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Abstract:

• In view of the growing importance of the reversed residual lifetime in reliability anal-
ysis and stochastic modeling, in this paper, we try to study some of the reliability
properties of reversed residual lifetime random variable based on doubly truncated
data and complete the preceding results such as Ruiz and Navarro (1995, 1996),
Navarro et al. (1998), Nanda et al. (2003), Nair and Sudheesh (2008) and Sudheesh
and Nair (2010). The monotonicity properties of the doubly truncated reversed resid-
ual variance and its relations with doubly truncated reversed residual expected value
and doubly truncated reversed residual coefficient of variation are discussed. Further-
more, an upper bound for it under some conditions is obtained. We also discuss and
find the similar results and some characterizations for discrete random ageing, which
are noticeable in comparing with continuous cases.
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1. INTRODUCTION

In the reliability literature and analyzing survival data for the components

of a system or a device, there have been defined several measures for various

conditions and situations of the system. Sometimes, we only have information

about between two lifetime points, so studying the reliability measures under the

condition of doubly truncated random variables, is necessary. If the random vari-

able X denotes the lifetime of a unit, then the random variable xXy = (y − X |

x ≤ X ≤ y) is called the doubly truncated reversed residual lifetime and it mea-

sures the time elapsed since the failure of X given that the system has been

working since time x and has failed sometime before y. Note that the well-known

random variable, Xy = (y − X |X ≤ y), which some of researchers called it, “re-

versed residual lifetime (RRL)”, “past time to failure”, “inactivity time” or “idle

time”, is the special case of xXy when x = 0.

The subject of doubly truncation of a lifetime random variable in reliability

literature has been started by Navarro and Ruiz (1996) and Ruiz and Navarro

(1995, 1996) that generalized the failure rate function for doubly truncated ran-

dom variables. Later, Sankaran and Sunoj (2004) defined and obtained some

properties of the expected value of the doubly truncated lifetime distributions.

Recently, many authors such as Su and Huang (2000), Ahmad (2001), Betensky

and Martin (2003), Navarro and Ruiz (2004), Bairamov and Gebizlioglu (2005),

Poursaeed and Nematollahi (2008) and Sunoj et al. (2009), studied the properties

of the conditional expectations of doubly truncated random variables in various

areas like order statistics and k-out-of-n systems. Also, recently Khorashadizadeh

et al. (2012) have studied the doubly truncated mean residual lifetime and the

doubly truncated mean past to failure and also obtained some characterization

results in both continuous and discrete cases.

In this paper, we study some reliability measures based on the doubly

truncated reversed lifetime random variable, xXy, in both continuous and discrete

lifetime distributions, which some of the results that achieved are not similar to

each other. The relationship among doubly truncated reversed residual expected

(mean) value (dRRM), doubly truncated reversed residual variance (dRRV ) and

doubly truncated reversed residual coefficient of variation (dRRCV ) are obtained.

Also, their monotonicity and the associated ageing classes of distributions are

discussed. Some characterization results of the class of the increasing dRRV

are presented and an upper bound for dRRV under some conditions is obtained.

Furthermore, we characterize the discrete distribution based on doubly truncated

covariance and obtained some results for binomial, Poisson and negative binomial

distributions.



92 M.Khorashadizadeh, A.H.Rezaei Roknabadi and G.R.Mohtashami Borzadaran

2. CONTINUOUS DOUBLY TRUNCATED REVERSED RESID-

UAL LIFETIME

Let X be a non-negative continuous random variable with cumulative distri-

bution function (cdf), F (x) and probability density function (pdf), f(x). Navarro

and Ruiz (1996) defined and studied the generalized failure rate (GFR) to the

doubly truncated continuous random variables by

h1(x, y) = lim
h→0+

[

P
(

x ≤ X ≤ x + h | x ≤ X ≤ y
)

h

]

=
f(x)

F (y) − F (x)

and

h2(x, y) = lim
h→0−

[

P
(

y + h ≤ X ≤ y | x ≤ X ≤ y
)

h

]

=
f(y)

F (y) − F (x)
,

for (x, y) ∈ D = {(x, y); F (x) < F (y)}. Note that the special cases, h1(x,∞) =
f(x)

1−F (x) is the failure rate and h2(0, y) = f(y)
F (y) is the reversed failure rate. Navarro

and Ruiz (1996) have shown that GFR determines the distribution uniquely.

We denote the continuous doubly truncated reversed residual expected

value by dRRM and the continuous doubly truncated reversed residual variance

by dRRV and define them as

µ̃(x, y) = E(xXy) = E
(

y − X | x ≤ X ≤ y
)

and

σ̃2(x, y) = Var(xXy) = Var
(

y − X | x ≤ X ≤ y
)

= Var
(

X | x ≤ X ≤ y
)

,

respectively, such that E(X2) < ∞, (x, y) ∈ D and µ̃(x, x) = σ̃2(x, x) = 0. Ruiz

and Navarro (1995, 1996) and Navarro et al. (1998) have shown that m(x, y) =

E(X | x ≤ X ≤ y) determines F (x) uniquely. So, this is also true for µ̃(x, y) =

y − m(x, y).

The dRRM can be rewritten as

µ̃(x, y) = E
(

y − X |x ≤ X ≤ y
)

=
(x − y)F (x) +

∫ y

x
F (t) dt

F (y) − F (x)
.(2.1)

So, we have

∂

∂y
µ̃(x, y) =

[

F (y) − F (x)
]2

− f(y)
[

(x − y)F (x) +
∫ y

x
F (t) dt

]

[

F (y) − F (x)
]2 .

By using the above equation, the µ̃(x, y) determine the general failure rate,

h2(x, y), via relation

h2(x, y) =
1 − ∂

∂y
µ̃(x, y)

µ̃(x, y)
, (x, y) ∈ D .
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Furthermore, using part by part integration method, we can see that σ̃2(x, y)

and µ̃(x, y) are related via the following equation:

σ̃2(x, y) =
(y2 − x2)F (x) − 2

∫ y

x
tF (t) dt

F (y) − F (x)
+ 2y µ̃(x, y) − µ̃2(x, y) .(2.2)

This equation will be useful in proving various other relationships. We have the

following definitions of ageing classes related to the µ̃(x, y) and σ̃2(x, y).

Definition 2.1. A random variable X is said to be

(i) increasing in doubly truncated reversed residual expected value

(IdRRM) if for any (x, y) ∈ D, µ̃(x, y) is increasing in y,

(ii) increasing in doubly truncated reversed residual variance (IdRRV )

if for any (x, y) ∈ D, σ̃2(x, y) is increasing in y.

The dual classes are defined similarly. For the random variable Xy, Nanda

et al. (2003) showed that the class of decreasing RRM is empty. Thus, in the next

theorem, we answer the natural question that whether the classes of decreasing

doubly truncated reversed residual expected value (DdRRM) and decreasing

doubly truncated reversed residual variance (DdRRV ) of life distributions are

null or not.

Theorem 2.1.

I. There exist no non-negative random variable that has DdRRM property.

II. There exist no non-negative random variable that has DdRRV property.

Proof: The two part can be proved by assuming the opposite. Suppose

that µ̃(x, y) is decreasing in y. From (2.1), we have

0 ≤ µ̃(x, y) ≤ y − x , ∀(x, y) ∈ D ,

and also

lim
y→x

µ̃(x, y) = 0 .

Thus, if µ̃(x, y) is decreasing in y, then µ̃(x, y) ≤ µ̃(x, x) = 0, for all (x, y) ∈ D,

which is contradict the fact that µ̃(x, y) cannot be negative or identically zero.

Similarly, for part II., on contrary, suppose that σ̃2(x, y) is decreasing in y. For

all (x, y) ∈ D, we have

0 ≤ σ̃2(x, y) ≤ (y2 − x2)

and

lim
y→x

σ̃2(x, y) = 0 .

Thus, if σ̃2(x, y) is decreasing in y, then σ̃2(x, y)≤ σ̃2(x, x) = 0, for all (x, y)∈D,

which is contradict the fact that variance cannot be negative or identically zero.
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In the next theorem, we obtain an upper bound for σ̃2(x, y), when X has

the IdRRM property.

Theorem 2.2. If the non-negative continuous random variable X, has

the IdRRM property, then,

σ̃2(x, y) < µ̃2(x, y) , (x, y) ∈ D .(2.3)

Proof: According to (2.1), we have

∫ y

x

[

F (t) − F (x)
]

µ̃(x, t) dt =

∫ y

x

[

∫ t

x

F (z) dz + (x − t)F (x)

]

dt

= y

∫ y

x

F (z) dz −

∫ y

x

zF (z) dz +

∫ y

x

(x − t)F (x) dt ,

using (2.2), it implies that

2

F (y) − F (x)

∫ y

x

[

F (t) − F (x)
]

µ̃(x, t) dt =

=
(y2 − x2)F (x) − 2

∫ y

x
zF (z) dz

F (y) − F (x)
+ 2 y µ̃(x, y)

= µ̃2(x, y) + σ̃2(x, y) .

So, we have

σ̃2(x, y) − µ̃2(x, y) =
2

F (y) − F (x)

∫ y

x

[

F (t) − F (x)
] [

µ̃(x, t) − µ̃(x, y)
]

dt

< 0 ,

since µ̃(x, y) is increasing in y. This completes the proof.

Now, we investigate the connection between IdRRV and other classes of

life distributions.

Theorem 2.3. If µ̃(x, y) is increasing in y, then σ̃2(x, y) is increasing in y,

i.e., the IdRRM property is stronger than the IdRRV property.

Proof: The proof is trivial by using the following relation:

∂

∂y
σ̃2(x, y) = h2(x, y)

[

µ̃2(x, y) − σ̃2(x, y)
]

.(2.4)

In special case, the Example 2.1 in Nanda et al. (2003) shows that the

converse of the above theorem is not true.
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Another reliability measure that has been recently considered and is related

to the reversed residual variance and the reversed residual expected value, is the

reversed residual coefficient of variation. So, in doubly truncated random vari-

ables we consider the doubly truncated reversed residual coefficient of variation

(dRRCV ) as

γ̃(x, y) =
σ̃(x, y)

µ̃(x, y)
, (x, y) ∈ D .(2.5)

The Eq. (2.4) can be written as

∂

∂y
σ̃2(x, y) = h2(x, y) µ̃2(x, y)

[

1 − γ̃2(x, y)
]

,(2.6)

so, σ̃2(x, y) is increasing in y according as γ̃2(x, y) ≤ 1.

The next theorem characterizes the monotonic behavior of the variance of

the random variable xXy. A similar result for the variance of xX has been given

by Nanda et al. (2003).

Theorem 2.4. The following statements are equivalent:

(i) σ̃2(x, y) is increasing in y for any fixed x such that (x, y) ∈ D.

(ii) γ̃2(x, y) ≤ 1 for all (x, y) ∈ D.

(iii) Φ(x, y) =
E[(y−X)2 |x≤X≤y]

E[y−X |x≤X≤y]
is increasing in y for any fixed x such that

(x, y) ∈ D.

Proof: Using (2.6) and (2.2) the results will follow.

3. DISCRETE DOUBLY TRUNCATED REVERSED RESIDUAL

LIFETIME

In reliability analysis, interests in discrete failure data came relatively late

in comparison to its continuous analogue.

Suppose T be a non-negative discrete random variable with support

{0, 1, 2, ...} and cdf, F (t) and probability mass function (pmf), p(t). Navarro and

Ruiz (1996) defined the generalized failure rate (GFR) to the doubly truncated

discrete random variables for all (t, k) ∈ D∗ = {(t, k); F (t−) < F (k)} by

h1(t, k) =
p(t)

F (k) − F (t − 1)
(3.1)

and

h2(t, k) =
p(k)

F (k) − F (t − 1)
.(3.2)



96 M.Khorashadizadeh, A.H.Rezaei Roknabadi and G.R.Mohtashami Borzadaran

Let tTk = (k−T | t ≤ T ≤ k) be the reversed doubly truncated random vari-

able in discrete lifetime distributions. So, the doubly truncated reversed residual

expected value and reversed residual variance based on tTk are as follow,

µ̃d(t, k) = E(tTk) = E(k − T | t ≤ T ≤ k) ,

σ̃2
d(t, k) = Var(k − T | t ≤ T ≤ k) = Var(T | t ≤ T ≤ k) ,

respectively, where (t, k) ∈ D∗. The function µ̃d(t, k) can be rewritten as follow,

µ̃d(t, k) = E(k − T | t ≤ T ≤ k)(3.3)

=
(t − k)F (t − 1) +

∑k−1
i=t F (i)

F (k) − F (t − 1)
.

One can easily obtain that the doubly truncated reversed residual expected value

can characterize the general failure rate h2(t, k) via the relation,

h2(t, k) = 1 −
µ̃d(t, k)

1 + µ̃d(t, k − 1)
, (t, k) ∈ D∗ .(3.4)

Khorashadizadeh et al. (2012) have shown that if T be discrete random vari-

able with support {0, 1, 2, ..., m} (m can be finite or infinite), then for a known t,

F (·) can be uniquely recovered by µ̃d(t, k) as follows:

F (k) = Ak + F (t − 1) [1 − Ak] ,(3.5)

where Ak =
∏m

i=k+1
µ̃d(t,i)

1+µ̃d(t,i−1) and F (t − 1) = A
−1

A
−1−1 .

The monotonic ageing classes of distributions, IdRRM and IdRRV in

discrete cases can be defined similar to Definition 2.1. Based on the discrete

random variable T ∗
k = (k − T |T < k), Goliforushani and Asadi (2008) showed

that the class of decreasing reversed residual expected value is empty.

Theorem 3.1. There is no non-degenerate discrete distribution that has

DdRRM or DdRRV property.

Proof: On contrary, suppose that µ̃d(t, k) is decreasing in k, then for any

fixed t, µ̃d(t, k + 1) ≤ µ̃d(t, k) ≤ µ̃d(t, t) = 0, which is contradict the fact that

µ̃d(t, k) ≥ 0. Similar prove can be done for DdRRV property.

One can obtain that

σ̃2
d(t, k) =

(k + t) (k − t + 1)F (t − 1) − 2
∑k

i=t iF (i − 1)

F (k) − F (t − 1)
(3.6)

+ (2k + 1) µ̃d(t, k) − µ̃2
d(t, k) .
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In the next theorem, we obtain an upper bound for σ̃2
d(t, k), when µ̃d(t, k)

is increasing in t, which is not the same as that obtained in Theorem 2.2 for

continuous case.

Theorem 3.2. If the non-negative discrete random variable T , has

IdRRM property, then,

σ̃2
d(t, k) < µ̃d(t, k) [1 + µ̃d(t, k)] , (t, k) ∈ D∗ .(3.7)

Proof: According to (3.3), we have

2
k

∑

i=t

[

F (i) − F (t−1)
]

µ̃d(t, i) = (k+ t)(k− t +1)F (t−1) − 2
k

∑

j=t

jF (j−1)

(3.8)

+ (2k + 2)



(t− k)F (t−1) +
k−1
∑

j=t

F (j)



 .

Thus, dividing the both sides of (3.8) by F (k)−F (t− 1) and making use of (3.6),

implies

σ̃2
d(t, k) − µ̃2

d(t, k) =
2

F (k) − F (t − 1)

k−1
∑

i=t

[

F (i) − F (t − 1)
][

µ̃d(i, k) − µ̃d(t, k)
]

+ µ̃d(t, k)

[

F (k) + F (t − 1)

F (k) − F (t − 1)

]

< µ̃d(t, k) ,

since µ̃d(t, k) is increasing with respect k. Hence the required result is obtained.

The connection between IdRRV and other classes of distributions are also

discussed for discrete case in the following theorem.

Theorem 3.3. In discrete lifetime distributions, the IdRRM property

implies the IdRRV property.

Proof: Using (3.6), we have

σ̃2
d(t, k) − σ̃2

d(t, k − 1) =
(k + t) (k − t + 1)F (t − 1) − 2

∑k
i=t iF (i − 1)

F (k) − F (t − 1)

+ (2k + 1) µ̃d(t, k) − µ̃2
d(t, k)

(3.9)

−
(k + t − 1) (k − t)F (t − 1) − 2

∑k−1
i=t iF (i − 1)

F (k − 1) − F (t − 1)

− (2k − 1) µ̃d(t, k − 1) + µ̃2
d(t, k − 1) .
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On the other hand, one can see that

(k + t) (k − t + 1)F (t − 1) − 2
∑k

i=t iF (i − 1)

F (k) − F (t − 1)
−

−
(k + t − 1) (k − t)F (t − 1) − 2

∑k−1
i=t iF (i − 1)

F (k − 1) − F (t − 1)
=

=
[

(2k − 1) µ̃d(t, k − 1) − µ̃2
d(t, k − 1) − σ̃2

d(t, k − 1) + 2k
]

h2(t, k) − 2k

and also

µ̃d(t, k) − µ̃d(t, k − 1) = 1 − h2(t, k)
[

µ̃d(t, k − 1) + 1
]

.

So, by using these two relations and summarizing the equations, we can write the

Eq. (3.9) as

σ̃2
d(t, k) − σ̃2

d(t, k − 1) =(3.10)

= h2(t, k)
[

µ̃d(t, k) µ̃d(t, k − 1) + µ̃d(t, k) − σ̃2
d(t, k − 1)

]

.

Since, µ̃d(t, k) is increasing in k,

σ̃2
d(t, k) − σ̃2

d(t, k − 1) ≥ h2(t, k)
[

µ̃2
d(t, k − 1) + µ̃d(t, k − 1) − σ̃2

d(t, k − 1)
]

,

so on using Theorem 3.2, we get the required results.

The converse of the Theorem 3.3 is not true. The following counterexample

shows that IdRRV property dose not imply the IdRRM property.

Example 3.1. Let T be a discrete random variable with cdf,

k 0 1 2 3 4 5

F (k) 0.0625 0.1046 0.1901 0.5561 0.875 1

One can see that in this distribution, σ̃2
d(0, k) is increasing in k, but µ̃d(0, k)

is not monotone.

We consider the discrete doubly truncated reversed residual coefficient of

variation as

γ̃d(t, k) =
σ̃d(t, k)

µ̃d(t, k)
.

Another characterizations for the IdRRV and IdRRM classes of distributions

based on γ̃d(t, k) are obtained in the next theorem.
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Theorem 3.4. For non-negative discrete random variable T , we have

(i) T has IdRRV property, if and only if,

γ̃2
d(t, k) ≤

µ̃d(t, k + 1)

µ̃d(t, k)

[

1 +
1

µ̃d(t, k)

]

.

(ii) T has IdRRM property, if and only if,

γ̃2
d(t, k) ≤ 1 +

1

µ̃d(t, k)
.

Proof: The statement (i) can be proved by using Eq. (3.10) and the state-

ment (ii) can be proved by using Theorem 3.2.

In the next theorem, we present a characterization via σ̃2
d(t, k) which is not

quite similar to Theorem 2.4 in continuous case.

Theorem 3.5. σ̃2
d(t, k) is increasing in k, if and only if,

σ̃2
d(t, k − 1)

µ̃d(t, k) µ̃+
d (t, k)

≤ 1 ,

where µ̃+
d (t, k) = E(k − T | t ≤ T < k).

Proof: Using (3.10) and µ̃+
d (t, k) = µ̃d(t, k − 1) + 1 the required result is

obtained.

4. CHARACTERIZATIONS OF SOME DISCRETE LIFETIME

DISTRIBUTIONS

In this section, we characterize discrete distributions based on the doubly

truncated random variables. Nair and Sudheesh (2008) and Sudheesh and Nair

(2010) have presented some characterization results with their applications for

discrete distributions based on one way truncated random variable. In the fol-

lowing theorems, we extend their results for doubly truncated random variables,

which are more general and applicable. Since sometimes, the available informa-

tion is in the specific interval period of times.

Let c(·) be any real valued function, so that for any (t1, t2) ∈ D∗,

mc(t1, t2) = E
(

c(T ) | t1 ≤ T ≤ t2
)

=

∑t2
i=t1

c(i) p(i)

F (t2) − F (t1 − 1)
(4.1)

is the conditional expected value of doubly (interval) truncated random variable.



100 M.Khorashadizadeh, A.H.Rezaei Roknabadi and G.R.Mohtashami Borzadaran

Theorem 4.1. Let T be a non-negative discrete random variable with

pmf, p(t), and cdf, F (t). Also suppose that for any real valued function c(·),

µ = E(c(T )) and σ2 = Var(c(T )), then for (t1, t2) ∈ D∗, T follows the family of

distributions satisfying

p(t + 1)

p(t)
=

σg(t)

σg(t + 1) − µ + c(t + 1)
, t = 0, 1, 2, ... ,(4.2)

with σg(t) =
∑t

i=0
p(i)
p(t) [µ − c(i)], if and only if,

mc(t1, t2) = µ + σg(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)
− σg(t2)h2(t1, t2) .(4.3)

Proof: Suppose (4.2) holds, then,

c(t) p(t) = µp(t) + σp(t − 1) g(t − 1) − σp(t) g(t) .(4.4)

Summation the both side of (4.4) from t1 to t2 leads to

t2
∑

i=t1

[

c(i) − µ
]

p(i) = σ
[

p(t1 − 1) g(t1 − 1) − p(t2) g(t2)
]

.(4.5)

Dividing the both sides of (4.5) by F (t2) − F (t1 − 1) and using (3.1), (3.2) and

(4.1), we get (4.3) and vise versa.

Remark 4.1. It can be seen that, in special cases, when t1 → 0 or t2 → ∞,

Theorem 4.1 is identical with that of Nair and Sudheesh (2008) and Sudheesh

and Nair (2010).

In the next theorem, we characterize the family of the form (4.2) based on

doubly truncated conditional covariance and expected value.

Theorem 4.2. The distribution function of the non-negative discrete ran-

dom variable T , belongs to the family of the form (4.2), if and only if, for all

non-negative integer values (t1, t2) ∈ D∗,

Cov
(

s(T ), c(T ) | t1 ≤ T ≤ t2
)

= σE
(

∆s(T ).g(T ) | t1 ≤ T ≤ t2
)

+
[

µ − mc(t1, t2)
][

ms(t1, t2) − s(t2 + 1)
]

(4.6)

− σg(t1−1)
h1(t1−1, t2)

1− h1(t1−1, t2)

[

s(t2 +1) − s(t1)
]

,

where c(·) and s(·) are any real valued functions such that E(s2(T )) < ∞,

E(∆s(T ) .g(T )) < ∞, ∆s(T ) 6= 0 and ms(t1, t2) = E(s(T ) | t1 ≤ T ≤ t2).
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Proof: First, we know that

E
(

s(T )(c(T ) − µ) | t1 ≤ T ≤ t2
)

=(4.7)

=
1

F (t2) − F (t1−1)

t2
∑

i=t1

s(i)
[

c(i) − µ
]

p(i)

=
1

F (t2) − F (t1−1)

t2−t1
∑

j=0

s(t1 + j)





t2
∑

i=t1+j

(

c(i)−µ
)

p(i) −

t2
∑

i=t1+j+1

(

c(i)−µ
)

p(i)





=
1

F (t2) − F (t1−1)





t2
∑

j=t1

∆s(j)

t2
∑

i=j+1

(

c(i)−µ
)

p(i)



+ s(t1)
(

mc(t1, t2)−µ
)

.

Now, suppose that T has a distribution of form (4.2), hence, on using

t2
∑

i=j+1

(

c(i) − µ
)

p(i) = σ
[

p(j) g(j) − p(t2) g(t2)
]

,

we have

E
(

s(T )(c(T ) − µ) | t1 ≤ T ≤ t2
)

=(4.8)

=
1

F (t2) − F (t1 − 1)



σ

t2
∑

j=t1

∆s(j) g(j) p(j) − σg(t2) p(t2)

t2
∑

j=t1

∆s(j)





+ s(t1)
(

mc(t1, t2) − µ
)

= σE
(

∆s(T ) .g(T ) | t1 ≤ T ≤ t2
)

+ σs(t1) g(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

+ s(t2 + 1)

[

mc(t1, t2) − µ − σg(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

]

,

or

E
(

s(T ) .c(T ) | t1 ≤ T ≤ t2
)

=

= σE
(

∆s(T ) .g(T ) | t1 ≤ T ≤ t2
)

+ s(t2 + 1) (mc(t1, t2) − µ)

− σg(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

[

s(t2 + 1) − s(t1)
]

+ µms(t1, t2) ,

which easily leads to (4.6).

Conversely, let (4.6) is true, then, comparing (4.7) and (4.8) implies

t2
∑

j=t1

∆s(j)

t2
∑

i=j+1

(

c(i) − µ
)

p(i) =(4.9)

= σ

t2
∑

j=t1

∆s(j) g(j) p(j) − σg(t2) p(t2)

t2
∑

j=t1

∆s(j) .

Changing t1 to t1−1 and subtracting from (4.9) leads to (4.5), which is equivalent

to the distribution with the form (4.2).
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Remark 4.2. In special case of Theorem 4.2, when s(T ) = c(T ) = T , we

have

σ̃2
d(t1, t2) = Var

(

T | t1 ≤ T ≤ t2
)

= σ∗E
(

g(T ) | t1 ≤ T ≤ t2
)

+
[

µ∗ − m(t1, t2)
] [

m(t1, t2) − t2 − 1
]

(4.10)

− σ∗g(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)
[t2 − t1 + 1] ,

where m(t1, t2) = E(T | t1 ≤ T ≤ t2) is the doubly truncated expected time to

failure function and µ∗ = E(T ) and σ2∗ = Var(T ).

In the table in the following page, we illustrate the results of Remark 4.2

in some distributions.

Remark 4.3. It should be noted that similar results and definitions in

discrete case, can be verified by using the doubly truncated reversed random vari-

ables t+Tk = (k − T | t < T ≤ k), tTk− = (k − T | t ≤ T < k) or t+Tk− = (k − T |

t < T < k).

5. SUMMARY AND CONCLUSIONS

In this paper, we obtain some reliability properties of the reversed residual

lifetime via doubly truncation. Also, their similarities and differences are com-

pared in both discrete and continuous lifetime distributions and the following

partial chain is obtained.

h2(a, b) is decreasing in b =⇒ IdRRM =⇒ IdRRV .

Also, some characterization results are obtained in discrete distributions via con-

ditional covariance and variance.
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