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Abstract:

• Central properties of geometric quantiles have been well-established in the recent
statistical literature. In this study, we try to get a grasp of how extreme geometric
quantiles behave. Their asymptotics are provided, both in direction and magnitude,
under suitable moment conditions, when the norm of the associated index vector tends
to one. Some intriguing properties are highlighted: in particular, it appears that if
a random vector has a finite covariance matrix, then the magnitude of its extreme
geometric quantiles grows at a fixed rate. We take profit of these results by defining
a parametric estimator of extreme geometric quantiles of such a random vector. The
consistency and asymptotic normality of the estimator are established, and contrasted
with what can be obtained for univariate quantiles. Our results are illustrated on both
simulated and real data sets. As a conclusion, we deduce from our observations some
warnings which we believe should be known by practitioners who would like to use
such a notion of multivariate quantile to detect outliers or analyze extremes of a
random vector.
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1. INTRODUCTION

Let X be a random vector in R
d. Up to now, several definitions of multi-

variate quantiles of X have been proposed in the statistical literature. We refer

to [25] for a review of various possibilities for this notion. Here, we focus on the

notion of “spatial” or “geometric” quantiles, introduced by [14], which generalises

the characterisation of a univariate quantile shown in [22]. For a given vector u

belonging to the unit open ball Bd of R
d, where d ≥ 2, a geometric quantile with

index vector u is any solution of the optimisation problem defined by

(1.1) arg min
q∈Rd

E
(
‖X − q‖ − ‖X‖

)
− 〈u, q〉 ,

where 〈·, ·〉 is the usual scalar product on R
d and ‖ · ‖ is the associated Euclidean

norm. Note that q(u) ∈ R
d possesses both a direction and magnitude. It can be

seen that geometric quantiles are in fact special cases of M -quantiles introduced

by [3] which were further analysed by [23]. Besides, such quantiles have various

strong properties. First, the quantile with index vector u ∈ Bd is unique whenever

the distribution of X is not concentrated on a single straight line in R
d (see [14]

or Theorem 2.17 in [21]). Second, although they are not fully affine equivariant,

they are equivariant under any orthogonal transformation [14]. Third, geometric

quantiles characterise the associated distribution. Namely, if two random vari-

ables X and Y yield the same quantile function q, then X and Y have the same

distribution [23]. Finally, for u = 0, the well-known L2-geometric median is ob-

tained, which is the simplest example of a “central” quantile [28]. We point out

that one may compute an estimation of the geometric median in an efficient way,

see [8].

These properties make geometric quantiles reasonable candidates when try-

ing to define multivariate quantiles, which is why their estimation was studied in

several papers. We refer for instance to [14], who established a Bahadur expansion

for the estimator of geometric quantiles obtained by solving the sample counter-

part of problem (1.1). [10] then introduced a transformation–retransformation

procedure to obtain affine equivariant estimates of multivariate quantiles. This

notion was extended to a multiresponse linear model by [11]. Recently, [16] de-

fined a multivariate quantile–quantile plot using geometric quantiles. Conditional

geometric quantiles can also be defined by substituting a conditional expectation

to the expectation in (1.1). We refer to [6] for the estimation of the condi-

tional geometric median and to [15] for the estimation of an arbitrary conditional

geometric quantile. The estimation of a conditional median when there is an

infinite-dimensional covariate is considered in [13].

Let us note though that the previous papers focus on central properties

of geometric quantiles and of their sample versions. While some of them label
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geometric quantiles as “extreme” when ‖u‖ is close to 1 ([14, 15]) and use it in

real applications (see e.g. [12] for an application to outlier detection), the specific

properties of these extreme geometric quantiles have not been investigated yet.

In this study, we provide the asymptotics of the direction and magnitude of the

extreme geometric quantile q(u) when ‖u‖ → 1, under suitable moment condi-

tions. There are well-known analogue results for univariate extreme quantiles in

the right tail of a distribution, see e.g. [18]. A particular corollary of our results

is that the magnitude of the extreme geometric quantiles of a random vector X

having a finite covariance matrix grows at a fixed rate. Moreover, in this case, the

magnitude of the extreme geometric quantiles is asymptotically characterised by

the covariance matrix of X. This is an intriguing property, which opens the door

to a parametric estimation of extreme quantiles whose asymptotic properties are

studied in this work.

The outline of the paper is as follows. Asymptotic properties of geometric

quantiles are stated in Section 2. An illustrative application to the estimation of

extreme geometric quantiles is given in Section 3. Some examples and numerical

illustrations of our results, including a study of a real data set, are presented in

Section 4. Section 5 offers a couple of concluding remarks, in which some warnings

are given to practitioners who would like to use such geometric quantiles to detect

outliers or analyze extremes of a random vector. Proofs are deferred to Section 6.

2. ASYMPTOTIC BEHAVIOUR OF EXTREME GEOMETRIC

QUANTILES

From now on, we assume that the distribution of X is not concentrated on

a single straight line in R
d and non-atomic. [14] proved that, in this context, the

solution q(u) of (1.1), namely the geometric quantile with index vector u, exists

and is unique for every u ∈ Bd. Let ψ : R
d×R

d → R be defined as ψ(u, q) =

E(‖X − q‖ − ‖X‖) − 〈u, q〉 and assume further that t/‖t‖ = 0 if t = 0. If u ∈ R
d

is such that there is a solution q(u) ∈ R
d to problem (1.1), then the gradient of

q 7→ ψ(u, q) must be zero at q(u), that is

(2.1) u+ E

(
X − q(u)

‖X − q(u)‖

)
= 0 .

This condition immediately entails that if u ∈ R
d is such that problem (1.1) has

a solution q(u), then ‖u‖ ≤ 1. In fact, we can prove a stronger result:

Proposition 2.1. The optimisation problem (1.1) has a solution if and

only if u ∈ Bd.

Moreover, remarking that the function ψ(u, ·) is strictly convex, [14] proved

the following characterisation of a geometric quantile: for every u ∈ Bd, q(u) is
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the solution of problem (1.1) if and only if it satisfies equation (2.1). In particular,

this entails that the function G : R
d → Bd defined by

∀q ∈ R
d , G(q) = −E

(
X − q

‖X − q‖

)

is a continuous bijection. Proposition 2.6(iii) in [23] shows that the inverse of the

function G, i.e. the geometric quantile function u 7→ q(u), is also continuous on

Bd.

In most cases however, computing explicitly the function G is a hopeless

task, which makes it impossible to obtain a closed-form expression for the geo-

metric quantile function. It is thus of interest to prove general results about the

geometric quantile q(u), especially regarding its direction and magnitude. Our

first main result focuses on the special case of spherically symmetric distributions.

Proposition 2.2. If X has a spherically symmetric distribution then:

(i) The map u 7→ q(u) commutes with every linear isometry of R
d.

Especially, the norm of a geometric quantile q(u) only depends on

the norm of u.

(ii) For all u ∈ Bd, the geometric quantile q(u) has direction u if u 6= 0

and q(0) = 0 otherwise.

(iii) The function ‖u‖ 7→ ‖q(u)‖ is a continuous strictly increasing func-

tion on [0, 1).

(iv) It holds that ‖q(u)‖ → ∞ as ‖u‖ → 1.

Although Proposition 2.2(i,iii) cannot be expected to hold true for a random

variable which is not spherically symmetric, one may wonder if (ii,iv), namely that

a geometric quantile shares the direction of its index vector and that the norm

of the geometric quantile function tends to infinity on the unit sphere, can be

extended to the general case. The next result, which examines the behaviour of

the geometric quantile function near the boundary of the open ball Bd, provides

an answer to this question.

Theorem 2.1. Let Sd−1 be the unit sphere of R
d.

(i) It holds that ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Moreover, if v → u with u ∈ Sd−1 and v ∈ Bd then q(v)/‖q(v)‖ → u.

Theorem 2.1 shows two properties of geometric quantiles: first, the norm

of the geometric quantile q(v) with index vector v diverges to infinity as ‖v‖ ↑ 1.

In other words, Proposition 2.2(iv) still holds for any distribution. This is a rather

intriguing property of geometric quantiles, since it holds even if the distribution
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of X has a compact support (for instance, when X is uniformly distributed on

a square). A related point is the fact that sample geometric quantiles do not

necessarily lie within the convex hull of the sample, see [4] for a counter-example.

Second, if v → u ∈ Sd−1, then the geometric quantile q(v) has asymptotic direc-

tion u. Proposition 2.2(ii) thus remains true asymptotically for any distribution.

It is possible to specify the convergences obtained in Theorem 2.1 under

moment assumptions. Theorem 2.2 provides a first-order expansion of both the

direction and the magnitude of an extreme geometric quantile q(αu) in the di-

rection u, where u is a unit vector and α tends to 1.

Theorem 2.2. Let u ∈ Sd−1.

(i) If E‖X‖<∞ then q(αu)−
{
‖q(αu)‖u+E(X−〈X,u〉u)

}
→ 0 as α ↑ 1.

(ii) If E‖X‖2 <∞ and Σ denotes the covariance matrix of X then

‖q(αu)‖2 (1 − α) → 1

2

(
tr Σ − u′Σu

)
> 0 as α ↑ 1 .

Let us note that the integrability conditions of Theorem 2.2 exclude any

random vector ‖X‖ whose distribution possesses a right tail which is too heavy.

For instance, condition E‖X‖ <∞ in (i) excludes the multivariate Student dis-

tribution with less than one degree of freedom, while condition E‖X‖2 <∞
in (ii) excludes the multivariate Student distribution with less than two degrees

of freedom.

Consequence 1. It appears that, if X has a finite covariance matrix Σ,

then the magnitude of an extreme geometric quantile is determined (in the asymp-

totic sense) by Σ. In other words, since the asymptotic direction of an extreme

geometric quantile in the direction u is exactly u by Theorem 2.1, it follows that

the extreme geometric quantiles of two probability distributions which admit the

same finite covariance matrix are asymptotically equivalent. This phenomenon

is illustrated on simulated data in Section 4 below. This is surprising from the

extreme value perspective: one could expect the behaviour of extreme geometric

quantiles not to be driven by a central parameter such as the covariance ma-

trix, as happens in the univariate context where the value of an extreme quantile

depends on the tail heaviness of the probability density function of X.

Consequence 2. The map λ 7→ ‖q((1 − λ−1)u)‖ is a regularly varying

function with index 1/2 (see Bingham et al., 1987) and therefore:

‖q(βu)‖
‖q(αu)‖ =

(
1 − α

1 − β

)1/2(
1 + o(1)

)

when α→ 1 and β → 1. In other words, given an arbitrary extreme geomet-

ric quantile, one can deduce the asymptotic behaviour of every other extreme

geometric quantile sharing its direction, independently of the distribution.
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Again, this is fundamentally different from the univariate case when deducing

the value of an extreme quantile from another one then requires the knowledge

(or an estimate) of the extreme-value index of the distribution, see [18], Chap-

ter 4. A further, perhaps unexpected, consequence is that our results can actually

be used to define a consistent and asymptotically Gaussian estimator of extreme

geometric quantiles by using the standard empirical estimator of the covariance

matrix of X, see Section 3 below.

Consequence 3. Finally, Theorem 2.2 provides some information on the

shape of an extreme quantile contour. It is readily seen that the global maximum

of the function h1(u) := tr Σ − u′Σu on Sd−1 is reached at a unit eigenvector

umin of Σ associated with its smallest eigenvalue λmin > 0. Thus, the norm of an

extreme geometric quantile is asymptotically the largest in the direction where

the variance is the smallest. Similarly, the global minimum of h1 is reached at

a unit eigenvector umax of Σ associated with its largest eigenvalue λmax > 0. In

particular, if f is the probability density function associated with an elliptically

contoured distribution [7], the level sets of f coincide with the level sets of the

function h2(u) := u′Σu. The global maximum of h2 is reached at the eigenvec-

tor umax while the global minimum is reached at umin. The extreme geometric

quantile is therefore furthest from the origin in the direction where the density

level set is closest to the origin, see Section 4 for an illustration on real data. In

such a case, the extreme geometric quantile contour plot and the density level

plots are in some sense orthogonal (even though they agree when the distribu-

tion of X is spherically symmetric). Of course, one should not expect a direct

geometric match between quantile contours and density contours, but this phe-

nomenon should be kept in mind when designing outlier detection procedures.

In our view, this can be seen as a consequence of the lack of affine-equivariance

of geometric quantiles. To tackle this issue, one may apply a transformation–

retransformation procedure, see [27]. Such procedures admit sample analogues,

see for instance [9, 10], at the possible loss of geometric interpretation, see [26].

3. AN ESTIMATOR OF EXTREME GEOMETRIC QUANTILES

In this paragraph, our focus is to illustrate Consequence 2 of Theorem 2.2

at the sample level. Let X1, ..., Xn be independent random copies of a random

vector X having a finite covariance matrix Σ. It follows from Theorem 2.2 that

any extreme geometric quantile q(αu) of X, with α ↑ 1 and u ∈ Sd−1 can be

approximated by:

(3.1) qeq(αu) := (1 − α)−1/2

[
1

2

(
tr Σ − u′Σu

)]1/2

u .
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This can be used to define an estimator of the extreme geometric quantiles of X:

let Xn = n−1
∑n

k=1Xk be the sample mean and

Σ̂n =
1

n

n∑

k=1

(Xk −Xn) (Xk −Xn)′

be the empirical estimator of the covariance matrix Σ of X. Let further (αn)

be an increasing sequence of positive real numbers tending to 1. Our estimator

q̂n(αnu) of q(αnu) is then

q̂n(αnu) = (1 − αn)−1/2

[
1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2

u .

The consistency of q̂n(αnu) is examined in the next result.

Theorem 3.1. Let u ∈ Sd−1 and assume that αn ↑ 1. If E‖X‖2 <∞
then

√
1 − αn

(
q̂n(αnu) − q(αnu)

)
→ 0 almost surely as n→ ∞ .

This result actually means that the extreme geometric quantile estimator

is relatively consistent in the sense that

q̂n(αnu) − q(αnu)

‖q(αnu)‖
→ 0 almost surely as n→ ∞ ,

since ‖q(αnu)‖−1 = O(
√

1 − αn), see Theorem 2.2(ii). This normalisation could

be expected since the quantity to be estimated diverges in magnitude. Under

the additional assumption that X has a finite fourth moment, an asymptotic

normality result can be established for this estimator:

Theorem 3.2. Let u∈Sd−1 and assume that αn ↑1 is such that n(1−αn)

→ 0. If E‖X‖4 <∞ then

√
n(1 − αn)

(
q̂n(αnu) − q(αnu)

) d−→ Z as n→ ∞

where Z is a Gaussian centred random vector.

Let us highlight that the covariance matrix of the Gaussian limit in Theo-

rem 3.2 essentially depends on the covariance matrix M of the Gaussian limit of√
n(Σ̂n − Σ), see the proof in Section 6. Although M has a complicated expres-

sion (see e.g. [24]), it can be estimated when E‖X‖4 <∞, which makes it possible

to construct asymptotic confidence regions for extreme geometric quantiles.

Extreme geometric quantiles can thus be consistently estimated by q̂n(αnu),

whatever the “order” αn, and an asymptotic normality result is obtained when
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αn ↑ 1 quickly enough. The proposed estimator is therefore able to extrapolate

arbitrarily far from the original sample. This is very different from the univari-

ate case, where the empirical quantile q̂n(αn) = inf{t ∈ R | F̂n(t) ≥ αn}, deduced

from the empirical cumulative distribution function F̂n, estimates the true quan-

tile q(αn) consistently only if αn converges to 1 slowly enough. The extrapolation

with faster rates αn is then handled assuming that the underlying distribution

function is heavy-tailed and by using adapted estimators, see e.g. [29] and the

monograph [18].

4. NUMERICAL ILLUSTRATIONS

4.1. Simulation study

In this section, our main results are illustrated, particularly Theorems 2.2,

3.1 and 3.2 in the bivariate case d = 2 to make the display easier. In this frame-

work, u ∈ S1 can be represented by an angle: u = uθ = (cos θ, sin θ), θ ∈ [0, 2π).

The iso-quantile curves Cq(α) = {q(αuθ), θ ∈ [0, 2π)} and their estimates Cq̂n(α)

= {q̂n(αuθ), θ ∈ [0, 2π)} can then be considered in order to get a grasp of the

behaviour of extreme quantiles in every direction. The following two distributions

are considered for the random vector X:

• The centred Gaussian multivariate distribution N (0, vX , vY , vXY ), with

probability density function: ∀x, y ∈ R,

f(x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x
y

)′
Σ−1

(
x
y

))
with Σ =

(
vX vXY

vXY vY

)
.

• A double exponential distribution E(λ−, µ−, λ+, µ+), with λ−, µ−, λ+, µ+

> 0, whose probability density function is: ∀x, y ∈ R,

f(x, y) =
1

4





λ+µ+e

−λ+|x|−µ+|y| if xy > 0 ,

λ−µ−e
−λ

−
|x|−µ

−
|y| if xy ≤ 0 .

In this case, X is centred and has covariance matrix

Σ =





1

λ2
−

+
1

λ2
+

1

2

[
1

λ+µ+
− 1

λ−µ−

]

1

2

[
1

λ+µ+
− 1

λ−µ−

]
1

µ2
−

+
1

µ2
+



 .
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Three different sets of parameters were used for each distribution, in order

that the related covariance matrices coincide:

• N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherical covariance matrices;

• N (0, 1/8, 3/4, 0) and E(4, 2
√

2/3, 4, 2
√

2/3) with diagonal covariance

matrices;

• N (0, 1/2, 1/2, 1/6) and E(2
√

3, 2
√

3, 2
√

3/5, 2
√

3/5) with full covariance

matrices.

In each case, we carry out the following computations:

• For each α ∈ {0.99, 0.995, 0.999}, the true quantile curves Cq(α) ob-

tained by solving problem (1.1) numerically, as well as their analogues

Cqeq(α) using approximation (3.1) are computed. The normalised squared

approximation error

e(α) = (1−α)

∫ 2π

0
‖qeq(αuθ) − q(αuθ)‖2 dθ

is then recorded.

• For each value of α, we draw N = 1000 replications of an n-sample

(X1, ..., Xn) of independent copies of X, with n ∈ {100, 200, 500}. The

estimated quantile curves Cq̂(j)n (α) corresponding to the j-th replication

and the associated normalised squared error

E(j)
n (α) = (1− α)

∫ 2π

0

∥∥∥q̂(j)n (αuθ) − q(αuθ)
∥∥∥

2
dθ

are computed as well as the mean squared errorEn(α)=N−1
∑N

j=1E
(j)
n (α).

The true quantile curves, as well as the approximated and the estimated

ones are displayed on Figures 1–6 in the case n = 200 and α = 0.995. The true

quantile curves look very similar in Figures 1 and 4, in Figures 2 and 5 and

Figures 3 and 6 (in which the words “best”, “median” and “worst” are to be

understood with respect to the L2 error). This is in accordance with Theorem 2.2:

eventually, extreme geometric quantiles only depend on the covariance matrix of

the underlying distribution. Moreover, the approximated quantile curves are close

to the true ones in all cases, and the estimated quantile curves are satisfying

in all situations with a moderate variability. Similar results were observed for

n = 100, 500 and α = 0.99, 0.999. We do not report the graphs here for the sake

of brevity; we do however display the approximation and estimation errors in

Table 1. Unsurprisingly, the estimation error En(α) decreases as the sample size

n increases. Both approximation and estimation errors e(α) and En(α) have a

stable behaviour with respect to α.



Intriguing Properties of Extreme Geometric Quantiles 117

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

Figure 1: Spherical Gaussian distribution N (0, 1/2, 1/2, 0) for α = 0.995.
Top left: comparison between a numerical method and the use of
the equivalent (3.1) for the computation of the iso-quantile curve,
full line: numerical method, dashed line: asymptotic equivalent.
Top right, bottom left and bottom right: best, median and worst
estimates of the iso-quantile curve for n = 200, full line: numerical
method, dashed-dotted line: estimator q̂n.
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Figure 2: Diagonal Gaussian distribution N (0, 1/8, 3/4, 0) for α = 0.995.
Top left: comparison between a numerical method and the use of
the equivalent (3.1) for the computation of the iso-quantile curve,
full line: numerical method, dashed line: asymptotic equivalent.
Top right, bottom left and bottom right: best, median and worst
estimates of the iso-quantile curve for n = 200, full line: numerical
method, dashed-dotted line: estimator q̂n.
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Figure 3: Full Gaussian distribution N (0, 1/2, 1/2, 1/6) for α = 0.995.
Top left: comparison between a numerical method and the use of
the equivalent (3.1) for the computation of the iso-quantile curve,
full line: numerical method, dashed line: asymptotic equivalent.
Top right, bottom left and bottom right: best, median and worst
estimates of the iso-quantile curve for n = 200, full line: numerical
method, dashed-dotted line: estimator q̂n.
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Figure 4: Spherical double exponential distribution E(2, 2, 2, 2) for α = 0.995.
Top left: comparison between a numerical method and the use of
the equivalent (3.1) for the computation of the iso-quantile curve,
full line: numerical method, dashed line: asymptotic equivalent.
Top right, bottom left and bottom right: best, median and worst
estimates of the iso-quantile curve for n = 200, full line: numerical
method, dashed-dotted line: estimator q̂n.
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Figure 5: Diagonal double exponential distribution E(4, 2
√

2/3, 4, 2
√

2/3)
for α = 0.995. Top left: comparison between a numerical method
and the use of the equivalent (3.1) for the computation of the iso-
quantile curve, full line: numerical method, dashed line: asymp-
totic equivalent. Top right, bottom left and bottom right: best,
median and worst estimates of the iso-quantile curve for n = 200,
full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 6: Full double exponential distribution E(2
√

3, 2
√

3, 2
√

3/5, 2
√

3/5)
for α = 0.995. Top left: comparison between a numerical method
and the use of the equivalent (3.1) for the computation of the iso-
quantile curve, full line: numerical method, dashed line: asymp-
totic equivalent. Top right, bottom left and bottom right: best,
median and worst estimates of the iso-quantile curve for n = 200,
full line: numerical method, dashed-dotted line: estimator q̂n.
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4.2. Real data illustration

The finite sample behaviour of extreme geometric quantiles is illustrated on

a two-dimensional dataset extracted from the Pima Indians Diabetes Database.

This data set1 was already considered by [15] and [12], among others. In the latter

study, geometric iso-quantile curves with a high α are used to detect outliers in

the data set. Using extreme quantiles for outlier detection was advocated in e.g.

[5, 20] in the univariate case and [19] using depth-based quantile regions in the

multivariate case; see also the monograph [1].

After working on the data set so as to eliminate missing values, the data

set consists of n = 392 pairs (Xi, Yi), where Xi is the body mass index (BMI) of

the i-th individual and Yi is its diastolic blood pressure. The centered data cloud

is represented in Figure 7 with blue crosses, along with the geometric iso-quantile

curve with α = 0.95. While geometric quantiles with a moderate α tend to give

a fair idea of the shape of the data cloud (see e.g. [12]), the same cannot be said

for extreme geometric quantiles on this example. This is an illustration of the

phenomenon described in Consequence 3 in Section 2: the norm of an extreme

geometric quantile is the largest in the direction where the variance is the smallest.

−40 −20 0 20 40

−40
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−10
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Figure 7: Pima Indians Diabetes data set. Black dashed line: estimate
of the iso-quantile curve for α = 0.95, with the estimator q̂n.

We are thus led to think that here, outlier detection would be dangerous without

a preliminary transformation–retransformation procedure [10].

1Available at ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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5. CONCLUDING REMARKS

In this paper, we established the asymptotics of extreme geometric quan-

tiles. A particular consequence of our results is that, if the underlying distribution

possesses a finite covariance matrix Σ, then an extreme geometric quantile may be

estimated accurately, no matter how extreme it is, with the help of the standard

empirical estimator of Σ. This result is supported by our numerical study. The

situation is very different from the univariate case, in which the asymptotic decay

of a survival function can be linked to the asymptotic behaviour of an extreme

quantile.

An additional issue, illustrated on a real data set, is that although central

geometric quantile contours may roughly match the shape of the data cloud, this

does not necessarily stay true for extreme iso-quantile curves. This is why we

would advise practitioners to be cautious when using such a notion of multivariate

quantile to detect outliers or analyze the extremes of a random vector. We believe

that one can tackle this problem by applying a transformation–retransformation

procedure, see [27] at the population level, and [9, 10] at the sample level. Future

work on extreme geometric quantiles thus includes building and studying their

analogues for transformed–retransformed data.

Finally, let us underline again that this work was carried out under moment

conditions such as the existence of finite first and second-order moments for ‖X‖.
The case when these assumptions are violated is investigated in [17].

6. PROOFS

Some preliminary results are collected in Paragraph 6.1, their proofs are

postponed to Paragraph 6.3. The proofs of the main results are provided in

Paragraph 6.2.

6.1. Preliminary results

The first lemma provides some technical tools necessary to show Theo-

rem 2.2(ii).

Lemma 6.1. Let ϕ : R
d×R+×Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.
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Then, for all v ∈ Sd−1, ϕ(·, ·, v) is nonnegative and

∀x ∈ R
d, ∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 and ∀r > ‖x‖, ϕ(x, r, v) ≤ ‖x‖2 .

In particular, ϕ(x, r, v) ≤ 2‖x‖2 for every (x, r, v) ∈ R
d×R+×Sd−1.

The next lemma is the first step to prove Theorem 2.2(i).

Lemma 6.2. Let u ∈ Sd−1. If E‖X‖ <∞ then, for all v ∈ R
d,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , v
〉

→ −E
〈
X−〈X,u〉u, v

〉
as α ↑ 1 .

Lemma 6.3 below is a result which is similar to Lemma 6.2.

Lemma 6.3. Let u ∈ Sd−1. If E‖X‖2 <∞ then

‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
→ −1

2
E
∥∥X−〈X,u〉u

∥∥2
as α ↑ 1 .

Lemma 6.4 is the first step to prove Theorem 3.2. It is essentially a refine-

ment of Lemma 6.2.

Lemma 6.4. Let u ∈ Sd−1. If E‖X‖2 <∞ then, for all v ∈ R
d,

‖q(αu)‖
[
‖q(αu)‖

〈
αu− q(αu)

‖q(αu)‖ , v
〉

+ E
〈
X−〈X,u〉u, v

〉]
→

→ 〈u, v〉 Var〈X,u〉 − 1

2
〈u, v〉 E

∥∥X−〈X,u〉u
∥∥2

+ 〈u, v〉
∥∥E
(
X−〈X,u〉u

)∥∥2

− Cov
(
〈X,u〉, 〈X, v〉

)

as α ↑ 1.

Lemma 6.5 below is a refinement of Lemma 6.3. It is the second step to

prove Theorem 3.2.

Lemma 6.5. Let u ∈ Sd−1. If E‖X‖3 <∞ then

‖q(αu)‖
(
‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+

1

2
E
∥∥X − 〈X,u〉u

∥∥2
)

→

→ E

(
〈X,u〉

[〈
X, E

(
X − 〈X,u〉u

)〉
−
∥∥X − 〈X,u〉u

∥∥2
])

as α ↑ 1 .
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6.2. Proofs of the main results

Proof of Proposition 2.1: From [14], it is known that if u ∈ Bd then

problem (1.1) has a unique solution q(u) ∈ R
d. To prove the converse part of this

result, use equation (2.1) to get

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥ = ‖u‖ .

Let us introduce the coordinate representations X = (X1, ..., Xd) and q(u) =

(q1(u), ..., qd(u)). The Cauchy–Schwarz inequality yields

‖u‖2 =

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥
2

=

d∑

i=1

[
E

(
Xi − qi(u)

‖X − q(u)‖

)]2

≤
d∑

i=1

E

(
(Xi − qi(u))

2

‖X − q(u)‖2

)
= 1 .

Furthermore, equality holds if and only if for all i ∈ {1, ..., d}, there exists µi ∈ R

such that
Xi − qi(u)

‖X − q(u)‖ = µi

almost surely. In particular, if w = (µ1, ..., µd), this entails X ∈ D = q(u) + Rw

almost surely, which cannot hold since the distribution of X is not concentrated

in a single straight line in R
d. It follows that necessarily ‖u‖2 < 1, which is the

result.

Proof of Proposition 2.2:

(i) Note that (2.1) implies that, for any linear isometry h of R
d and every

u ∈ Bd,

h(u) + E

(
h(X) − h ◦ q(u)
‖X − q(u)‖

)
= 0 .

Since h is a linear isometry, the random vectors X and h(X) have the same

distribution and the equality ‖X− q(u)‖ = ‖h(X)−h ◦ q(u)‖ holds almost surely.

It follows that

h(u) + E

(
X − h ◦ q(u)
‖X − h ◦ q(u)‖

)
= 0 .

Since h(u) ∈ Bd, it follows that h ◦ q(u) = q ◦ h(u), which completes the proof of

the first statement.

(ii) To prove the second part of Proposition 2.2, start by noting that since

X and −X have the same distribution, it holds that E (X/‖X‖) = 0. The case

u = 0 is then obtained via (2.1). If u 6= 0, up to using the first part of the result

with a suitable linear isometry, we shall assume without loss of generality that



128 Stéphane Girard and Gilles Stupfler

u = (u1, 0, ..., 0) for some constant u1 ∈ (0, 1). It is then enough to prove that

there exists some constant q1(u) > 0 such that q(u) = (q1(u), 0, ..., 0). To this

end, let us remark that, on the one hand, if v1 ∈ R and w = (1, 0, ..., 0) then

(6.1) ∀j ∈ {2, ..., d} , E

(
Xj

‖X − v1w‖

)
= 0 ,

since, for all j ∈ {2, ..., d}, the random vectors (X1, ..., Xj−1,−Xj , Xj+1, ..., Xd)

andX have the same distribution. On the other hand, the dominated convergence

theorem entails that the function

v1 7→ E

(
X1 − v1

‖X − v1w‖

)

is continuous, converges to 1 at −∞, is equal to 0 at 0 and converges to −1 at

+∞. Thus, the intermediate value theorem yields that there exists some constant

q1(u) > 0 such that

(6.2) u1 + E

(
X1 − q1(u)

‖X − q1(u)w‖

)
= 0 .

Consequently, collecting (6.1) and (6.2) yields

u+ E

(
X − q1(u)w

‖X − q1(u)w‖

)
= 0

and it only remains to apply (2.1) to finish the proof of the second statement.

(iii) To show the third statement, use the first result to obtain that the

function g : ‖u‖ 7→ ‖q(u)‖ is indeed well-defined; since the geometric quantile func-

tion is continuous, so is g. Assume that g is not strictly increasing: namely,

there exist u1, u2 ∈ Bd such that ‖u1‖ < ‖u2‖ and ‖q(u1)‖ ≥ ‖q(u2)‖. Since

q(0) = 0, it is a consequence of the intermediate value theorem that one may find

u, v ∈ Bd such that ‖u‖ < ‖v‖ and ‖q(u)‖ = ‖q(v)‖. Let h be an isometry such

that h(u/‖u‖) = h(v/‖v‖); then

‖q(h(u))‖ = ‖q(u)‖ = ‖q(v)‖ = ‖q(h(v))‖

and
q(h(u))

‖q(h(u))‖ =
h(u)

‖h(u)‖ =
h(v)

‖h(v)‖ =
q(h(v))

‖q(h(v))‖ .

In other words, q(h(u)) and q(h(v)) have the same direction and magnitude, so

that they are necessarily equal, which entails that h(u) = h(v) because the geo-

metric quantile function is one-to-one. This is a contradiction because ‖h(u)‖ =

‖u‖ < ‖v‖ = ‖h(v)‖, and the third statement is proven.

(iv) Assume that ‖q(u)‖ does not tend to infinity as ‖u‖ → 1; since g

is increasing, it tends to a finite positive limit r. In other words, ‖q(u)‖ ≤ r for

every u ∈ Bd, which is a contradiction since the geometric quantile function maps

Bd onto R
d, and the proof is complete.
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Proof of Theorem 2.1:

(i) If the first statement were false, then one could find a sequence (vn)

contained in Bd such that ‖vn‖ → 1 and such that (‖q(vn)‖) does not tend to in-

finity. Up to extracting a subsequence, one can assume that (‖q(vn)‖) is bounded.

Again, up to extraction, one can assume that (vn) converges to some v∞ ∈ Sd−1

and that (q(vn)) converges to some q∞ ∈ R
d. Moreover, it is straightforward to

show that for every u1,u2, q1, q2 ∈ R
d

∣∣ψ(u1, q1) − ψ(u2, q2)
∣∣ ≤

{
1 + ‖u2‖

}
‖q2 − q1‖ + ‖q1‖ ‖u2 − u1‖

so that the function ψ is continuous on R
d×R

d. Recall then that the definition

of q(vn) implies that for every q ∈ R
d, ψ(vn, q(vn)) ≤ ψ(vn, q) and let n tend to

infinity to obtain

q∞ = arg min
q∈Rd

ψ(v∞, q) .

Because v ∈ Sd−1, this contradicts Proposition 2.1, and the proof of the first

statement is complete: ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Pick a sequence (vn) of elements of Bd converging to u and remark

that from (2.1),

vn + E

(
X − q(vn)

‖X − q(vn)‖

)
= 0

for every integer n. Hence, for n large enough, the following equality holds:

(6.3) vn + E

(∥∥∥∥
X

‖q(vn)‖ − q(vn)

‖q(vn)‖

∥∥∥∥
−1 [ X

‖q(vn)‖ − q(vn)

‖q(vn)‖

])
= 0 .

Since the sequence (q(vn)/‖q(vn)‖) is bounded it is enough to show that its only

accumulation point is u. Let then u∗ be an accumulation point of this sequence.

Since ‖q(vn)‖ → ∞, we may let n→ ∞ in (6.3) and use the dominated conver-

gence theorem to obtain u− u∗ = 0, which completes the proof.

Proof of Theorem 2.2:

(i) Let (u,w1, ..., wd−1) be an orthonormal basis of R
d and consider the

following expansion:

(6.4)
q(αu)

‖q(αu)‖ = b(α)u+
d−1∑

k=1

βk(α)wk

where b(α), β1(α), ..., βd−1(α) are real numbers. It immediately follows that

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖
{
E(X) − 〈E(X), u〉u

}
=(6.5)

=
(
b(α) − 1

)
u+

d−1∑

k=1

‖q(αu)‖βk(α) − E〈X,wk〉
‖q(αu)‖ wk .
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Lemma 6.2 implies that

(6.6)

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
= −‖q(αu)‖βk(α) → −E〈X,wk〉 as α ↑ 1

for all k ∈ {1, ..., d− 1}. Besides, let us note that q(αu)/‖q(αu)‖ ∈ Sd−1 entails

(6.7) b2(α) +
d−1∑

k=1

β2
k(α) = 1 .

Theorem 2.1 shows that b(α) → 1 as α ↑ 1 and thus (6.6) yields:

‖q(αu)‖
(
1 − b(α)

)
=

1

2
‖q(αu)‖

(
1 − b2(α)

) (
1 + o(1)

)
(6.8)

=
1

2
‖q(αu)‖

d−1∑

k=1

β2
k(α)

(
1 + o(1)

)
→ 0 as α ↑ 1 .

Collecting (6.5), (6.6) and (6.8), we obtain

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖
{
E(X) − 〈E(X), u〉u

}
= o

(
1

‖q(αu)‖

)
as α ↑ 1

which is the first result.

(ii) Recall (6.4) and use Lemma 6.2 to obtain

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
→ −E〈X,wk〉 as α ↑ 1 ,

for all k ∈ {1, ..., d− 1}, leading to

(6.9) ‖q(αu)‖2 β2
k(α) →

[
E〈X,wk〉

]2
as α ↑ 1

for all k ∈ {1, ..., d− 1}. Recall (6.7) and use Lemma 6.3 to get

(6.10) ‖q(αu)‖2
[
αb(α) − 1

]
→ −1

2
E
∥∥X − 〈X,u〉u

∥∥2
as α ↑ 1 .

Since (u, w1, ..., wd−1) is an orthonormal basis of R
d, one has the identity

(6.11)
∥∥X − 〈X,u〉u

∥∥2
=

d−1∑

k=1

〈X, wk〉2 .

Collecting (6.9), (6.10) and (6.11) leads to

‖q(αu)‖2

[
1 − αb(α) − 1

2

d−1∑

k=1

β2
k(α)

]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1 .

Therefore,

(6.12)

‖q(αu)‖2

[
1 − αb(α) − 1

2

(
1 − b2(α)

)]
→ 1

2

d−1∑

k=1

Var〈X,wk〉 as α ↑ 1 ,
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and easy calculations show that

(6.13) 1 − αb(α) − 1

2

(
1 − b2(α)

)
=

1

2

[
(1 − α) (1 + α) +

(
α− b(α)

)2]
.

Finally, in view of Lemma 6.2,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , u
〉

→ 0 as α ↑ 1

which is equivalent to

(6.14) ‖q(αu)‖2
(
α− b(α)

)2 → 0 as α ↑ 1 .

Collecting (6.12), (6.13) and (6.14), we obtain

‖q(αu)‖2 (1 − α) → 1

2

d−1∑

k=1

Var〈X,wk〉 as α ↑ 1 .

Remarking that, for every orthonormal basis (e1, ..., ed) of R
d,

(6.15)
d∑

k=1

Var〈X, ek〉 =
d∑

k=1

e′k Σek = tr Σ

proves that

‖q(αu)‖2 (1 − α) → 1

2

(
tr Σ − u′Σu

)
≥ 0 as α ↑ 1 .

Finally, note that if we had tr Σ − u′Σu = 0 then by (6.15) we would have that

Var〈X,wk〉 = 0 for all k ∈ {1, ..., d− 1}. Thus the projection of X onto the or-

thogonal complement of Ru would be almost surely constant and X would be

contained in a single straight line in R
d, which is a contradiction. This completes

the proof of Theorem 2.2.

Proof of Theorem 3.1: Note that

(6.16)
√

1 − αn q̂n(αnu) →
[
1

2

(
tr Σ − u′Σu

)]1/2

u

almost surely as n→ ∞. Moreover, by Theorems 2.1 and 2.2

(6.17)
√

1 − αn q(αnu) =
√

1 − αn ‖q(αnu)‖
q(αnu)

‖q(αnu)‖
→
[
1

2

(
tr Σ − u′Σu

)]1/2

u

almost surely as n→ ∞. Combining (6.16) and (6.17) completes the proof.
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Proof of Theorem 3.2: Consider the following representation:
√
n(1 − αn)

(
q̂n(αnu) − q(αnu)

)
= T1,n + T2,n + T3,n

with T1,n =
√
n

([
1

2

{
tr Σ̂n − u′Σ̂nu

}]1/2

−
[
1

2

{
tr Σ − u′Σu

}]1/2
)

q(αnu)

‖q(αnu)‖
,

T2,n =
√
n

([
1

2

{
tr Σ − u′Σu

}]1/2

−
√

1 − αn ‖q(αnu)‖
)

q(αnu)

‖q(αnu)‖

and T3,n = −
√
n(1 − αn) ‖q̂n(αnu)‖

(
q(αnu)

‖q(αnu)‖
− u

)
.

We start by examining the convergence of T1,n. Observe first that

T1,n =
√
n

1√
2

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

{
tr Σ̂n − u′Σ̂nu

}1/2
+
{
tr Σ − u′Σu

}1/2

q(αnu)

‖q(αnu)‖

=
√
n

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

2
√

2
{
tr Σ − u′Σu

}1/2
u
(
1 + oP(1)

)
as n→ ∞

in view of Theorem 2.1(i) and from the consistency of Σ̂n. Denote by M the

Gaussian centred limit of
√
n(Σ̂n − Σ) (see e.g. [24]). Since the map A 7→ trA−

u′Au is linear, it follows that

√
n

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

2
√

2
{
tr Σ − u′Σu

}1/2

d−→ Y as n→ ∞

where Y is a centred Gaussian random variable. Now, clearly Z := Y u is a

Gaussian centred random vector and we have

(6.18) T1,n
d−→ Z as n→ ∞ .

The sequence T2,n is controlled in the following way: using Lemmas 6.4 and 6.5

and following the steps of the proof of Theorem 2.2(ii), we obtain

‖q(αnu)‖2 (1 − αn) =
1

2

(
tr Σ − u′Σu

)
+ O

(
‖q(αnu)‖−1

)

=
1

2

(
tr Σ − u′Σu

)
+ O

(√
1 − αn

)
as n→ ∞ .

As a consequence

(6.19) ‖T2,n‖ = O
(√

n(1 − αn)
)

= o(1) as n→ ∞ .

We conclude by controlling T3,n. Theorem 2.2 entails

‖T3,n‖ = OP

(√
n(1 − αn)

‖q̂n(αnu)‖
‖q(αnu)‖

)

= OP




√
n(1 − αn)

[
tr Σ̂n − u′Σ̂nu

tr Σ − u′Σu

]1/2


(6.20)

= OP

(√
n(1 − αn)

)
= oP(1) as n→ ∞

by the consistency of Σ̂n. Combining (6.18), (6.19) and (6.20) completes the proof.
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6.3. Proofs of the preliminary results

Proof of Lemma 6.1: The fact that ϕ is nonnegative and the inequality

(6.21) ∀r ≤ ‖x‖ , ϕ(x, r, v) ≤ 2 r2

are straightforward consequences of the Cauchy–Schwarz inequality. Further-

more, ϕ can be rewritten as

ϕ(x, r, v) = r2

[ ∥∥x− 〈x, v〉v
∥∥2

‖x− rv‖
[
‖x− rv‖ − 〈x− rv, v〉

]
]
.

Let us now remark that, if ‖x‖ < r, then, by the Cauchy–Schwarz inequality,

〈x− rv, v〉 = 〈x, v〉 − r < 0 which makes it clear that

(6.22) ϕ(x, r, v) 1l{‖x‖<r} ≤ r2
∥∥x− 〈x, v〉v

∥∥2

‖x− rv‖2 1l{‖x‖<r} =: ψ(x, r, v) 1l{‖x‖<r} .

Since ‖x− rv‖2 = ‖x‖2 − 2r〈x, v〉+ r2, the function ψ(x, ·, v) is differentiable on

(‖x‖, +∞) and some easy computations yield

∂ψ

∂r
(x, r, v) = 2 r

[
‖x‖2 − r〈x, v〉

]
∥∥x− 〈x, v〉v

∥∥2

‖x− rv‖4 .

If 〈x, v〉 ≤ 0 then ψ(x, ·, v) is increasing on (‖x‖, +∞) and thus

(6.23) ∀r > ‖x‖ , ψ(x, r, v) ≤ lim
r→+∞

ψ(x, r, v) = ‖x− 〈x, v〉v‖2 ≤ ‖x‖2 .

Otherwise, if 〈x, v〉 > 0 then ψ(x, ·, v) reaches its global maximum over [‖x‖,+∞)

at ‖x‖2/〈x, v〉 and therefore,

(6.24) ∀r > ‖x‖ , ψ(x, r, v) ≤ ψ

(
x,

‖x‖2

〈x, v〉 , v
)

= ‖x‖2 .

Collecting (6.22), (6.23) and (6.24) yields

(6.25) ϕ(x, r, v) 1l{‖x‖<r} ≤ ‖x‖2 1l{‖x‖<r} .

Combining (6.21) and (6.25) shows that ϕ(x, r, v) ≤ 2‖x‖2 for every r > 0 and

every v ∈ Sd−1 and completes the proof of the result.

Proof of Lemma 6.2: Let v ∈ R
d and Wα(·, v) : R

d → R be the function

defined by

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉
.
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For α close enough to 1, (2.1) entails

(6.26)

〈
αu− q(αu)

‖q(αu)‖ , v
〉

+ E
(
Wα(X, v)

)
+

1

‖q(αu)‖ E〈X, v〉 = 0 .

It is therefore enough to show that

(6.27) ‖q(αu)‖E
(
Wα(X, v)

)
→ −〈u, v〉 E〈X,u〉 as α ↑ 1 .

Since, for every x ∈ R
d,

(6.28)

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
2

= 1 − 2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
+

‖x‖2

‖q(αu)‖2
,

it follows from a Taylor expansion and Theorem 2.1 that

(6.29) ‖q(αu)‖Wα(X, v) → −〈u, v〉 〈X,u〉 almost surely as α ↑ 1 .

Besides,
∣∣∣∣∣

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

∣∣∣∣∣ =

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

×
[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]−1

×
∣∣∣∣

2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
− ‖x‖2

‖q(αu)‖2

∣∣∣∣ ,

and the Cauchy–Schwarz inequality yields
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1〈 x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

≤ ‖v‖ .

Thus, using the triangular inequality and the Cauchy–Schwarz inequality, it fol-

lows that

|Wα(x, v)| ≤ ‖v‖
[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]−1 ‖x‖
‖q(αu)‖

[
2 +

‖x‖
‖q(αu)‖

]
.

Consequently, one has

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖≤‖q(αu)‖} ≤ 3 ‖v‖ ‖x‖ 1l{‖x‖≤‖q(αu)‖} .

Furthermore, the reverse triangle inequality entails, for x ∈ R
d such that ‖x‖ >

‖q(αu)‖: [
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]−1

≤ ‖q(αu)‖
‖x‖ ,

and therefore,

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖>‖q(αu)‖} ≤ 3 ‖v‖ ‖x‖ 1l{‖x‖>‖q(αu)‖} .

Finally,

‖q(αu)‖ |Wα(X, v)| ≤ 3 ‖v‖ ‖X‖
so that the integrand in (6.27) is bounded from above by an integrable random

variable. One can now recall (6.29) and apply the dominated convergence theorem

to obtain (6.27). The proof is complete.
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Proof of Lemma 6.3: Let Zα : R
d → R be the function defined by

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

For α close enough to 1, (2.1) yields

(6.30)

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+ E

(
Zα(X)

)
= 0

and it thus remains to prove that

‖q(αu)‖2
E
(
Zα(X)

)
→ 1

2
E
∥∥X−〈X,u〉u

∥∥2
as α ↑ 1 .

To this end, rewrite Zα as

(6.31) Zα(x) = 1 −
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1 − 1

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉]
.

It thus follows from equation (6.28), Theorem 2.1 and a Taylor expansion that

Zα(x) =
1

2 ‖q(αu)‖2

〈
x −

〈
x,

q(αu)

‖q(αu)‖

〉
q(αu)

‖q(αu)‖ , x
〉 (

1 + o(1)
)

for all x ∈ R
d. Using Theorem 2.1 again, we then get

(6.32)

‖q(αu)‖2Zα(X) → ‖X‖2−〈X,u〉2 = ‖X−〈X,u〉u‖2 almost surely as α ↑ 1 .

To conclude the proof, let ϕ : R
d×R+×Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.

Note that ‖q(αu)‖2Zα(x) = ϕ
(
x, ‖q(αu)‖, q(αu)/‖q(αu)‖

)
. By Lemma 6.1:

‖q(αu)‖2Zα(X) = ϕ
(
X, ‖q(αu)‖, q(αu)/‖q(αu)‖

)
≤ 2‖X‖2

and the right-hand side is an integrable random variable. Use then (6.32) and

the dominated convergence theorem to complete the proof.

Proof of Lemma 6.4: Let v ∈ R
d and recall the notation

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

from the proof of Lemma 6.2. From (6.26) there, it is enough to show that

‖q(αu)‖ E

(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
→(6.33)

→ 1

2
〈u, v〉 E

∥∥X−〈X,u〉u
∥∥2 − 〈u, v〉 Var〈X,u〉

+ Cov
(
〈X,u〉, 〈X, v〉

)
− 〈u, v〉

∥∥E(X−〈X,u〉u)
∥∥2
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as α ↑ 1. Use now (6.28) in the proof of Lemma 6.2, Theorem 2.2(i) and a Taylor

expansion to obtain after some cumbersome computations that

‖q(αu)‖
(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
=

=
1

2
〈u, v〉 ‖X−〈X,u〉u‖2 − 〈u, v〉 〈X,u〉

(
〈X,u〉 − E〈X,u〉

)

+ 〈X,u〉
(
〈X, v〉 − E〈X, v〉

)
− 〈u, v〉

〈
X, E

(
X−〈X,u〉u

)〉

+
2∑

j=0

‖X‖j εj
(
α,X, q(αu)

)

with probability 1, where for all j ∈ {0, 1, 2}, εj(α, y, z) → 0 as max(1 − α,

‖y‖/‖z‖) ↓ 0. In particular

‖q(αu)‖
(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
→

→ 1

2
〈u, v〉

∥∥X−〈X,u〉u
∥∥2 − 〈u, v〉 〈X,u〉

(
〈X,u〉 − E〈X,u〉

)
(6.34)

−〈u, v〉
〈
X, E

(
X−〈X,u〉u

)〉
+ 〈X,u〉

(
〈X, v〉 − E〈X, v〉

)
,

almost surely as α ↑ 1. The proof shall be complete provided we can apply the

dominated convergence theorem to the left-hand side of (6.34). To this end, let

δ ∈ (0, 1) be such that

α ∈ (1 − δ, 1) and
‖X‖

‖q(αu)‖ < δ =⇒ max
0≤j≤2

∣∣εj(α,X, q(αu))
∣∣ ≤ 1 .

Equality (6.34) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ 1l{‖X‖<δ‖q(αu)‖} ≤
≤ P1

(
‖X‖

)
1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 2. Besides, it is a consequence of the

definition of Wα(X, v) and the Cauchy–Schwarz inequality that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ 1l{‖X‖≥δ‖q(αu)‖} ≤

≤ 2(1 + δ) ‖v‖
δ2

‖X‖2 1l{‖X‖≥δ‖q(αu)‖} .

One can conclude that there exists a real polynomial P2 of degree 2 such that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ ≤ P2

(
‖X‖

)

so that the integrand in (6.33) is bounded by an integrable random variable.

Recall (6.34) and apply the dominated convergence theorem to complete the

proof.
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Proof of Lemma 6.5: The proof is similar to that of Lemma 6.4. Recall

from the proof of Lemma 6.3 the notation

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

From (6.30) there, it is enough to show that

‖q(αu)‖ E

(
‖q(αu)‖2Zα(X) − 1

2
E
∥∥X−〈X,u〉u

∥∥2
)

→(6.35)

→ E

(
〈X,u〉

[∥∥X−〈X,u〉u
∥∥2 −

〈
X, E

(
X−〈X,u〉u)

〉])

as α ↑ 1. We first use (6.28) in the proof of Lemma 6.2, equation (6.31) in the

proof of Lemma 6.3, Theorem 2.2(i) and a Taylor expansion to obtain after some

burdensome computations that

‖q(αu)‖
(
‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
)

=(6.36)

= 〈X,u〉
(∥∥X−〈X,u〉u

∥∥2 −
〈
X, E

(
X−〈X,u〉u)

〉)
+

3∑

j=0

‖X‖j εj
(
α,X, q(αu)

)

with probability 1, where for j ∈ {0, 1, 2, 3}, εj(α, y, z) → 0 as max(1 − α,

‖y‖/‖z‖) ↓ 0. Especially

‖q(αu)‖
(
‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
)

→(6.37)

→ 〈X,u〉
(∥∥X−〈X,u〉u

∥∥2 −
〈
X, E

(
X−〈X,u〉u

)〉)

as α ↑ 1. Our aim is now to apply the dominated convergence theorem to the

left-hand side of (6.35). To this end, pick δ ∈ (0, 1) such that

α ∈ (1 − δ, 1) and
‖X‖

‖q(αu)‖ < δ =⇒ max
0≤j≤3

∣∣εj
(
α,X, q(αu)

)∣∣ ≤ 1 .

Equality (6.36) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
∣∣∣ 1l{‖X‖<δ‖q(αu)‖} ≤
≤ P1

(
‖X‖

)
1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 3. Moreover, the Cauchy–Schwarz in-

equality yields

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u‖2
∣∣∣ 1l{‖X‖≥δ‖q(αu)‖} ≤

≤ 4 + δ2

2 δ3
‖X‖3 1l{‖X‖≥δ‖q(αu)‖} .
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Consequently, there exists a real polynomial P2 of degree 3 such that

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
∣∣∣ ≤ P2

(
‖X‖

)
.

We conclude that the integrand in (6.35) is bounded by an integrable random

variable. Recall (6.37) and apply the dominated convergence theorem to complete

the proof.

REFERENCES

[1] Aggarwal, C.C. (2013). Outlier analysis, Springer, New York.

[2] Bingham, N.H.; Goldie, C.M. and Teugels, J. L. (1987). Regular Variation,
Cambridge, U.K.: Cambridge University Press.

[3] Breckling, J. and Chambers, R. (1988). M -quantiles, Biometrika, 75(4),
761–771.
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