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Abstract:
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we study a global hypothesis test to simultaneously compare the predictive values
of multiple binary diagnostic tests in the presence of ignorable missing data. The
global hypothesis test deduced is based on the chi-squared distribution. Simulation
experiments were carried out to study the type I error probability and the power of
global hypothesis test and of other alternative methods when comparing the predictive
values of two and three binary diagnostic tests respectively.
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1. INTRODUCTION

A diagnostic test is a medical test that is applied to an individual in order

to determine the presence or absence of a disease. When the diagnostic test

can only give two possible results (positive, indicating the provisional presence

of the disease, or negative, indicating the provisional absence of the disease)

the diagnostic test is called a binary diagnostic test (BDT ) and it is used very

frequently in clinical practice. A stress test for the diagnosis of coronary disease

or a mammogram to diagnose breast cancer are two examples of BDTs. The

most common parameters to assess the accuracy or performance of a BDT are

sensitivity (Se) and specificity (Sp). Other commonly used parameters to assess

the performance of a BDT are predictive values (PVs). The positive predictive

value (PPV ) of a BDT is the probability of an individual having the disease given

that the result of the BDT is positive and the negative predictive value (NPV )

is the probability of an individual not having the disease given that the result

of the BDT is negative. The predictive values (PVs) are a measure of clinical

accuracy of the BDT, and they depend on the sensitivity and the specificity of

the BDT and on the prevalence of the disease (p). Applying Bayes Theorem, the

PVs are calculated as

PPV =
p × Se

p × Se + (1− p) × (1−Sp)

and(1.1)

NPV =
(1− p) × Sp

p × (1−Se) + (1− p) × Sp
.

In the study of statistical methods for the diagnosis of diseases, comparison of

the accuracy or the performance of two diagnostic tests is a topic of particular

importance. In paired designs (i.e. when the two BDTs and the gold standard

are applied to all of the individuals in a random sample), comparison of the PVs

of two BDTs in relation to the same gold standard has been the subject of several

studies in the statistical literature [1, 2, 3, 4]. In all of them, the comparison of

the two PPVs and the comparison of the two NPVs is carried out independently.

Roldán-Nofuentes et al. [5] showed that the PVs of two (or more) BDTs are

correlated and they studied a global hypothesis test based on the chi-squared

distribution to simultaneously compare the PVs of two or more BDTs in relation

to the same gold standard. In all of these studies, the disease status of all of

the patients is known, as well as the results of the two diagnostic tests. This

situation is also known as ‘complete verification’ (because the gold standard is

applied to all of the individuals in the sample). Poleto et al. [6] studied the

comparison of the predictive values of two BDTs when for some individuals we

do not know the results of one of the two BDTs. Furthermore, in clinical practice

it is common for the gold standard not to be applied to all of the individuals in the

sample, thus leading to the problem known as partial disease verification [7, 8, 9].
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Therefore, the disease status (if the disease is present or absent) is unknown for

a subset of individuals in the sample. In this situation, Roldán-Nofuentes et al.

[10, 11] studied the comparison of the PPVs and of the NPVs of two BDTs.

Nevertheless, in these two studies they did not consider the dependence that

exists between the PVs of the diagnostic tests. This is the essence of our article,

to study a global hypothesis test that allows us to jointly compare the PVs of two

(or more) BDTs in the presence of ignorable missing data. In this article, we study

a global hypothesis test to simultaneously compare the predictive values of two

or more BDTs when, in the presence of partial disease verification, the missing

data mechanism is ignorable. In Section 2, we propose a global hypothesis test,

and other alternative methods, to simultaneously compare the PVs of multiple

BDTs. In Section 3, Monte Carlo simulation experiments are carried out in order

to study the type I error probability and the power of the global hypothesis test

(and of the alternative methods) when comparing the PVs of two and of three

BDTs respectively. In Section 4, the method proposed is applied to two examples,

and in Section 5 the results obtained are discussed.

2. THE MODEL

Let us consider J BDTs (J > 2) that are applied independently to the

same random sample of size n extracted from a population that has a determined

prevalence of the disease (p). Moreover, let us consider that the gold standard

has not been applied to all of the individuals in the random sample. In this sit-

uation, the J diagnostic tests are applied to all of the individuals in the sample

whilst the gold standard is only applied to a subset of them. Therefore, the re-

sults of the J diagnostic tests are known by all of the individuals in the sample,

whereas the result of the gold standard (i.e. the disease status) is only unknown

to a subset of them. Let Tj , V and D be the random binary variables defined

as: Tj which models the result of the j-th BDT (j = 1, ..., J), so that Tj = 1

when the test result is positive and Tj = 0 when the result is negative; V models

the verification process, V = 1 when the individual is verified with the gold stan-

dard and V = 0 when the individual is not verified; and D models the result of

the gold standard, D = 1 when the individual has the disease and D = 0 when

the individual does not. Let Sej = P (Tj = 1 |D = 1), Spj = P (Tj = 0 |D = 0),

PPVj = P (D = 1 |Tj = 1) and NPVj = P (D = 0 |Tj = 0) be the sensitivity, the

specificity, the positive predictive value and the negative predictive value of the

j-th BDT respectively. Let the observed frequencies be: si1,...,iJ is the number of

patients verified in which T1 = i1, T2 = i2, ..., TJ = iJ and D = 1; ri1,...,iJ is the

number of patients verified in which T1 = i1, T2 = i2, ..., TJ = iJ and D = 0; and

ui1,...,iJ is the number of patients not verified in which T1 = i1, T2 = i2, ..., TJ = iJ

with ij = 0, 1 and j = 1, ..., J . Let ni1,...,iJ = si1,...,iJ + ri1,...,iJ + ui1,...,iJ and



Comparison of the PVs of Multiple BDTs 49

n =
1∑

i1,...,iJ=0

ni1,...,iJ . As only a subset of individuals in the sample have their disease

status verified with the gold standard, the verification probabilities (λk,i1,...,iJ )

are defined as the probability of selecting an individual for whom D = k, T1 = i1,

T2 = i2, ..., TJ = iJ with k, ij = 0, 1, j = 1, ..., J , to verify his or her disease status

i.e.

λk,i1,...,iJ = P
(
V = 1

∣∣ D = k, T1 = i1, T2 = i2, ..., TJ = iJ

)
.

Assuming that the verification process with the gold standard only depends on

the results of the J BDTs and does not depend on the disease status, then

the missing data mechanism is missing at random (MAR) [12]. Assuming also

that the parameters of the data model and the parameters of the missingness

mechanism are distinct, then the missing data mechanism is ignorable [13]. Under

this model, the verification probabilities are

λk,i1,...,iJ = λi1,...,iJ = P
(
V = 1

∣∣ T1 = i1, T2 = i2, ..., TJ = iJ

)
,

and all of the parameters can be estimated applying the maximum likelihood

method.

2.1. Maximum likelihood estimators of the PVs

As the J BDTs are applied to all of the n individuals in the random sample

and the gold standard is only applied to a subset of them, the frequencies observed

ri1,...,iJ , si1,...,iJ and ui1,...,iJ with ij = 0, 1 and j = 1, ..., J , which can be written

in the form of a 3×2J table in which the sample of size n has been set, are the

realization of a multinomial distribution whose probabilities are

φi1,...,iJ = P
(
V = 1, D = 1, T1 = i1, T2 = i2, ..., TJ = iJ

)
,

ϕi1,...,iJ = P
(
V = 1, D = 0, T1 = i1, T2 = i2, ..., TJ = iJ

)

and

γi1,...,iJ = P
(
V = 0, T1 = i1, T2 = i2, ..., TJ = iJ

)
.

Let ω = (φ1,...,1, ..., φ0,...,0, ϕ1,...,1, ..., ϕ0,...,0, γ1,...,1, ..., γ0,...,0)
T be a vector sized(

3 · 2J
)

whose components are the probabilities of multinomial distribution and

ηi1,...,iJ = φi1,...,iJ +ϕi1,...,iJ +γi1,...,iJ . Assuming that the missing data mechanism

is ignorable, the PVs of the j-th BDT are written in terms of the parameters of
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the vector ω and of the verification probabilities as

PPVj =

1∑
i1,...,iJ=0; ij=1

φi1,...,iJ λ−1
i1,...,iJ

1∑
i1,...,iJ=0; ij=1

ηi1,...,iJ

and(2.1)

NPVj =

1∑
i1,...,iJ=0; ij=0

ϕi1,...,iJ λ−1
i1,...,iJ

1∑
i1,...,iJ=0; ij=0

ηi1,...,iJ

,

where λi1,...,iJ = (φi1,...,iJ + ϕi1,...,iJ )/ηi1,...,iJ are the verification probabilities.

Therefore, in equations (2.1) we can observe the dependence of the PVs of the

verification process subject to the MAR assumption. In this situation the loga-

rithm of the likelihood function is

l =
1∑

i1,...,iJ=0

si1,...,iJ log (φi1,...,iJ ) +
1∑

i1,...,iJ=0

ri1,...,iJ log (ϕi1,...,iJ )

+
1∑

i1,...,iJ=0

ui1,...,iJ log (γi1,...,iJ ) ,

so that maximizing this function, the maximum likelihood estimators (MLEs) of

φi1,...,iJ , ϕi1,...,iJ and γi1,...,iJ are the estimators of multinomial proportions [14],

i.e.

(2.2) φ̂i1,...,iJ =
si1,...,iJ

n
, ϕ̂i1,...,iJ =

ri1,...,iJ

n
and γ̂i1,...,iJ =

ui1,...,iJ

n
,

and the MLE of ηi1,...,iJ is η̂i1,...,iJ = ni1,...,iJ /n. Substituting in equations (2.1)

the parameters with their respective MLEs given in equations (2.2), the MLEs

of the PVs of the j-th BDT are

P̂PVj =

1∑
i1,...iJ=0; ij=1

si1,...iJ
ni1,...iJ

si1,...iJ
+ ri1,...iJ

1∑
i1,...iJ=0; ij=1

ni1,...iJ

and

N̂PVj =

1∑
i1,...iJ=0; ij=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ ri1,...iJ

1∑
i1,...iJ=0; ij=0

ni1,...iJ

.

Once we have obtained the MLEs of the PVs of the J BDTs, we then estimate

their variances-covariances.
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2.2. Estimation of the variances-covariances of the PVs

As the vector ω is the vector of probabilities of a multinomial distribution,

the variance-covariance matrix of ω̂ is
∑

ω̂
=

{
diag (ω) − ω

T
ω

}/
n. Let τ =

(PPV1, ..., PPVJ , NPV1, ..., NPVJ)T be a vector sized 2J whose components are

the PVs of the J BDTs, and let τ̂ be the MLE of τ . As τ is a function of

the components of the vector ω, applying the delta method [15] the asymptotic

variance-covariance matrix of τ̂ is

∑
τ̂

=

(
∂τ

∂ω

) ∑
ω̂

(
∂τ

∂ω

)T

.

Substituting in the previous expression each parameter with its corresponding

MLE, we obtain the estimated asymptotic variances-covariances of the estimators

of the PVs of the J BDTs.

Moreover, the asymptotic variances-covariances of τ̂ can also be estimated

through bootstrap [16], generating, from the random sample of size n, B sam-

ples with replacement and from these B samples asymptotic variance-covariance

matrix of τ̂ is estimated.

Once we have obtained the MLEs of the PVs and their estimated asymp-

totic variances-covariances, it is possible to solve the global hypothesis test to

simultaneously compare the PVs of the J BDTs.

2.3. Global hypothesis test

The global hypothesis test to simultaneously compare the PVs of J BDTs

is

H0 : PPV1 = PPV2 = ··· = PPVJ and NPV1 = NPV2 = ··· = NPVJ ,

H1 : at least one equality is not true ,

which is equivalent to the hypothesis test

(2.3) H0 : Aτ = 0 vs H1 : Aτ 6= 0 ,

where A is a full rank matrix sized 2 (J −1) × 2J whose elements are known

constants. For two BDTs (J = 2) the matrix A is

(
1 0
0 1

)
⊗

(
1 −1

)
, and for

J = 3 this matrix is

(
1 0
0 1

)
⊗

(
1 −1 0
0 1 −1

)
, where ⊗ is the Kronecker product.

As the vector τ̂ is asymptotically distributed according to a normal multivariate
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distribution, i.e. τ̂ −−−→
n→∞

N (τ ,Στ), the Wald statistic for the global hypothesis

test (2.3) is

(2.4) Q2 = τ̂
TAT

(
A

∑̂
τ̂

AT

)−1

Aτ̂ ,

which is asymptotically distributed according to a chi-squared distribution with

2 (J − 1) degrees of freedom when the null hypothesis is true.

If the global hypothesis test is solved applying bootstrap, the statistic for

the global test is similar to that given in the expression (2.4), substituting τ̂

with the bootstrap estimator of τ and
∑̂

τ̂
with the variance-covariance matrix

estimated through bootstrap.

Other alternative methods will now be proposed to solve the global hypoth-

esis test (2.3).

2.4. Alternative methods

The method proposed in the previous Section to solve the global hypoth-

esis test (2.3) is based on the chi-squared distribution. The following are some

alternative methods to solve this hypothesis test:

Method 1. Consists of solving the J (J − 1) marginal hypothesis tests given

by

H0 : PPVk = PPVl vs H1 : PPVk 6= PPVl

and
H0 : NPVk = NPVl vs H1 : NPVk 6= NPVl

with k, l = 1, ..., J and k 6= l, each one to an error rate of α/{J (J − 1)}, i.e.

applying the Bonferroni method [17], where the statistics is

(2.5) z =
P̂ Vk − P̂ Vl√

V̂ar
(
P̂ Vk

)
+ V̂ar

(
P̂ Vl

)
− 2Ĉov

(
P̂ Vk, P̂ Vl

) −→ N (0, 1) ,

and where PV is PPV or NPV respectively.

Method 2. Consists of solving the J (J − 1) marginal hypothesis tests and

applying the multiple comparison method of Holm [18] to a global error rate of

α.

Method 3. Consists of solving the J (J − 1) marginal hypothesis tests and

applying the multiple comparison method of Hochberg [19] to a global error rate

of α.
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These methods are very easy to apply from the p-values calculated in the

J (J − 1) marginal hypothesis tests. The Bonferroni method is a classic method of

post hoc comparison, and the Holm and Hochberg methods are less conservative

post hoc methods than the Bonferroni method. Furthermore all of the aforemen-

tioned methods can be applied both if the PVs and their variances-covariances

are estimated through the maximum likelihood method and the delta method

respectively, or if they are estimated through the bootstrap method.

3. SIMULATION EXPERIMENTS

Monte Carlo simulation experiments were carried out to study the type I

error probability and the power of the global hypothesis proposed in Section 2.3

and of the alternative methods proposed in Section 2.4, when comparing the

PVs of two and of three BDT s respectively, and both if the variance-covariance

matrix is estimated through the delta method and if it is estimated through

the bootstrap method. These simulation experiments were designed in a similar

way to those carried out by Roldan-Nofuentes et al. [5], and consisted of the

generation of 5000 random samples with multinomial distributions sized 50, 100,

200, 500, 1000, 2000 and 5000. For all of the study α = 5% was set. All of the

random samples were generated in such a way that in all of them it was possible

to estimate the PVs and their variances-covariances. In the case of bootstrap,

for each random sample 2000 samples with replacement were generated and from

these ˆ̄τ and
∑̂

ˆ̄τ
were calculated. All of the random samples were generated

from the PVs and the prevalence, without setting the values of sensitivity and

specificity of each BDT in the following way:

1. As PVs we took the values {0.60, 0.65, ..., 0.90, 0.95}, which are quite

common values in clinical practice, and as values of the disease preva-

lence we took the values {0.05, 0.10, ..., 0.90, 0.95}.

2. Once the PVs and the disease prevalence were set, the sensitivity and

the specificity of each diagnostic test were calculated from equations

(1.1), and then the maximum values of the dependence factors between

the two BDTs were obtained from the values of the sensitivity and

specificity of each diagnostic test applying the model of Vacek [20] for

two BDTs and applying the model of Torrance-Rynard and Walter [21]

for three BDTs. In Appendix A both models are summarized.

3. For two BDTs, as verification probabilities we took the values

(
λ11 = 0.70, λ10 = λ01 = 0.40, λ00 = 0.10

)

and (
λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.30

)
,

which can be considered a scenario with low verification and a scenario
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with high verification respectively. For three BDTs, we took the values
(
λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25,

λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05
)

and (
λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40,

λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20
)
,

which can also be considered as scenarios with low and high verification.

4. In the case of two BDTs, the probabilities of the multinomial distribu-

tions were calculated from the equations of the model of Vacek [20] (Ap-

pendix A). In the case of three BDTs, the probabilities of the multino-

mial distributions were calculated from the model of Torrance-Rynard

and Walter [21] (Appendix A).

3.1. Two BDTs

In Table 1 we show the results obtained for the type I errors probabili-

ties and the powers when comparing the PVs of two BDTs, for different values

of the PVs and for intermediate and high dependence factors, when the PVs

are estimated through maximum likelihood and the variance-covariance matrix is

estimated through the delta method (other tables with results from the simula-

tion experiments can be requested from the authors). Regarding the type I error

probability, the global hypothesis test has a type I error probability which, in gen-

eral terms, fluctuates around the nominal error of 5% especially when n > 500.

In some cases, especially when n 6 200 and the verification probabilities are low

and/or the dependence factors are high, the type I error probability may over-

whelm the nominal error. This may be due to the fact that the samples are

not large enough, and therefore some frequencies of the multinomial distribution

which are equal to zero, and the variance-covariance matrix are not well repre-

sented. Regarding Methods 1, 2 and 3 (Bonferroni, Holm and Hochberg), the

type I error probability of each one of them performs in a similar way to that

of the global test, although it is usually somewhat lower than the nominal error

(especially for n > 2000).

Regarding the power, in general it is necessary to have samples of between

500 and 1000 individuals (depending on the verification probabilities) so that

the power of the global hypothesis test is high (higher than 80% or 90%). The

power of the global hypothesis test increases when there is an increase in the

verification probabilities; whereas the increase in the dependence factors does

not have a clear effect on the power of the global hypothesis test (sometimes

it increases and sometimes it decreases). Regarding Methods 1, 2 and 3, their

respective powers perform in a similar way to that of the global test, although

the power of each one of them is slightly lower than that of the global test.



Comparison of the PVs of Multiple BDTs 55

Table 1: Type I errors probabilities and powers when comparing the PVs

of two BDTs (M1: Method 1, M2: Method 2, M3: Method 3).

TYPE I ERRORS PROBABILITIES

PPV1 = PPV2 = 0.80, NPV1 = NPV2 = 0.90
p = 20%

Se1 = Se2 = 0.5714, Sp1 = Sp2 = 0.9643

λ11 = 0.70, λ10 = 0.40, λ01 = 0.40, λ00 = 0.10

n
ε1 = 0.075, ε0 = 0.01 ε1 = 0.15, ε0 = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

50 0.007 0.007 0.007 0.007 0.003 0.003 0.003 0.003
100 0.039 0.035 0.035 0.039 0.044 0.039 0.039 0.044
200 0.070 0.069 0.069 0.069 0.068 0.067 0.067 0.068
500 0.066 0.065 0.065 0.066 0.069 0.068 0.068 0.069

1000 0.059 0.058 0.058 0.059 0.054 0.050 0.050 0.051
2000 0.056 0.055 0.055 0.055 0.049 0.039 0.039 0.042
5000 0.048 0.042 0.042 0.044 0.054 0.048 0.048 0.049

λ11 = 0.95, λ10 = 0.60, λ01 = 0.60, λ00 = 0.30

n
ε1 = 0.075, ε0 = 0.01 ε1 = 0.15, ε0 = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

50 0.022 0.021 0.021 0.021 0.011 0.011 0.011 0.011
100 0.062 0.058 0.058 0.062 0.067 0.066 0.066 0.067
200 0.068 0.067 0.067 0.068 0.069 0.068 0.068 0.068
500 0.055 0.056 0.056 0.057 0.058 0.057 0.057 0.057

1000 0.058 0.057 0.057 0.058 0.059 0.057 0.057 0.058
2000 0.054 0.052 0.052 0.053 0.048 0.043 0.043 0.044
5000 0.049 0.044 0.044 0.047 0.052 0.046 0.046 0.047

POWERS

PPV1 = 0.85, PPV2 = 0.90, NPV1 = 0.75, NPV2 = 0.80
p = 75%

Se1 = 0.9444, Sp1 = 0.50, Se2 = 0.9429, Sp2 = 0.6857

λ11 = 0.70, λ10 = 0.40, λ01 = 0.40, λ00 = 0.10

n
ε1 = 0.02, ε0 = 0.06 ε1 = 0.04, ε0 = 0.12

Global test M1 M2 M3 Global test M1 M2 M3

50 0.004 0.004 0.004 0.004 0.006 0.006 0.006 0.006
100 0.090 0.089 0.089 0.090 0.065 0.066 0.066 0.068
200 0.307 0.264 0.026 0.266 0.336 0.333 0.333 0.335
500 0.770 0.667 0.667 0.668 0.913 0.863 0.863 0.863

1000 0.984 0.940 0.940 0.940 0.999 0.998 0.998 0.998
2000 1 0.998 0.998 0.998 1 1 1 1
5000 1 1 1 1 1 1 1 1

λ11 = 0.95, λ10 = 0.60, λ01 = 0.60, λ00 = 0.30

n
ε1 = 0.02, ε0 = 0.06 ε1 = 0.04, ε0 = 0.12

Global test M1 M2 M3 Global test M1 M2 M3

50 0.051 0.050 0.050 0.050 0.032 0.031 0.031 0.032
100 0.198 0.195 0.195 0.201 0.175 0.185 0.185 0.192
200 0.431 0.388 0.388 0.392 0.553 0.540 0.540 0.543
500 0.833 0.780 0.780 0.782 0.965 0.949 0.949 0.949

1000 0.990 0.978 0.978 0.978 1 1 1 1
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1
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Regarding the solution of the global test applying the bootstrap method,

the results obtained are almost identical to those obtained through the method of

maximum likelihood and the delta method. Therefore, in terms of the type I error

probability and the power there is practically no difference between solving the

global hypothesis test through the maximum likelihood method and the bootstrap

method, although the bootstrap requires a greater computational effort.

3.2. Three BDTs

In Table 2 we show some of the results obtained for the type I error prob-

ability and the power when comparing the PVs of three BDTs, also for different

values of the PVs and for intermediate and high dependence factors, when the

PVs are estimated through maximum likelihood and the variance-covariance ma-

trix is estimated through the delta method (other tables with results from the

simulation experiments can be requested from the authors). For three BDTs we

have not considered sample sizes smaller than 100, since with smaller samples

there are too many frequencies equal to 0 (above all when the prevalence is low

and/or the verification probabilities are low) and it is not possible to calculate

the estimators or the variances-covariances. In general terms, the conclusions

reached are similar to those obtained for two BDTs, although for the global test

and for methods 1, 2 and 3 it is necessary to have larger sample sizes so that the

type I error probability fluctuates around the nominal error.

With regard to the power of each method, this increases with an increase in

the verification probabilities, and decreases when there is an increase in the values

of the dependence factors. In very general terms, when the verification probabil-

ities are low it is necessary to have samples of between 500 and 1000 individuals

so that the power of the global test is higher than 80% or 90% (depending on

the values of the dependence factors), although in some situations (high depen-

dence factors) it is necessary to have very large samples (n > 5000) in order to

reach this power. Regarding Methods 1, 2 and 3, in general terms there is no

important difference in power in relation to the global hypothesis test, especially

when n > 500, whilst for smaller sample sizes the global test is somewhat more

powerful than for the other three methods.

3.3. Conclusions

From the analysis of the results obtained in the simulation experiments one

may conclude that the global hypothesis test based on the chi-squared distribution

displays the performance of an asymptotic hypothesis test (from a certain sample

size onwards, its type I error probability fluctuates around the nominal error).
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Table 2: Type I errors probabilities and powers when comparing the PVs

of three BDTs (M1: Method 1, M2: Method 2, M3: Method 3).

TYPE I ERRORS PROBABILITIES

PPV1 = PPV2 = PPV3 = 0.85, NPV1 = NPV2 = NPV3 = 0.80
p = 25%

e1 = Se2 = Se3 = 0.2615, Sp1 = Sp2 = Sp3 = 0.9846

λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25
λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05

n
δ = 0.0075, ε = 0.0001 δ = 0.015, ε = 0.0002

Global test M1 M2 M3 Global test M1 M2 M3

100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
200 0.005 0.003 0.003 0.003 0.005 0.004 0.004 0.004
500 0.041 0.026 0.026 0.028 0.045 0.030 0.030 0.032

1000 0.058 0.041 0.041 0.045 0.059 0.040 0.040 0.045
2000 0.059 0.043 0.043 0.050 0.059 0.058 0.058 0.059
5000 0.053 0.044 0.044 0.048 0.054 0.037 0.037 0.042

λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40
λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20

n
δ = 0.0075, ε = 0.0001 δ = 0.015, ε = 0.0002

Global test M1 M2 M3 Global test M1 M2 M3

100 0.007 0.005 0.005 0.005 0.006 0.004 0.004 0.005
200 0.043 0.031 0.031 0.032 0.043 0.029 0.029 0.031
500 0.050 0.037 0.038 0.041 0.056 0.039 0.039 0.041

1000 0.057 0.045 0.045 0.047 0.057 0.042 0.042 0.047
2000 0.058 0.044 0.044 0.046 0.059 0.047 0.047 0.052
5000 0.054 0.037 0.037 0.041 0.052 0.041 0.041 0.044

POWERS

PPV1 = 0.70, PPV2 = 0.80, PPV3 = 0.90, NPV1 = 0.75, NPV2 = 0.85, NPV3 = 0.95
p = 60%

Se1 = 0.9074, Sp1 = 0.4167, Se2 = 0.9231, Sp2 = 0.6538, Se3 = 0.9706, Sp3 = 0.8382

λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25
λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05

n
δ = 0.001, ε = 0.01 δ = 0.002, ε = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

100 0.042 0.041 0.041 0.041 0.034 0.033 0.033 0.034
200 0.261 0.260 0.260 0.260 0.219 0.218 0.218 0.218
500 0.823 0.823 0.823 0.823 0.741 0.740 0.740 0.740

1000 0.986 0.986 0.986 0.986 0.950 0.950 0.950 0.950
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1

λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40
λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20

n
δ = 0.001, ε = 0.01 δ = 0.002, ε = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

100 0.316 0.315 0.315 0.315 0.276 0.275 0.275 0.275
200 0.724 0.724 0.724 0.724 0.652 0.651 0.651 0.651
500 0.971 0.970 0.970 0.971 0.910 0.909 0.909 0.910

1000 1 1 1 1 0.995 0.995 0.995 0.995
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1
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In general terms, its type I error probability fluctuates around the nominal

error (especially for n > 500) and it is necessary to have large samples (n > 500)

so that the power is greater than 80%. From the results obtained in the simulation

experiments carried out, the global hypothesis test

H0 : PPV1 = PPV2 = ··· = PPVJ and NPV1 = NPV2 = ··· = NPVJ ,

H1 : at least one equality is not true ,

can be solved through the following procedure:

1. Solving the global hypothesis test based on the chi-squared distribution

to a global error rate of α using the statistics given by equations (2.4)

or bootstrap method.

2. If the global hypothesis test is not significant, then one cannot reject the

homogeneity of the J PPVs and of the J NPVs. If the global hypothesis

test is significant to an error rate of α, in order to investigate the causes

of the significance the following marginal hypothesis tests are solved

H0 : PPVi = PPVj vs H1 : PPVi 6= PPVj

and
H0 : NPVi = NPVj vs H1 : NPVi 6= NPVj

using the statistics given by equation (2.5), and applying some of the

methods of multiple comparison used (Bonferroni, Holm or Hochberg)

to an error rate of α.

4. EXAMPLE

The results obtained in Section 2 and the procedure given in Section 3.3

were applied to the diagnosis of coronary stenosis. Coronary stenosis is a disease

that consists of the obstruction of the coronary artery and its diagnosis can be

made through a dobutamine echocardiogram, a stress echocardiogram or a CT

scan, and as the gold standard a coronary angiography is used. Coronary an-

giography may cause different reactions in patients (thrombosis, heart attacks,

infections, even death) and therefore not all patients are verified with the gold

standard. In Table 3 (Study of coronary stenosis), we show the results obtained

by applying the dobutamine echocardiogram (variable T1), the stress echocardio-

gram (variable T2) and the CT scan (variable T2) to a sample of 2455 males over

45 years of age and by only applying the coronary angiography (variable D) to a

subset of these individuals. This study was carried out in two phases: firstly, the

three BDTs were applied to all of the individuals in the sample, and secondly the

gold standard was applied to a subset of these individuals depending on only the

results of the three diagnostic tests. This data are part of a study carried out at

the University Hospital in Granada (Spain). In this example, one can assume that
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the missing data mechanism is ignorable, and therefore the results from Section 3

can be applied. The values of the estimators of the PVs are P̂PV1 = 0.742,

P̂PV2 = 0.622, P̂PV3 = 0.805, N̂PV1 = 0.933, N̂PV2 = 0.850, N̂PV3 = 0.952,

and applying the delta method, the estimated asymptotic variance-covariance

matrix is

∑̂
τ̂

=




0.000234 0.000108 0.000086 0 −0.000063 −0.000038
0.000108 0.000258 0.000106 −0.000035 0 −0.000025
0.000086 0.000106 0.0000239 −0.000059 −0.000069 0

0 −0.000034 −0.000059 0.000114 0.000080 0.000045
0.000063 0 0.000069 0.000080 0.000169 0.000064
0.000038 0.000025 0 0.000045 0.000064 0.000085




.

Applying equation (2.4) it holds that Q2 = 145.103 (p − value = 0), and there-

fore we reject the equality of the three PPVs and of the three NPVs.

In order to investigate the causes of the significance, the marginal hypothe-

sis tests (H0 : PPVi = PPVj and H0 : NPVi = NPVj) are solved. In Table 3

(Marginal hypothesis tests), we show the results obtained for each one of the

six hypothesis tests that compare the PVs. Applying the Bonferroni method,

the Holm method or the Hochberg method, it holds that the three PPVs are

different, and that the PPV of the CT scan is the largest, followed by that of

the dobutamine echocardiogram and, finally, that of the stress echocardiogram.

Table 3: Data from the study of coronary stenosis and marginal hypothesis tests.

Study of coronary stenosis

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 Total

V = 1

D = 1 457 30 84 5 34 0 7 1 618
D = 0 41 23 5 61 16 86 32 95 359
V = 0 92 31 85 120 42 195 88 825 1478

Total 590 84 174 186 92 281 127 921 2455

Marginal hypothesis tests

Hypothesis test z Two sided p-value

H0 : PPV1 = PPV2 vs H1 : PPV1 6= PPV2 3.61 0.003

H0 : PPV1 = PPV3 vs H1 : PPV1 6= PPV3 7.20 6.06 × 10−13

H0 : PPV2 = PPV3 vs H1 : PPV2 6= PPV3 10.79 0

H0 : NPV1 = NPV2 vs H1 : NPV1 6= NPV2 7.46 8.37 × 10−14

H0 : NPV1 = NPV3 vs H1 : NPV1 6= NPV3 1.76 0.078

H0 : NPV2 = NPV3 vs H1 : NPV2 6= NPV3 8.99 0
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Regarding the NPVs, no significant differences were found between the NPVs

of the dobutamine echocardiogram and of the CT scan, whilst the NPV of the

dobutamine echocardiogram is significantly lower than the NPVs of the other

two BDTs.

5. DISCUSSION

Different studies have examined the problem of the comparison of the PVs

of two or more BDTs when the diagnostic tests and the gold standard are applied

to all of the individuals in a random sample. These models cannot be applied

when a subset of individuals in the random sample have not had their disease

status verified through the application of the gold standard, since the results ob-

tained may be affected by the verification bias. In this article, we have studied a

global hypothesis test to simultaneously compare the PVs of two or more BDTs

when for a subset of individuals in the sample the disease status (either present

or absent) is unknown. The global hypothesis test is based on the chi-squared

distribution, and can be solved through the method of maximum likelihood and

the delta method (equation (2.4) or through the bootstrap method, although

the latter requires a greater computational effort. In terms of the type I er-

ror probability, both methods lead to very similar results, and the type I error

probability fluctuates around the nominal error especially for n > 500. Other

alternative methods to solve the global hypothesis test have been studied. The

method based on the marginal comparisons of the PPVs (NPVs) to an error rate

of α = 5% leads to a type I error probability that clearly overwhelms the nominal

error, and therefore this method may give rise to erroneous results. The meth-

ods based on marginal comparisons applying the corrections of Bonferroni, Holm

and Hochberg respectively give rise to a type I error probability that fluctuates

around the nominal error especially for n > 500. In terms of power, the global

hypothesis test based on the chi-squared distribution (equation (2.4) or bootstrap

method) is a little more powerful than the methods based on the corrections of

Bonferroni, Holm and Hochberg respectively. Therefore, from the results of the

simulation experiments carried out, the following method is proposed to com-

pare the PVs of J BDTs in the presence of ignorable missing data: 1) Apply

the global hypothesis test based on the chi-squared distribution to an error rate

of α (equations (2.4) or bootstrap method); 2) If the global hypothesis test is

significant to an error rate of α, investigate the causes of the significance solving

the marginal hypothesis tests H0 : PPVi = PPVj and H0 : NPVi = NPVj along

with a method of multiple comparisons (Bonferroni, Holm or Hochberg). This

procedure is similar to that used in an analysis of variance. Firstly, the global

test is solved and then a method of multiple comparisons is applied.
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An alternative method to that proposed in Section 2 consists of solving the

global test applying the Wilks method. Similar simulation experiments to those

described in Section have demonstrated that the type I error probability and the

power of this method are very similar to those obtained with the Wald method

(equation (2.4)).

If all of the individuals are verified with the gold standard, and therefore

all of the frequencies ui1,...,iJ are equal to 0, the method proposed by Roldán-

Nofuentes et al. [5] is a particular case of the scenario analyzed in this study.

Therefore, the simultaneous comparison of the PVs of two (or more) BDTs in

paired designs is a particular case of the scenario analyzed in this article.
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APPENDIX A

In the case of two BDTs, the probabilities of the multinomial distribution

were calculated applying the model of conditional dependence of Vacek [20], and

their expressions are

φij = λijp
{

Sei
1(1 − Se1)

1−iSe
j
2(1 − Se2)

1−j + δijε1

}
,

ϕij = λij (1 − p)
{

Sp1−i
1 (1 − Sp1)

iSp
1−j
2 (1 − Sp2)

j + δijε0

}
,

γij = (1 − λij) p
{

Sei
1(1 − Se1)

1−iSe
j
2(1 − Se2)

1−j + δijε1

}

+ (1 − λij) (1 − p)
{

Sp1−i
1 (1 − Sp1)

iSp
1−j
2 (1 − Sp2)

j + δijε0

}
,

where δij = 1 when i = j and δij = −1, and εi is the dependence factor (co-

variance) between the two BDTs when D = i. In clinical practice, the two

BDTs are usually conditionally dependent on the disease, and it is verified [20]

that 0 < ε1 < Se1 (1 − Se2) when Se2 > Se1 and 0 < ε1 < Se2 (1 − Se1) when

Se1 > Se2, and in the same way, 0 < ε0 < Sp1 (1 − Sp2) when Sp2 > Sp1 and

0 < ε0 < Sp2 (1 − Sp1) when Sp1 > Sp2. If the two BDTs are conditionally in-

dependent on the disease then ε1 = ε0 = 0.

In the case of three BDTs, the probabilities of the multinomial distributions

were calculated applying the model of Torrance-Rynard and Walter [21]:

P
(
V = 1, D = 1, T1 = i1, T2 = i2, T3 = i3

)
=

= p λi1i2i3

{
3∏

j=1

Se
ij
j (1 − Sej)

1−ij +
3∑

j,k,j<k

(−1)|ij−ik|δjk

}
,

P
(
V = 1, D = 0, T1 = i1, T2 = i2, T3 = i3

)
=

= (1 − p) λi1i2i3

{
3∏

j=1

Spj
1−ij (1 − Spj)

ij +
3∑

j,k,j<k

(−1)|ij−ik|εjk

}

and

P
(
V = 0, T1 = i1, T2 = i2, T3 = i3

)
=

= p (1 − λi1i2i3)

{
3∏

j=1

Sej
ij (1 − Sej)

1−ij +
3∑

j,k,j<k

(−1)|ij−ik|δjk

}

+ (1 − p) (1 − λi1i2i3)

{
3∏

j=1

Spj
1−ij (1 − Spj)

ij +
3∑

j,k,j<k

(−1)|ij−ik|εjk

}
,

with ij = 0, 1, ik = 0, 1 and j, k = 1, 2, 3, and where δjk (εjk) is the factor of

dependence between the j-th BDT and k-th BDT when D = 1 (D = 0).
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The factors of dependence δjk and εjk verify restrictions that depend on the

values of sensitivity and specificity of the three BDTs. In order to simplify the

simulation experiments, it has been considered that δij = δ and εij = ε, so that

the factors of dependence verify the following restrictions:

δ ≤ Min
{

(1−Se1) (1−Se2) Se3, (1−Se1)Se2 (1−Se3) , Se1 (1−Se2) (1−Se3)
}

and

ε ≤ Min
{

(1−Sp1) (1−Sp2)Sp3, (1−Sp1) Sp2 (1−Sp3) , Sp1 (1−Sp2) (1−Sp3)
}

.

In clinical practice, factors δjk and/or εjk are greater than zero, so that the BDTs

are conditionally dependent on the disease status. When δjk = εjk = 0 the three

BDTs are conditionally independent on the disease status.
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