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cle are shown by demonstrating various numerical illustrations through Monte Carlo
simulation studies. Finally, applications on real data-sets are provided.

Key-Words:

• beta generalized inverted exponential distribution; Fisher information matrix;

goodness-of-fit test; maximum likelihood estimator; Monte Carlo simulation.

AMS Subject Classification:

• 62-07, 62E20, 62F10, 62F25, 62N02.



66 R.A. Bakoban and Hanaa H. Abu-Zinadah



The beta Generalized Inverted Exponential Distribution... 67

1. INTRODUCTION

The generalized inverted exponential distribution (GIED) was introduced

first by Abouammoh and Alshingiti (2009). It is a generalized form of the inverted

exponential distribution (IED). IED has been studied by Keller and Kamath

(1982) and Duran and Lewis (1989). GIED has good statistical and reliability

properties. It fits various shapes of failure rates.

The probability density function (pdf) of a two-parameter GIED is given

by

(1.1) f(x) =

(

αλ

x2

)

exp

(

−λ

x

)[

1 − exp

(

−λ

x

)]α−1

, x > 0, α, λ > 0 ,

and the cumulative distribution function (cdf) is given by

(1.2) F (x) = 1 −

[

1 − exp

(

−λ

x

)]α

, x > 0, α, λ > 0 .

In the last few years, new classes of distributions have been found by extending

certain distributions such that these new classes will have more applications in

reliability, biology and other fields.

Let G(t) be a cdf of a random variable T , such that

(1.3) F (t) =
1

B(a, b)

∫ G(t)

0
̟a−1(1 −̟)b−1d̟ ,

where a > 0, b > 0, and B(a, b) =
∫ 1
0 ̟

a−1(1−̟)b−1d̟ is the beta function. The

skewness of the distribution is controlled by the two parameters a and b. The

cdf G(t) could be any arbitrary distribution, and, consequently, F is named the

beta G distribution. The previous formula in (1.3) was defined by Eugene et al.

(2002) as a class of generalized distributions.

The beta normal distribution (BND) was introduced by Eugene et al.

(2002). They used the cdf G(t) of the normal distribution in (1.3) and derived

some moments of the distribution. Expanding on this work, Gupta and Nadara-

jah (2004) established more general moments of BND. Based on the cdf G(t) of

the Gumbel distribution, Nadarajah and Kotz (2004) presented the beta Gum-

bel distribution and provided closed form expressions for the moments and the

asymptotic distribution of the extreme order statistics and obtained the maxi-

mum likelihood estimators (MLE) of the parameters. Further, by using the cdf

G(t) of the exponential distribution, Nadarajah and Kotz (2005) considered the

beta exponential distribution. They studied the first four cumulants, the moment

generating function, and the extreme order statistics and found the MLE. Fur-

thermore, Lee et al. (2007) considered the beta Weibull distribution and studied

applications based on censored data.
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Recently, Barreto-Souza et al. (2010) proposed the beta generalized expo-

nential distribution by taking G(t) in (1.3) to be the cdf of the exponentiated

exponential distribution and discussed the MLE of its parameters. Addition-

ally, Nassar and Nada (2011) presented several properties of the beta general-

ized Pareto distribution. They estimated the distribution’s parameters using the

MLE. An application on actual tax revenue data was investigated. Paranaiba

et al. (2011) discussed the beta Burr XII distribution. Mahmoudi (2011) pre-

sented the beta generalized Pareto distribution. Cordeiro and Lemonte (2011)

investigated the beta Laplace distribution. Zea et al. (2012) studied statistical

properties and inference of the beta exponentiated Pareto distribution (BEPD).

They provided an application of the BEPD to remission times of bladder cancer.

Leão et al. (2013) studied the beta inverse Rayleigh distribution. They provided

various properties, including the quantile function, moments, mean deviations,

Bonferroni and Lorenz curves, Rényi and Shannon entropies and order statistics,

as well as the MLE. Baharith et al. (2014) discussed properties, the MLE and the

Fisher information matrix for the beta generalized inverse Weibull distribution.

In this paper, a new beta distribution is introduced by taking G(·) to be the

GIED, and we refer to it as the beta generalized inverted exponential distribution

(BGIED). In Section 2, the BGIED is defined. Statistical properties of the model

are derived in Section 3. Maximum likelihood estimators of the parameters are

derived in Section 4. In Section 5, the asymptotic Fisher information matrix is

investigated. Additionally, interval estimates of the parameters are found using

the maximum likelihood method in Section 6. Section 7 explains the simula-

tion studies that illustrate the theoretical results. Finally, Section 8 provides

applications to real data-sets. Various conclusions are addressed in Section 9.

2. BETA GENERALIZED INVERTED EXPONENTIAL DISTRI-

BUTION

In this section, we introduce the four-parameter beta generalized inverted

exponential distribution (BGIED) by assuming G(x) to be the cdf of the gen-

eralized inverted exponential distribution (GIED). Substituting (1.2), the cdf of

GIED, into (1.3), the cdf of the BGIED is obtained in the following form

F (x) =
1

B(a, b)

∫ 1−[1−exp(−λ
x )]

α

0
̟a−1(1 −̟)b−1d̟ ,(2.1)

x > 0, a, b, α and λ > 0 .

The pdf of the BGIED takes the form

f(x) =
αλ exp

(

−λ
x

)

x2B(a, b)

(

1 −

[

1 − exp

(

−λ

x

)]α)a−1 [

1 − exp

(

−λ

x

)]αb−1

,(2.2)

x > 0, a, b, α and λ > 0 .
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For a positive real value a > 0, (2.2) can be rewritten as an infinite power

series in the form

f(x) =
αλ exp

(

−λ
x

)

x2B(a, b)

∞
∑

k=0

(−1)kΓ(a)

k!Γ(a− k)

[

1 − exp

(

−λ

x

)]α(b+k)−1

,(2.3)

x > 0, a, b, α, and λ > 0 .

From (2.3), the corresponding cdf can be written as follows

F (x) =
1

B(a, b)

∞
∑

k=0

(−1)k+1

a(b+ k)B(a− k, k + 1)

[

1 − exp

(

−λ

x

)]α(b+k)

,(2.4)

x > 0, a, b, α and λ > 0 .

The GIED is a special case of (2.2) when a = b = 1. Therefore, we can assume all

of the properties of the GIED that were investigated by Abouammoh and Alshin-

giti (2009) still hold. Additionally, when α = 1 in (2.2), the BIED is obtained,

which is related to the BGIWD when the shape parameters are equal to one and

has been discussed by Baharith et al. (2014).

Figure 1: The pdf curves of the BGIED with (a, b, α, λ).

3. STATISTICAL PROPERTIES

3.1. The reliability and hazard functions

The reliability function is the probability of no failure occurring before time t.

Alternately, the hazard function is the instantaneous rate of failure at a given

time. These two functions are very important properties of a lifetime distribution.
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The reliability function of the BGIED is given by

R(x) = 1 −
1

B(a, b)

∞
∑

k=0

(−1)k+1

a(b+ k)B(a− k, k + 1)

[

1 − exp

(

−λ

x

)]α(b+k)

,(3.1)

x > 0, a, b, α and λ > 0 ,

and the corresponding hazard function of the BGIED can be written as

h(x) =

αλ exp(−λ
x )

x2B(a,b)

∞
∑

k=0

(−1)kΓ(a)
k!Γ(a−k)

[

1 − exp
(

−λ
x

)]α(b+k)−1

1 − 1
B(a,b)

∞
∑

k=0

(−1)k+1

a(b+k)B(a−k,k+1)

[

1 − exp
(

−λ
x

)]α(b+k)
,(3.2)

x > 0, a, b, α and λ > 0 .

Figure 2 shows different choices for the parameters of the BGIED. Additionally, it

is shown from Figure 3 that the hazard function of the BGIED has an upside down

bathtub shape. As is shown, the hazard function increases and then decreases.

Figure 2: The reliability curves of the BGIED with (a, b, α, λ).

The upside down bathtub hazard function indicates that the risk of failing de-

creases as soon as the item has passed a specific time, during which it may have

experienced some type of stress. Thus, the BGIED shows good statistical behav-

ior based on these two functions.
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Figure 3: The hazard curves of the BGIED with (a, b, α, λ).

3.2. Moments and various measures

The rth moment about the origin, µ′r = E(Xr) of a BGIED with pdf (2.2)

in the non-closed form is

µ′r =

∫

∞

0
xrαλ exp

(

−λ
x

)

x2B(a, b)

(

1 −

[

1 − exp

(

−λ

x

)]α)a−1 [

1 − exp

(

−λ

x

)]αb−1

dx ,

r = 1, 2, ...

that is, for k ≥ r, µ′r takes the closed form

µ′r =
λr

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)k+j(j + 1)r−1

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.3)

×

{

∞
∑

i=0

(−1)i

i!(i− r + 1)
+ Er(1)

}

,

where B(a, b) is the beta function, and En(z) is called the exponential integral

function (Abramowitz and Stegun (1972)), which is defined as

(3.4) En(z) =

∫

∞

1

exp (−zt)

tn
dt .

Substituting r = 1 in (3.3), we obtain the mean of the BGIED as follows

µ =
λ

B(a, b)

∞
∑

k=1

∞
∑

j=0

(−1)k+j

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.5)

×

{

∞
∑

i=1

(−1)i

i2(i− 1)!
+ E1(1)

}

,

where E1(1) = 0.577216 is Euler’s constant.



72 R.A. Bakoban and Hanaa H. Abu-Zinadah

Additionally, the variance of the BGIED can be found from

Var(x) =
λ2

B(a, b)

∞
∑

k=2

∞
∑

j=0

(−1)(k+j)(j + 1)

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.6)

×

{

∞
∑

i=0

(−1)i

i!(i− 1)
+ E2(1)

}

− µ2 .

3.3. Quantile function and various related measures

The quantile function of the BGIED corresponding to (2.2) is

(3.7) q(u) = −λ
/

log
{

1 −
[

1 − I−1
u (a, b)

]
1

α

}

, 0 < u < 1 ,

where I−1
u (a, b) is the inverse of the incomplete beta function with parameters a

and b, such that

Iu(a, b) =
1

B(a, b)

∫ u

0
̟a−1(1 −̟)b−1d̟ ,

The above form of q(u) allows us to derive the following forms of statistical

measures for the BGIED:

1. The first quartile Q1, the second quartile Q2 (median), and the third

quartile Q3 of the BGIED correspond to the values u = 0.25, 0.50, and

0.75, respectively

2. The median (m), also, can be found using (2.4) such that
∣

∣1−exp
(

−λ
m

)∣

∣<1,

for a = 1, and then

(3.8) m =
−λ

log
[

1 − (−0.5)
1

αb

] .

3. The skewness and kurtosis can be calculated by using the following

relations, respectively:

Bowley’s skewness is based on quartiles; Kenney and Keeping (1962) cal-

culated it as follows

(3.9) υ3 =
Q3 − 2Q2 +Q1

Q3 −Q1
,

Moors’ kurtosis (Moors (1988)) is based on octiles via the form

(3.10) υ4 =
q(7/8) − q(5/8) − q(3/8) + q(1/8)

q(6/8) − q(2/8)
,

where q(·) represents the quantile function defined in (3.7).
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When a = b = 1 in (2.3), (3.3) and (3.7) give the moments and the quantile

of GIED, and, when a = b = α = 1 in (2.3), (3.3) and (3.7) give the moments and

the quantile of IED. Therefore, all measures above are satisfied for GIED when

a = b = 1, and for IED when a = b = α = 1.

3.4. The mean deviation

Let X be a BGIED random variable with mean µ = E(X) and median m.

In this subsection, the mean deviation from the mean and the mean deviation

from the median are derived.

3.4.1. The mean deviation from the mean can be found from the following theorem:

Theorem 1. The mean deviation from the mean of the BGIED is in the

form

E(|X − µ|) =
2

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)k+1+j

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

×
µ exp (−jλ/µ) − jλΓ (0, jλ/µ)

B [j + 1, α(b+ k) − j + 1]
,

where Γ (a, z) =
∫

∞

z
ta−1 exp (−t) dt.

Proof: The mean deviation from the mean can be defined as

E(|X − µ|) =

∫

∞

0
|X − µ| f(x) dx

= 2

∫ µ

0
(X − µ) f(x) dx

= 2µF (µ) − 2I(µ) ,

where I(z) =
∫ z

0 t dG(t), and d [t.dG(t)] = G(t) dt+ t dG(t).

Therefore, E(|X − µ|) = 2
∫ µ

0 F (x) dx.

Using (2.4), and expanding the term (1 − exp (−λ/x))α(b+k) we obtain

E(|X − µ|) =
2

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)(k+1+j)

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

×
1

B(j + 1, α(b+ k) − j + 1)

∫ µ

0
exp (−jλ/x) dx ,
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where

(3.11)

∫ c

0
exp (−jλ/x) dx = c exp (−jλ/c) − jλΓ (0, jλ/c) .

Hence, the theorem is proved.

3.4.2. The mean deviation from the median can be found from the following theorem:

Theorem 2. The mean deviation from the median of the BGIED is in the

form

E(|X −m|) = µ+
2

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)(k+j)jλ

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

×
Γ (0, jλ/m)

B(j + 1, α(b+ k) − j + 1)
, jλ > 0, m > 0 .

Proof: The mean deviation from the median can be defined as

E(|X −m|) =

∫

∞

0
|x−m|f(x)dx

= 2

∫ m

0
(m− x) f(x)dx−

∫ m

0
(m− x) f(x)dx+

∫

∞

m

(x−m) f(x)dx

= 2

∫ m

0
(m− x) f(x)dx+

∫

∞

0
(x−m) f(x)dx(3.12)

= µ− 2

[

mF (m) −

∫ m

0
F (x)dx

]

= µ−m+ 2

∫ m

0
F (x)dx .

Substituting (2.4) into (3.12) and using (3.11), we obtain

E(|X −m|) = µ−m

+
2

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)k+j+1 [m exp (−jλ/m) − jλΓ (0, jλ/m)]

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

×
1

B [j + 1, α(b+ k) − j + 1]

= µ−m+ 2mF (m)

+
2

B(a, b)

∞
∑

k=0

∞
∑

j=0

(−1)k+jjλΓ (0, jλ/m)

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

×
1

B [j + 1, α(b+ k) − j + 1]
.

Hence, the theorem is proved.
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3.5. The mode

The mode for the BGIED can be found by differentiating f(x) with respect

to x; thus, (2.2) gives

f ′(x) = f(x)

{

−2

x
+

λ

x2
− (αb− 1) [1 − exp (−λ/x)]−1 λ

x2
exp (−λ/x)

+ (a− 1) [1 − (1 − exp (−λ/x))α]−1(3.13)

×
αλ

x2
exp (−λ/x) (1 − exp (−λ/x))α−1

}

.

By equating (3.13) with zero, we get

1 −
2x

λ
+ (exp (−λ/x) − 1)−1 ×(3.14)

×
{

α (a− 1)
[

(1 − exp (−λ/x))−α − 1
]−1

− (αb− 1)
}

= 0 .

Then, the mode of the BGIED can be found numerically by solving (3.14).

In Table 1, we present the values of the mean, standard deviation (SD),

mode, median, skewness and kurtosis for different values of a, b, α and λ.

Table 1: The mean, SD, mode, median, skewness and kurtosis
for different values of the parameters.

a b α λ mean SD mode median skewness kurtosis

1 1 4 2 1.35919 1.04298 0.76393 1.08802 0.23016 0.66022
1 1 4 4 2.71838 2.08595 1.52787 2.17604 0.23016 0.66022
1 2 4 4 1.79735 0.88156 1.30871 1.60709 0.16158 0.44815
1 3 4 4 1.50143 0.61555 1.19585 1.38881 0.13109 0.35990
1 2 4 2 0.89867 0.44078 0.65435 0.80354 0.16158 0.44815
2 1 4 2 1.81971 1.24786 1.12748 1.50317 0.22047 0.63372
2 2 2 2 1.98654 1.39808 1.19879 1.62873 0.22323 0.63985
2 2 2 4 3.97308 2.79615 2.39758 3.25747 0.22323 0.63985

3.5 2 1 0.5 1.97910 302.436 0.65618 1.17708 0.32893 1.01650

The results of studying the behaviour of the BGIED are shown in Table 1

and Figure 1. We note that the distribution is unimodal and positively skewed.

For fixed values of a, b and α, the kurtosis values remain constant; therefore, the

mode, median and mean increase with the increase of λ. As we increase the value

of α ≥ 1 and fix the other parameters, the kurtosis value increases and the mean

decreases. It is noted that the distribution has a long right tail for fixed values

of b, α and λ. Moreover, for fixed values of a, α and λ the kurtosis and the mean



76 R.A. Bakoban and Hanaa H. Abu-Zinadah

values decrease as we increase the value of b. Additionally, for different values of

α and λ and fixed values of a and b, the skewness and the kurtosis values remain

stable. Alternately, for fixed values of α and λ, the skewness and the kurtosis

values decrease as we increase a and b. Furthermore, we found that our results

for a = b = 1 are exactly the same as the results in Abouammoh and Alshingiti

(2009).

4. MAXIMUM LIKELIHOOD ESTIMATORS

In this section, we examine estimation by maximum likelihood and inference

for the BGIED. Let X1, X2, ..., Xn be a random sample from the BGIED with

pdf and cdf given, respectively, by (2.2) and (2.4). The likelihood function in this

case can be written as (Lawless (2003)):

(4.1) L(θ|x) =
n

∏

i=1

f(xi) ,

where f(·) is given by (2.2) and θ = (a, b, α, λ).

The natural logarithm of the likelihood function (4.1) is given by

(4.2) ℓ = logL(θ|x) =
n

∑

i=1

log f(xi) .

For the BGEID, we have have

logL = n log (αλ) − n logB(a, b) + (αb− 1)
n

∑

i=1

log

(

1 − exp

(

−λ

xi

))

−λ
n

∑

i=1

x−1
i − 2

n
∑

i=1

log (xi) + (a− 1)
n

∑

i=1

log

[

1 −

(

1 − exp

(

−λ

xi

))α]

.(4.3)

Assuming that the parameters θ = (a, b, α, λ), are unknown, the likelihood equa-

tions are given for θ

lj =
∂ logL

∂θj
=

1

f(xi)

∂f(xi)

∂θj
= 0 , j = 1, 2, 3, 4 .

From (2.2), we have

(4.4)

∂ logL

∂α
=

n

α
+

n
∑

i=1

log

(

1− exp

(

−λ

xi

))







b− (a−1)

[

(

1− exp

(

−λ

xi

))

−α

− 1

]

−1






,
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∂ logL

∂λ
=

n

λ
+ (αb− 1)

n
∑

i=1

x−1
i

(

exp

(

λ

xi

)

− 1

)

−1

−
n

∑

i=1

x−1
i

−α(a− 1)
n

∑

i=1

x−1
i

[

(

1 − exp

(

−λ

xi

))

−α

− 1

]

−1
(

exp

(

λ

xi

)

− 1

)

−1

,(4.5)

∂ logL

∂a
=

−n

B(a, b)
φ1 +

n
∑

i=1

log

[

1 −

(

1 − exp

(

−λ

xi

))α]

,

φ1 =
∂B(a, b)

∂a
=

Γ(b) [Γ(a+ b)Γ′(a) − Γ(a)∂Γ(a+ b)/∂a]

[Γ(a+ b)]2

= B(a, b) [ψ(a) − ψ(a+ b)] ,

where ψ(z) = 1
Γ(z)

∂Γ(z)
∂z

= Γ′(z)
Γ(z) is called the Psi function (Abramowitz and Stegun

(1972)). Then,

∂ logL

∂a
= −n [ψ(a) − ψ(a+ b)] +

n
∑

i=1

log

[

1 −

(

1 − exp

(

−λ

xi

))α]

,(4.6)

∂ logL

∂b
=

−n

B(a, b)
φ2 + α

n
∑

i=1

log

(

1 − exp

(

−λ

xi

))

,

φ2 =
∂B(a, b)

∂b
=

Γ(a) [Γ(a+ b)Γ′(b) − Γ(b)∂Γ(a+ b)/∂b]

[Γ(a+ b)]2

= B(a, b) [ψ(b) − ψ(a+ b)] ,

(4.7)
∂ logL

∂b
= −n [ψ(b) − ψ(a+ b)] + α

n
∑

i=1

log

(

1 − exp

(

−λ

xi

))

.

The solution of the four nonlinear likelihood equations via (4.4), (4.5), (4.6)

and (4.7) yields the maximum likelihood estimates (MLEs) θ̂ = (â, b̂, α̂, λ̂) of θ =

(a, b, α, λ). These equations are in implicit form, so they may be solved using

numerical iteration, such as the Newton–Raphson method via Mathematica 9.0.

5. ASYMPTOTIC VARIANCES AND COVARIANCES OF ESTI-

MATES

The asymptotic variances of maximum likelihood estimates are given by the

elements of the inverse of the Fisher information matrix Iij (θ) = E
(

−∂2 ln L
∂θi∂θj

)

.

Unfortunately, the exact mathematical expressions for the above expectation are
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very difficult to obtain. Therefore, the observed Fisher information matrix is

given by Iij = −∂2 ln L
∂θi∂θj

which is obtained by dropping the expectation on operation

E (Cohen (1965)). The approximate (observed) asymptotic variance-covariance

matrix F for the maximum likelihood estimates of the BGIED can be written as

follows

F = [Iij (θ)] , i, j = 1, 2, 3, 4 and θ = (a, b, α, λ) .

The second partial derivatives of the maximum likelihood function for the BGIED

are given as the following

∂2 logL

∂λ2
=

−n

λ2
− (αb− 1)

n
∑

i=1

x−2
i

(

exp

(

λ

xi

)

−1

)

−1
[

1 +

(

exp

(

λ

xi

)

−1

)

−1
]

− α(a− 1)

n
∑

i=1

x−2
i

[

(

1− exp

(

−λ

xi

))

−α

− 1

]

−1
(

exp

(

λ

xi

)

−1

)

−1

×







−1+

(

exp

(

λ

xi

)

−1

)

−1


(α−1) + α

[

(

1− exp

(

−
λ

xi

))

−α

− 1

]

−1










,

∂2 logL

∂α2
=

−n

α2
− (a−1)

n
∑

i=1

[

log

(

1− exp

(

−λ

xi

))]2
[

(

1− exp

(

−λ

xi

))

−α

− 1

]

−1

×







1 +

[

(

1 − exp

(

−λ

xi

))

−α

− 1

]

−1






,

∂2 logL

∂a2
= −n

[

ψ′(a) − ψ′(a+ b)
]

,

where

ψ′(z) =
∂ψ(z)

∂z
,

∂2 logL

∂b2
= −n

[

ψ′(b) − ψ′(a+ b)
]

,

∂2 logL

∂a ∂b
= nψ′(a+ b) ,

∂2 logL

∂λ∂α
=

n
∑

i=1

x−1
i

(

exp

(

λ

xi

)

−1

)

−1






b− (a−1)

[

(

1− exp

(

−λ

xi

))

−α

− 1

]

−1

×



1 +
α log

(

1 − exp
(

−λ
xi

))

[

1 −
(

1 − exp
(

−λ
xi

))α]











,

∂2 logL

∂λ∂a
= −α

n
∑

i=1

x−1
i

[

(

1− exp

(

−λ

xi

))

−α

− 1

]

−1
(

exp

(

λ

xi

)

−1

)

−1

,
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∂2 logL

∂λ∂b
= α

n
∑

i=1

x−1
i

(

exp

(

λ

xi

)

− 1

)

−1

,

∂2 logL

∂α∂a
= −

n
∑

i=1

log

(

1 − exp

(

−λ

xi

))

[

(

1 − exp

(

−λ

xi

))

−α

− 1

]

−1

,

∂2 logL

∂α∂b
=

n
∑

i=1

log

(

1 − exp

(

−λ

xi

))

.

Consequently, the maximum likelihood estimators of a, b, α and λ and have an

asymptotic variance-covariance matrix defined by inverting the Fisher informa-

tion matrix F and by substituting â for a, b̂ for b, α̂ for α and λ̂ for λ.

6. INTERVAL ESTIMATES

If Lθ = Lθ (y1, ..., yn) and Uθ = Uθ (y1, ..., yn) are functions of the sample

data y1, ..., yn then a confidence interval for a population parameter θ is given by

P
(

Lθ ≤ θ ≤ Uθ

)

= γ ,

where Lθ and Uθ are the lower and upper confidence limits that enclose θ with

probability γ. The interval [Lθ, Uθ] is called a 100γ% confidence interval for θ.

For large sample sizes (Bain and Engelhardt (1992)), the maximum like-

lihood estimates, under appropriate regularity conditions, are consistent and

asymptotically normally distributed. Therefore, the approximate 100γ% con-

fidence limits for the maximum likelihood estimate θ̂ of a population parameter θ

can be constructed, such that

(6.1) P

(

−z ≤
θ̂ − θ

σ(θ̂)
≤ z

)

= γ ,

where z is the 100(1+γ)
2 standard normal percentile. Therefore, the approximate

100γ% confidence limits for a population parameter θ can be obtained such that

(6.2) P
(

θ̂ − zσ(θ̂) ≤ θ ≤ θ̂ + zσ(θ̂)
)

= γ .

Then, the approximate confidence limits for a, b, α and λ will be constructed

using (6.2) with a confidence level of 90%.
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7. SIMULATION STUDIES

Simulation studies have been performed using Mathematica 9.0 to illustrate

the theoretical results of the estimation problem. The performance of the result-

ing estimators of the parameters has been considered in terms of their absolute

relative bias (ARBias) and mean square error (MSE), where

ARBias
(

θ̂
)

=

∣

∣

∣

∣

∣

θ̂ − θ

θ

∣

∣

∣

∣

∣

and MSE
(

θ̂
)

= E
(

θ̂ − θ
)2
.

Furthermore, the asymptotic variance, covariance matrix and confidence intervals

of the parameters are obtained. The algorithm for the simulation procedure is

described below:

Step 1. 1000 random samples of sizes n = 10(10)50, 100, 200 and 300 were

generated from the BGIED. The true parameter values are se-

lected as (a = 1, b = 2, α = 4, λ = 2).

Step 2. For each sample, the parameters of the distribution are estimated

under the complete sample.

Step 3. The Newton–Raphson method is used for solving the four non-

linear likelihoods for α, λ, a and b given in (4.4), (4.5), (4.6) and

(4.7), respectively.

Step 4. The ARBiase and MSE of the estimators for the four parameters

for all sample sizes are tabulated.

Step 5. For large sample sizes n = 100, 200 and 300, the Fisher informa-

tion matrix of the estimators are computed using the equations

presented in Section 5.

Step 6. By inverting the Fisher information matrix that was computed in

Step 5, the asymptotic variances and covariances of the estimators

are found.

Step 7. Based on the values of the asymptotic variances and covariances

matrix that were found in Step 6 and on Eq. (6.2), the approxi-

mate confidence limits at 90% for the parameters are computed.

Simulation results are summarized in Tables 2, 3 and 4. Table 2 gives

the ARBias and MSE of the estimators. The asymptotic variances and covari-

ances matrix of the estimators for complete samples of size n = 100, 200 and 300

and true parameter values (a = 1, b = 2, α = 4, λ = 2) are displayed in Table 3.

The approximate confidence limits at 90% for the parameters are presented in

Table 4.
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Table 2: The ARBias and MSE of the parameters θ = (a, b, α, λ).

n
â b̂ α̂ λ̂

ARBias MSE ARBias MSE ARBias MSE ARBias MSE

10 2.77997 57.22180 1.23642 39.93170 0.34929 57.85210 0.04445 4.49668
20 1.57487 18.92080 0.75400 18.13730 0.01542 23.75870 0.02126 3.08791
30 1.17703 8.04064 0.59348 10.72860 0.13843 12.21520 0.03641 2.48411
40 1.01435 7.53433 0.32958 4.15377 0.25344 7.47854 0.12458 1.52254
50 0.81716 5.63524 0.35502 5.58289 0.23793 8.44674 0.08708 1.65372

100 0.34507 2.01241 0.13037 1.57136 0.37237 5.26341 0.15154 0.73170
200 0.09587 0.78450 0.04185 0.88988 0.45129 4.69708 0.18296 0.46773
300 0.05260 0.56916 0.04620 0.88359 0.46429 4.67339 0.18716 0.31603

Table 3: Asymptotic variances and covariances of estimates
for complete samples.

n Parameters â b̂ α̂ λ̂

a 0.00860 0.00389 −0.00021 −0.00359

100 b 0.00389 0.05006 −0.00513 0.00867
α −0.00021 −0.00513 0.04464 0.01414
λ −0.00359 0.00867 0.01414 0.01308

a 0.00673 0.00327 −0.00018 −0.00411

200 b 0.00327 0.03238 −0.00883 0.00346
α −0.00018 −0.00883 0.02928 0.00772
λ −0.00411 0.00346 0.00772 0.00951

a 0.00630 0.00320 −0.00075 −0.00445

300 b 0.00320 0.02563 −0.00722 0.00197
α −0.00075 −0.00722 0.02245 0.00664
λ −0.00445 0.00197 0.00664 0.00888

Table 4: Confidence bounds of the estimates at a confidence level of 0.90.

n Parameters Estimated mean Lower bound Upper bound Width

a 1.34507 1.19294 1.49719 0.30424

100 b 2.26075 1.89380 2.62770 0.73390
α 2.51052 2.16399 2.85704 0.69304
λ 1.69693 1.50931 1.88455 0.375241

a 1.09587 0.96132 1.23041 0.26909

200 b 2.08370 1.78856 2.37883 0.59027
α 2.19482 1.91416 2.47549 0.56132
λ 1.63408 1.47409 1.79408 0.31999

a 1.05260 0.92241 1.18279 0.26038

300 b 2.09239 1.82981 2.35498 0.52517
α 2.14283 1.89709 2.38857 0.49147
λ 1.62569 1.47108 1.78030 0.30922
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From these tables, the following observations can be made on the perfor-

mance of the parameter estimation of the BGIED:

1. As the sample size increases, the MSEs of the estimated parameters

decrease. This indicates that the maximum likelihood estimates provide

asymptotically normally distributed and consistent estimators for the

parameters (see Table 2).

2. Although the estimators of a and b are consistent according to the

ARBias, it is noted that the estimators of α and λ are not consistent.

Table 2 shows that, for large sample sizes (n = 100, 200 and 300), the

ARBiases are increased, which indicates that the estimates of α and λ

are not consistent.

3. The asymptotic variances of the estimators decrease when the sample

size is increasing (see Table 3).

4. The interval of the estimators decreases when the sample size is in-

creasing (see Table 4).

5. The interval estimations of all parameters were reasonable except the

interval estimate of α. The estimated intervals at a confidence level of

0.90 for n = 100, 200 and 300 did not cover the real value of α.

We conclude from the previous points that the MLE of the parameters is

a good estimator for a, b and λ.

8. APPLICATIONS

In this section, two sets of data are presented to demonstrate the utility of

using the BGIED. These two sets were investigated by Abouammoh and Alshin-

giti (2009). The GIED was fitted to both of these sets.

8.1. The first data-set

The following data-set is presented in Lawless (2003). The data resulted

from a test on the endurance of deep groove ball bearings. The data are as

follows:

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4 .
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Descriptive statistics of these data are tabulated in Table 5.

Table 5: Descriptive statistics for the ball bearing data.

Measure Value Measure Value

n 23 Minimum 17.880

Maximum 173.400 Mean 72.22

Q1 45.600 Q3 98.640

Median 67.800 Mean deviation 29.429

Variance 1405.580 SD 37.491

Skewness 0.941 Kurtosis 3.486

We apply the Kolmogorov–Smirnov (K-S) statistic to verify which distri-

bution better fits these data. The K-S test statistic is described in detail in

D’Agostino and Stephens (1986). In general, the smaller the value of K-S is, the

better the fit to the data is. All graphs and computations presented to analyse

the data were carried out by Mathematica 9.0. The model selection was carried

out using the AIC (Akaike information criterion), the BIC (Bayesian information

criterion) and the CAIC (consistent Akaike information criterion):

AIC = −2 l(θ̂) + 2p ,

BIC = −2 l(θ̂) + p log n

and

CAIC = −2 l(θ̂) +
2pn

n− p− 1
,

where l(θ̂) denotes the log likelihood function evaluated at the maximum likeli-

hood estimates, p is the number of parameters and n is the sample size. Table 6

lists the values of the K-S statistic and of −2l(θ̂). The K-S goodness-of-fit test

of the BGIED as well as the GIED are the best among all models; accordingly,

the BGIED model can be used to analyse the ball bearing data. Table 7 provides

the MLEs with corresponding standard errors (SEs) of the model parameters.

Table 6: Goodness-of-fit measures and K-S statistics
for the ball bearing data.

Model BGIED GIED IED BIED

K-S statistics 0.097 0.091 0.306 0.104

−2 l(θ̂) 227.723 227.098 243.452 228.288
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Table 7: MLEs of the model parameters, the corresponding SEs and the
statistics of the AIC, BIC and CAIC for the ball bearing data.

Model Method
Estimates Statistics

â b̂ α̂ λ̂ AIC BIC CAIC

BGIED
MLE 20.615 9.427 0.532 7.161

235.723 240.265 237.946
SE 0.125 0.279 8.052 0.262

GIED
MLE 5.307 129.996

231.098 233.369 231.698
SE 0.188 0.015

IED
MLE 55.055

245.452 246.587 245.642
SE 0.018

BIED
MLE 15.858 3.692 11.858

234.288 237.695 235.552
SE 0.112 0.508 0.161

8.2. The second data-set

The data that is studied in this section was provided by Ed Fuller of the

NICT Ceramics Division in December 1993. It contains polished window strength

data. Fuller et al. (1994) described the use of this set to predict the lifetime for

a glass airplane window. The data are as follows:

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.96,

26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76,

35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381 .

Descriptive statistics of the window strength data are tabulated in Table 8.

Table 8: Descriptive statistics for the window strength data.

Measure Value Measure Value

n 31 Minimum 18.830

Maximum 45.381 Mean 30.820

Q1 25.500 Q3 35.910

Median 29.900 Mean deviation 6.145

Variance 52.539 SD 7.248

Skewness 0.403 Kurtosis 2.290

The K-S goodness-of-fit test of the BGIED as well as the BIED are the best

among all models; therefore, the BGIED model can be used to study the window

strength data. Table 10 presents the MLEs with corresponding SEs of the model

parameters.
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Table 9: Goodness-of-fit measures and K-S statistics
for the window strength data.

Model BGIED GIED IED BIED

K-S statistics 0.133 0.137 0.474 0.130

−2 l(θ̂) 208.207 208.454 274.523 208.105

Table 10: MLEs of the model parameters, the corresponding SEs and the statistics
of the AIC, BIC and CAIC for the window strength data.

Model Method
Estimates Statistics

â b̂ α̂ λ̂ AIC BIC CAIC

BGIED
MLE 27.850 7.354 1.978 17.601

216.207 221.943 217.745
SE 0.088 0.341 2.401 0.247

GIED
MLE 90.855 148.412

212.454 215.322 212.883
SE 0.011 0.029

IED
MLE 29.215

276.523 277.957 276.661
SE 0.034

BIED
MLE 14.506 20.169 26.053

214.105 218.407 214.994
SE 0.205 0.146 0.166

Finally, we conclude the following from studying the AIC, BIC and CAIC

statistics of the two previous data-sets.

Figure 4: The empirical distribution and estimated cdf
of the models for the ball bearing data.
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It is noted that the GIED has a smaller value compared with the values of

other models for the two data-sets. The BIED and BGIED follow next. That

indicates that the GIED seems to be a very competitive model for these data.

Because the values of the AIC, BIC and CAIC are approximately equivalent for

the GIED, BIED and BGIED, the BGIED can thus be a good alternative model

for these data, as can the GIED. Alternately, the IED presents the worst fit for

the second dataset. Figure 4 shows the empirical distribution and estimated cdf

of the models for the ball bearing data. Figure 5 shows the empirical distribution

and estimated cdf of the models for the window strength data.

Figure 5: The empirical distribution and estimated cdf
of the models for the window strength data.

9. CONCLUDING REMARKS

In this study, the four-parameter beta generalized inverted exponential dis-

tribution (BGIED) is proposed. BGIED generalizes the generalized inverted ex-

ponential distribution discussed by Abouammoh and Alshingiti (2009). Addition-

ally, the BGIED represents a generalization of the inverted exponential distribu-

tion (IED). IED has been considered by Keller and Kamath (1982) and Duran and

Lewis (1989). Statistical properties of the BGIED are studied. Maximum likeli-

hood estimators of the BGIED parameters are obtained. The information matrix

and the asymptotic confidence bounds of the parameters are derived. Monte

Carlo simulation studies are conducted under different sample sizes to study the

theoretical performance of the MLE of the parameters. Two real data-sets are

analysed, and the BGIED has provided a good fit for the data-sets.
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