Let: {Xt : t ∈ N0} be a Poisson INAR(1) process with

initial state X0 = i (i ∈ N0); HT i = min{t ∈ N : Xt > x | X0 = i} be the random

number of transitions needed to exceed the critical level x (x ∈ N0) starting from

the initial state i. Then HT i ↓lr with i.

Proof: Since P ∈ TP2, we are allowed to invoke Theorem 2.1 from Karlin

(1964, pp. 42–43) and assert that the p.f. of HT i,

P (n, i) ≡ P (HT i = n)

= P (Xn > x; Xj ≤ x, j = 1, 2, ..., n − 1) , n ∈ N ,

as a function of n and i, is sign reverse rule of order 2 (RR2), i.e.,

P (n, i) × P (n′, i′) ≤ P (n′, i) × P (n, i′) , n ≤ n′, i ≤ i′ .

This inequality is equivalent to

P (HT i = n)

P (HT i′ = n)
≤

P (HT i = n′)

P (HT i′ = n′)
, n < n′, i < i′ ,

that is, HT i ≥lr HT i′ , for i ≤ i′.
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So far we were not able to prove the following conjecture regarding a

stochastic implication of an increase in parameter λ.

• Let {Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) process with initial state

X0(λ, α) = 0 and HT 0(λ, α) = min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = 0}.

Then HT 0(λ, α) ↓lr with λ.

Morais (2002, p. 47) discusses thoroughly the problems that arise when we

try to prove results such as the one stated in previous conjecture while dealing

with hitting times for discrete-time Markov chains arising in quality control. As a

consequence we have to content ourselves with further — yet weaker — stochastic

ordering results; they are stated in Section 5 and are particularly relevant in the

performance analysis of a quality control chart, described in Section 4 and meant

to detect changes in the mean of a Poisson INAR(1) process.

4. CONTROLLING THE MEAN OF A POISSON INAR(1)

PROCESS

Although quality has long been considered absolutely relevant, we have to

leap to the beginning of the 20th century to meet the founder of Statistical Process

Control (SPC) (Ramos, 2013, p. 2). When Walter A. Shewhart joined the Western

Electric Company, industrial quality exclusively relied on the inspection of end

products and the removal of defective items; however, this physicist, engineer and

statistician soon realized that it was important to control not only the finished

product but also the process responsible for its production (ASQ, n.d.).

Shewhart essentially suggested that we should monitor a (production) pro-

cess by:

• choosing a measurable characteristic, say X, of this process;

• selecting a relevant parameter;

• collecting data on a regular basis;

• plotting the observed value of a control statistic against time and com-

paring it with appropriate control limits;

• triggering a signal if the observed value of the statistic is beyond these

control limits.

The resulting graphic device is called a quality control chart, undoubtedly

one of the most important tools of SPC.

Control charts are used with the purpose of establishing whether the process

is operating within its limits of expected variation (Nelson, 1982, p. 176), and to
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detect changes in process parameters which may indicate a deterioration in qual-

ity. The control chart should be set in such way that a change in the parameter

is detected as fast as possible without triggering false alarms too frequently.

The detection of changes in the mean of an i.i.d. process of Poisson counts

can be done by making use of quality control charts such as the c-chart pioneered

by Shewhart (Montgomery, 2009, p. 309), the CUSUM chart (Brook and Evans,

1972; Gan, 1993) or the EWMA chart (Gan, 1990). However, autocorrelation

often arises, severely changing the performance of all quality control charts relying

on the assumption that the observations refer to i.i.d. r.v., hence the use of the

charts such like the ones proposed by Weiss (2009, Chap. 20).

Throughout the remainder of this paper, we assume that:

• the target value of the process mean is λ0
1−α0

;

• the purpose of using an upper one-sided control chart is to detect an

aggravation in the mean number of defects, from its target value λ0
1−α0

to λ
1−α

, due to a change either from λ0 to λ or from α0 to α.

Consequently, we proceed to describe the upper one-sided version of the

c-control chart found in Weiss (2007) and Weiss (2009d, p. 419).

Definition 4.1. Let {Xt ≡ Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) pro-

cess, where denotes the number of defects in sample t, for t ∈ N, given that the

process mean is at level λ
1−α

. Then xt ≡ xt(λ, α) is the observed value of the

control statistic of the upper one-sided c-chart for the mean of this process and

this chart triggers a signal at time t (t ∈ N) if

(4.1) xt > UCL =
λ0

1 − α0
+ k ×

√

λ0

1 − α0
,

where k is a positive constant chosen in such way that increases in the process

mean λ
1−α

are detected as quickly as possible and false alarms are rather unfre-

quent.

Since points lying above the upper control limit (UCL) indicate a potential

increase in the process mean that should be investigated and eliminated, the

performance of this control chart is unsurprisingly assessed by making use of the

run length (RL), the random number of samples collected before a signal (either

false or a valid alarm) is triggered by the chart. Hence the RL coincides with the

following HT for the Poisson INAR(1) process

(4.2) HT (λ, α) = min{t ∈ N : Xt(λ, α) > x} ,

where x = ⌊UCL⌋ is the integer part of the upper control limit defined in (4.1).
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In the next section we shall start by addressing a few weaker ageing notions

with more tangible interpretations/implications than the PF2 property of hitting

times such as the RL of the upper one-sided c-chart for the mean of a Poisson

INAR(1) process.

5. OTHER PROPERTIES OF THE HITTING TIMES FOR THE

POISSON INAR(1) PROCESS

Let us start this section by reminding the reader of the ageing notions of

increasing failure rate (IFR), new better than used (NBU) and new better than

used in expectation (NBUE).

Definition 5.1. The nonnegative integer valued r.v. Y is said to be:

• increasing failure rate — Y ∈ IFR — if hY (m) = P (Y =m)
P (Y ≥m) ↑m∈N;

• new better than used — Y ∈NBU — if P (Y > j) ≥ P (Y−m > j | Y > m),

m, j ∈ N0;

• new better than used in expectation — Y ∈ NBUE — if E(Y ) ≥

E(Y − m | Y > m), m ∈ N0.

Please note that Y ∈PF2 =⇒ Y ∈ IFR =⇒ Y ∈NBU (Kijima, 1997, p. 118),

and, clearly, Y ∈NBU =⇒ Y ∈NBUE.

By capitalizing on the TP2 character of the TPM of the Poisson INAR(1)

process and on the fact that Y ∈PF2 =⇒ Y ∈ IFR, we can immediately conclude

that the RL of the upper one-sided c-chart starting with a zero value,

(5.1) HT 0(λ, α) ≡ min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = 0} ,

has PF2 character and therefore

(5.2) HT 0(λ, α) ∈ IFR ,

as illustrated by Example 5.1.

Note, however, that, according to the IFR Theorem (Shaked and Li, 1997,

p. 12), this property is ensured by a weaker condition than P ∈ TP2. In fact, if

we let Q = [qij ]i,j ≡ [
∑

k≤j pik]i,j denote the matrix of left partial sums of P then

Q ∈ TP2 would have been sufficient to have HT 0(λ, α) ∈ IFR.

Example 5.1. Assume the number of defects in the tth random sample

of fixed size (say n) is modelled by a Poisson INAR(1) process {Xt ≡ Xt(λ, α) :

t ∈ N0}.
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Consider that the detection of increases in the expected value of Xt(λ, α),

µ = λ
1−α

, is done by means of the upper one-sided c-chart Poisson chart in Defi-

nition 4.1.

The performance of this chart is measured via the HT

(5.3) HT i(λ, α) ≡ min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = i} ,

where i (i = 0, 1, ..., x) is the fixed value assigned to X0(λ, α) by the quality

practitioner. If i = 0 (resp. i > 0) no head start (resp. a head start) has been

given to the chart.

Moreover, assume the constant k in the expression of the upper control

limit in (4.1) was set in such way that the average run length (ARL) when the

values of λ and α are on-target, E[HT i(λ0, α0)], is reasonably large, say larger

than 100 samples.

It is well known that, for each x, HT i(λ, α) has exactly the same distribu-

tion as the time to absorption of a Markov chain with state space {0, 1, ..., x + 1}

and TPM represented in partitioned form,

(5.4)

[

Q (I − Q)1
0⊤ 1

]

,

where:

• Q ≡ Q(λ, α) = [pij(λ, α)]xi,j=0 ;

• I is the identity matrix with rank x + 1;

• 1 (resp. 0⊤) is a column vector (resp. row vector) of x + 1 ones (resp.

zeros).

The associated expected value, survival function and failure (or alarm) rate

function are given by

E[HT i(λ0, α0)] = e⊤i × [I − Q(λ, α)]−1 × 1 ,(5.5)

FHT i(λ,α)(m) = e⊤i × [Q(λ, α)]m × 1 , m ∈ N ,(5.6)

hHT i(λ,α)(m) =
P [HT i(λ, α) = m]

P [HT i(λ, α) ≥ m]

=
FHT i(λ,α)(m − 1) − FHT i(λ,α)(m)

FHT i(λ,α)(m − 1)
, m ∈ N(5.7)

(respectively), where ei represents the (i + 1)th vector of the orthonormal basis

of R
x+1.

The failure (or alarm) rate function was proposed by Margavio et al. (1995)

and represents the conditional probability that the critical level x has been
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exceeded at time m, given that this threshold has not been crossed before.

Even though the alarm rate function is defined in terms of HT probabilities, it will

bring forth insights into the chart detection capability, as we progress with the

sampling procedure, insights that cannot be provided by the ARL E[HT i(λ0, α0)],

as illustrated by Margavio et al. (1995) and Morais and Pacheco (2012).

The parameters λ0 = 1, α0 = 0.4 and k = 3 yield an upper one-sided c-chart

for the mean of the Poisson INAR(1) process with x = 5 and in-control ARL

equal to E[HT 0(λ0, α0)] = 157.457 and E[HT 3(λ0, α0)] = 153.971.

E[HT i(λ0, α0)] should be calculated for a wide range of changes in the

parameters λ and α in order to assess the chart detection ability to several out-

of-control conditions. For instance, an increase of 10% in λ leads to out-of-control

ARL of E[HT 0(1.1 λ0, α0)] = 104.554 and E[HT 3(1.1 λ0, α0)] = 101.548, whereas

an increase of the same magnitude in α yields E[HT 0(λ0, 1.1 α0)] = 120.560 and

E[HT 3(1.1 λ0, 1.1 α0)] = 117.018.

The values and graphs of the alarm rate function in Table 1 and Figure 1

give additional insights to the performance of the chart as we proceed with the

sampling, and to the impact of the adoption of a head start.

Table 1: Values of: the alarm rate function hHT i(λ,α)(m), for λ0 = 1,
α0 = 0.4, x = 5, i = 0, 2 and several values of m; the associated
ARL values.

m
hHT (m)

HT 0(λ0,α0) HT 3(λ0,α0) HT 0(1.1λ0,α0) HT 3(1.1λ0,α0) HT 0(λ0,1.1α0) HT 3(λ0,1.1α0)

1 0.000594 0.012317 0.000968 0.016344 0.000594 0.014636
2 0.003143 0.009673 0.004939 0.013533 0.003591 0.012668
3 0.005033 0.007672 0.007755 0.011176 0.006166 0.010237
4 0.005884 0.006891 0.008980 0.010259 0.007468 0.009171
5 0.006220 0.006598 0.009449 0.009919 0.008035 0.008733

10 0.006422 0.006424 0.009722 0.009725 0.008427 0.008435
20 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
30 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
40 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
50 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432

E(HT) 157.457 153.971 104.554 101.548 120.560 117.018

When no head start has been adopted, the IFR character of HT means

that signaling, given that no observation has previously exceeded the upper con-

trol limit, becomes more likely as we proceed with the collection of samples, as

previously noted by Morais and Pacheco (2012) for other control charts for i.i.d.

output, contributing to a considerable decrease of the inconvenient initial inertia

of this chart in the out-of-control situation.
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Figure 1: Alarm rates of HT i(λ, α), for i = 0 (on the left)
and i = 3 (on the right), and (λ, α) = (λ0, α0),
(1.1λ0, α0), (λ0, 1.1α0) (top, center, bottom).

We ought to also note that, although the adoption of a 60% head start is re-

sponsible for mild reductions in the in-control and out-of-control ARL, adding this

head-start radically changes the monotone behaviour of the alarm rate function,

as shown by Figure 1: HT 3(λ0, α0), HT 3(1.1 λ0, α0), HT 3(λ0, 1.1 α0) 6∈ IFR.

Figure 1 also suggests a practical meaning of the impact of the adoption of a

head start in the absence and in the presence of assignable causes: the false

alarm (resp. valid signal) rate conveniently (resp. inconveniently) increases at the

first samples.

We strongly believe that the results in this example show that the alarm

rate function provides a more insightful portrait of the performance of the control

chart than the one based on the ARL.
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Even though HT i(λ, α) may not be IFR for i 6= 0, it has a weaker ageing

property:

(5.8) HT i(λ, α) ∈ NBU , i = 0, 1, ..., x .

Brown and Chaganty (1983) devised a sufficient condition to deal with a HT with

such property. However, stating this condition requires the definition of another

stochastic order, a related class of stochastically monotone matrices/processes

and a ordering between stochastic matrices.

Definition 5.2. Let X and Y be two nonnegative integer r.v. Then X is

said to be stochastically smaller than Y in the usual sense — X ≤st Y — if

(5.9) P (X > m) ≤ P (Y > m) , m ∈ N0

(Shaked and Shanthikumar, 1994, p. 3).

If the Markov chain {Xt : t ∈ Z} with TPM P satisfies

(5.10) (Xt | Xt−1 = i) ≤st (Xt | Xt−1 = m) , i ≤ m ,

for any t ∈ Z, then it is said to be stochastically monotone in the usual sense

(Kijima, 1995, p. 129). In this case we write {Xt : t ∈ Z} ∈ Mst or P ∈ Mst,

where Mst denotes the class of stochastic processes that are stochastically mono-

tone in the usual sense.

Let P and P′ two stochastic matrices governing two Markov chains {Xt :

t ∈ Z} and {X ′
t : t ∈ Z} defined in the same state space. Then P is said to be

smaller than P′ in the usual sense (or in the Kalmykov sense) — P≤st P
′ — if

(5.11) (Xt | Xt−1 = i) ≤st

(

X ′
t | X ′

t−1 = m
)

, i ≤ m .

Since the stochastic orders ≤st and ≤lr can be related — after all Theorem

1.C.1 of Shaked and Shanthikumar (2007, p. 42) leads to X ≤lr Y =⇒ X ≤st Y —,

we naturally have P ∈ Mlr =⇒ P ∈ Mst. Furthermore, Brown and Chaganty

(1983) proved that P ∈ Mst is sufficient to be dealing with NBU HT. Conse-

quently, the Poisson INAR(1) process satisfies what Shaked and Li (1997, p. 13)

called the NBU Theorem:

(5.12) HT i(λ, α) ∈ NBU , i = 0, 1, ..., x .

Consequently,

(5.13) HT i(λ, α) ∈ NBUE , i = 0, 1, ..., x .

By invoking Corollary 2.1 from Morais and Pacheco (2012),3 we can add

an implication of (5.13):

(5.14) V [HT i(λ, α)] ≤ V (Y ) ,

3This result reads as follows: if X is a discrete NBUE r.v. and Y is a geometric r.v. such
that E(X) ≤ E(Y ), then V (X) ≤ V (Y ).
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where is Y has a geometric distribution with parameter p ≤ 1
E[HT i(λ,α)]

. In other

words, if we hypothetically replace the upper one-sided c-chart by a chart with a

geometrically distributed RL and this results in an aggravation of the ARL, then

an increase in the standard deviation of the RL will also follow.

As put by Morais and Pacheco (2012), quality control practitioners should

be reminded of Chebyshev’s inequality and that considerable benefit it is to be

gained by adopting a chart with a smaller standard deviation of the RL, thus

diminishing the possibility of having observations beyond the UCL much sooner

or much later than expected.

Now, we turn our attention to the HT for a Poisson INAR(1) process whose

initial value is a r.v. X0(λ, α) ∼ Poisson
(

λ
1−α

)

. Following Weiss (2009d, p. 422),

this could be called overall RL of the upper one-sided c-chart for the mean of

such a process. This HT is a mixture of (x + 1) r.v. HT i(λ, α), i = 0, 1, ..., x,

and a zero-valued r.v. because any value of X0(λ, α) beyond the UCL would

lead to a null RL. The associated weights are P [X0(λ, α) = i], i = 0, 1, ..., x, and

P [X0(λ, α) > x].

The next proposition provides a thorough characterization of this HT, rep-

resented from now on by HTX0(λ,α)(λ, α).

Proposition 5.1. Let {Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) process,

where X0(λ, α) ∼ Poisson
(

λ
1−α

)

. Then the HT

(5.15) HTX0(λ,α)(λ, α) = min{t ∈ N0 : Xt(λ, α) > x}

has expected value, survival function and failure rate function given by

E[HTX0(λ,α)(λ, α)] =

x
∑

i=0

E[HT i(λ, α)] × P [X0(λ, α) = i] ,(5.16)

FHT X0(λ,α)(λ,α)(m) =











1 − P [X0(λ, α) > x] , m = 0 ,

1 −
∑x

u=0 FHT i(λ,α)(m) × P [X0(λ, α) = i]

−P [X0(λ, α) > x] , m ∈ N ,

(5.17)

hHT X0(λ,α)(λ,α)(m) =
P [HTX0(λ,α) = m]

P [HTX0(λ,α) ≥ m]
(5.18)

=







P [X0(λ, α) > x] , m = 0 ,

1 −
F

HTX0(λ,α)(λ,α)
(m)

F
HTX0(λ,α)(λ,α)

(m−1)
, m ∈ N0

(respectively).
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Not much can be said about the ageing properties of HTX0(λ,α)(λ, α) be-

cause the classes of NBU and NBUE r.v. are not closed under mixtures even

though they are closed under convolutions (Barlow and Proschan, 1975/1981,

pp. 104 and 187).

Table 2: Values of: the alarm rate function hHT X0(λ,α)(λ,α)(m), for λ0 = 1,
α0 = 0.4, x = 5 and several values of m; the associated ARL values.

m
h

HT X0 (m)

HT X0(λ0,α0)(λ0, α0) HT X0(1.1 λ0,α0)(1.1 λ0, α0) HT X0(λ0,1.1 α0)(λ0, 1.1 α0)

0 0.007302 0.011272 0.010011
1 0.006551 0.009957 0.008677
2 0.006462 0.009795 0.008512
3 0.006437 0.009748 0.008462
4 0.006428 0.009732 0.008444
5 0.006425 0.009727 0.008437

10 0.006423 0.009724 0.008432
20 0.006423 0.009724 0.008432
30 0.006423 0.009724 0.008432
40 0.006423 0.009724 0.008432
50 0.006423 0.009724 0.008432

E(HT X0) 154.525 101.648 70.147

Nonetheless, extensive numerical results, illustrated here by the values in

Table 2 and the graphs in Figure 2, suggest that we are dealing with a HT with

a decreasing failure rate.
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Figure 2: Alarm rates of HTX0(λ,α)(λ, α), for (λ, α) =
(λ0, α0), (1.1λ0, α0), (λ0, 1.1α0) (left, center, right).

Finally, we qualitatively assess the impact of an increase in λ or α on

HTX0(λ,α)(λ, α) in the next proposition, stated without a proof since it follows

from the fact that ≤lr=⇒≤st and an adaptation of Corollary 3.13 from Morais

(2002, p. 46).

Proposition 5.2. Let {Xt(λj , αj) : t ∈ N0} be a Poisson INAR(1) pro-

cess with initial state X0(λj , αj), for j = 1, 2. If λ1 ≤ λ2 and α1 ≤ α2 then
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X0(λ1, α1) ≤st X0(λ2, α2) and more importantly:

P(λ1, α1) ≤st P(λ2, α2) ,(5.19)

HTX0(λ1,α1)(λ1, α1) ≥st HTX0(λ2,α2)(λ2, α2) ,(5.20)

that is, HTX0(λ,α)(λ, α) ↓st with λ, α.

The stochastic ordering result (5.20) from Proposition 5.2 can be inter-

preted as follows: the upper one-sided c-chart for the mean of a Poisson INAR(1)

process stochastically increases its detection speed as the increase in λ or α be-

comes more severe. This result parallels with the notion of a sequentially repeated

test possessing what Ramachandran (1958) called the monotonicity property.

Results such as (5.20) also remind us of the notion of the level crossing

ordering introduced by Irle and Gani (2001). For instance, a Markov chain {Yt :

t ∈ N0} is slower in level crossing than a Markov chain {Zt : t ∈ N0} if it takes {Yt :

t ∈ N0} stochastically longer than {Zt : t ∈ N0} to exceed any given level. Thus,

instead of comparing two stochastic processes through all their finite dimensional

distributions as for st-ordering, the lc-ordering compare two stochastic processes

through their hitting times (Ferreira and Pacheco, 2007).

In light of this definition we can add that result (5.20) translates as follows:

for λ1 ≤ λ2 and α1 ≤ α2, the Poisson INAR(1) process {Xt(λ1, α1) : t ∈ N0} is

said to be slower in level-crossing in the st-sense than {Xt(λ2, α2) : t ∈ N0}.

6. ON GOING AND FURTHER WORK

More than 50 years after Samuel Karlin’s first and astounding contributions

on total positivity, we illustrate how this concept and its implications provide

insights on the performance of quality control charts for the mean of the Poisson

INAR(1) process.

Directions for future work include trying to prove the conjecture HT 0(λ, α)

↓lr with λ.

So far we can add that extensive numerical results, such as the ones shown in

Figure 3, suggest this conjecture is valid. In this figure, we can find the likelihood

ratio functions P [HT 0((j+0.1) λ0,α0)=m]
P [HT 0(j λ0,α0)=m]

, for j = 1, 1.1, 1.2, 1.3, when λ0 =1, α0 = 0.4

and k = 3, as in Example 5.1. All these likelihood ratios are nonincreasing func-

tions suggesting that

(6.1) HT 0((j + 0.1)λ0, α0) = m] ≤lr HT 0(j λ0, α0) , j = 1, 1.1, 1.2, 1.3 .
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Interestingly, additional numerical results led to the conclusion that HT 0(λ,α)6 ↓lr

with α.
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Figure 3: Likelihood ratios functions: P [HT 0((j+0.1) λ0,α0)=m]
P [HT 0(j λ0,α0)=m] ,

for λ0 = 1, α0 = 0.4, k = 3, and j = 1 (top left),
1.1 (top right), 1.2 (bottom left), 1.3 (bottom right).

The simplicity of the Shewhart control charts, such as the upper one-sided

c-chart we used, was responsible for their widespread popularity among quality

control practitioners. The fact that Shewhart-type charts only use the last ob-

served value of their control statistics to trigger (or not) a signal is responsible

for a serious limitation: they are not effective in the detection of small and mod-

erate shifts in the parameter being monitored. As put by Ramos (2013, p. 5), this

limitation led to the cumulative sum control chart (CUSUM) proposed by Page

(1954) and the exponentially weighted moving average control chart (EWMA)

introduced by Roberts (1959), originally designed to monitor the process mean.

CUSUM and EWMA control charts make use of recursive control statistics that

account for the information contained in every collected sample of the process

and prove to be more sensitive to small and moderate shifts in the process mean.

As a consequence, we also plan to conduct a similar analysis on the HT of

these more sophisticated quality control charts to monitor λ
1−α

. A few difficulties

may arise in the derivation of a result such as (5.20), namely because the CUSUM

and EWMA control statistics constitute Markov chains with two-dimensional

state spaces, as noted by Weiss and Testik (2009) and Weiss (2009c).
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[15] Karasu, I. and Özekici, S. (1989). NBUE and NWUE properties of increasing
Markov processes, Journal of Applied Probability, 27, 827–834.

[16] Karlin, S. (1964). Total positivity, absorption probabilities and applications,
Transactions of the American Mathematical Society, 11, 33–107.

[17] Karlin, S. (1968). Total Positivity – Vol. I, California: Stanford University
Press.

[18] Karlin, S. and Proschan, F. (1960). Pólya type distributions of convolutions,
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