
REVSTAT – Statistical Journal

Volume 15, Number 1, January 2017, 141–153

THE SHORTEST CLOPPER–PEARSON RANDOM-

IZED CONFIDENCE INTERVAL FOR BINOMIAL

PROBABILITY

Author: Wojciech Zieliński
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Abstract:

• Zieliński (2010) showed the existence of the shortest Clopper–Pearson confidence inter-
val for binomial probability. The method of obtaining such an interval was presented
as well. Unfortunately, the confidence interval obtained has one disadvantage: it does
not keep the prescribed confidence level. In this paper, a small modification is intro-
duced, after which the resulting shortest confidence interval does not have the above
mentioned disadvantage.
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1. INTRODUCTION

The problem of estimating the probability of success in a binomial model

has a very long history as well as very wide applications. Let us recall the def-

inition of a confidence interval for probability of success θ ∈ (0, 1) (see Cramér

(1946), Lehmann (1959), Silvey (1970); for a general definition of confidence in-

terval see Neyman (1934)):

A random interval
(

θ(X), θ(X)
)

is called a confidence interval for a param-

eter θ at the confidence level γ if

Pθ

{

θ(X)≤ θ ≤ θ(X)
}

≥ γ for all θ ∈ (0, 1) .

Here X denotes the number of successes in a sample of size n.

It is easy to note that for any d(n), g(n) > 0 the interval
(

θ(X) − d(n),

θ(X) + g(n)
)

is of course also a confidence interval. So an additional criterion

is needed for choosing a confidence interval. There are a lot different criterions.

Clopper and Pearson, who proposed the first confidence interval for θ, took under

consideration the equal risk of underestimation and overestimation. The problem

of the shortest confidence intervals was seldom considered in the past (Crow 1956,

Blyth and Hutchinson 1960, Blyth and Still 1983, Casella 1986). Zieliński (2010)

proposed a simple method of obtaining the shortest confidence interval for θ.

Unfortunately, the solution has a serious disadvantage: the proposed confidence

interval does not keep the nominal confidence level. So, in what follows a slight

modification is proposed. Namely, an auxiliary random variable Y ∈ (0, 1) is

applied and the shortest confidence interval is constructed on the basis of X + Y .

It appears that such a confidence interval does not have the above mentioned

disadvantage.

2. THE CONFIDENCE INTERVAL

Consider the binomial statistical model
(

{

0, 1, ..., n
}

,
{

Bin(n, θ), 0 < θ < 1
}

)

,

where Bin(n, θ) denotes the binomial distribution with probability distribution

function (pdf)
(

n

k

)

θk(1 − θ)n−k , k = 0, 1, ..., n .

It is well known that
∑

k≤x

(

n

k

)

θk(1−θ)n−k = F
(

n−x, x+1; 1−θ
)

= 1 − F
(

x+1, n−x; θ
)

,
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where F (a, b; ·) is the cumulative distribution function (cdf) of the beta distribu-

tion with parameters (a, b).

Let X denote a binomial Bin(n, θ) random variable. A confidence interval

for probability θ at the confidence level γ is of the form (Clopper and Pearson,

1934)
(

F−1
(

X, n−X +1; γ1

)

; F−1(X +1, n−X; γ2

)

)

,

where γ1, γ2 ∈ (0, 1) are such that γ2 − γ1 = γ and F−1(a, b; α) is the α quantile

of the beta distribution with parameters (a, b), i.e.

Pθ

{

θ ∈
(

F−1
(

X, n−X +1; γ1

)

; F−1
(

X +1, n−X; γ2

)

)}

≥ γ , ∀ θ ∈ (0, 1) .

For X = 0 the left end is taken to be 0, and for X = n the right end is taken to

be 1.

Zieliński (2010) considered the length of the confidence interval when X = x

is observed:

d(γ1, x) = F−1
(

x+1, n−x; γ + γ1

)

− F−1
(

x, n−x+1; γ1

)

.

Let x be given. The existence as well as the method of finding 0 < γ∗
1 < 1−γ

such that d(γ∗
1 , x) is minimal was shown. Examples of shortest confidence inter-

vals (left , right) are given in Table 1.

Table 1: The shortest c.i. (n = 20, γ = 0.95).

x γ
∗

1 left right

0 0.00000 0.00000 0.13911

1 0.00000 0.00000 0.21611

2 0.00125 0.00261 0.28393

3 0.00561 0.01839 0.34998

4 0.00966 0.04318 0.41249

5 0.01302 0.07344 0.47156

6 0.01587 0.10763 0.52766

7 0.01840 0.14496 0.58118

8 0.02071 0.18496 0.63234

9 0.02288 0.22733 0.68126

10 0.02500 0.27196 0.72804

By symmetry, for x > n/2 we have γ∗
1(x) = (1 − γ) − γ∗

1(n − x), left(x) =

1−right(n−x) and right(x) = 1− left(n−x). The confidence level of the shortest

confidence interval for probability θ equals

n
∑

x=0

(

n

x

)

θx(1 − θ)n−x 1(x, θ) ,
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where

1(x, θ) =







1 if θ ∈
(

left(x), right(x)
)

,

0 otherwise .

For n = 20 and γ = 0.95 the confidence level is shown in Figure 1.

Figure 1: The confidence level of the shortest confidence interval:
n = 20, γ = 0.95.

Note that for some probabilities θ the confidence level is smaller than the

nominal one. This is in contradiction with the definition of the confidence interval

(see Neyman 1934, Cramér 1949, Lehmann 1959, Silvey 1970).

In what follows, a small modification is introduced, after which the resulting

shortest confidence interval does not have the above mentioned disadvantage, i.e.

its confidence level is not smaller than the prescribed one.

Let Y be a random variable conditionally distributed on the interval (0, 1)

with cdf GY |X=x(·). The confidence interval will be constructed on the basis of

two random variables: Zs = X + Y and Zd = X − (1 − Y ). The distributions of

those r.v.’s are easy to obtain:

Pθ

{

Zs ≤ t
}

=



























0 if t≤ 0 ,

α
(

⌊t⌋, ⌈t⌉
)

Pθ

{

X = ⌊t⌋
}

if ⌊t⌋= 0 ,
∑⌊t⌋−1

k=0 Pθ

{

X = k
}

+ α
(

⌊t⌋, ⌈t⌉
)

Pθ

{

X = ⌊t⌋
}

if 1≤ ⌊t⌋ ≤ n ,

1 if ⌊t⌋> n ,
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Pθ

{

Zd ≤ t
}

=



























0 if t≤−1 ,

α
(

⌊t⌋,⌈t⌉
)

Pθ

{

X = ⌊t⌋+1
}

if ⌊t⌋=−1 ,
∑⌊t⌋

k=0 Pθ

{

X=k
}

+ α
(

⌊t⌋+1,⌈t⌉
)

Pθ

{

X=⌊t⌋+1
}

if 0≤ ⌊t⌋ ≤ n−1 ,

1 if ⌊t⌋ ≥ n ,

where ⌊t⌋ denotes the greatest integer no greater than t and

⌈t⌉ = t − ⌊t⌋ and α
(

⌊t⌋, ⌈t⌉
)

=

∫ ⌈t⌉

0
GY |X=⌊t⌋(du) .

It is easy to note that the distribution of Y may be taken as the uniform U(0, 1)

independently of X.

The shortest confidence interval (θL, θU ) at the confidence level γ will be

obtained as a solution with respect to θ of the following problem:



























θU − θL = min! ,

PθL

{

Zs ≤ t
}

= γ2 ,

PθU

{

Zd ≥ t
}

= 1 − γ1 ,

γ2 − γ1 = γ .

Hence, for observed X = x and Y = y we have to find θL and θU such that



























θU − θL = min! ,
∑x−1

k=0 PθL

{

X = k
}

+ yPθL

{

X = x
}

= γ2 ,
∑x

k=0 PθU

{

X = k
}

+ y PθU

{

X = x+1
}

= γ1 ,

γ2 − γ1 = γ ,

or, equivalently,















θU − θL = min! ,

(1−y)F
(

x, n−x+1; θL

)

+ yF
(

x+1, n−x; θL

)

= γ1 ,

(1−y)F
(

x+1, n−x; θU

)

+ yF
(

x+2, n−x−1; θU

)

= γ + γ1 .

Let

G(θ; n, x, y) = (1−y)F
(

x, n−x+1; θ
)

+ yF
(

x+1, n−x; θ
)

.

We take F (a, 0; θ) = 0 and F (0, b; θ) = 1. Then

θL = G−1(γ1; n, x, y) and θU = G−1(γ + γ1; n, x+1, y) .

In what follows we consider only the case x ≤ n/2. If x ≥ n/2, the role of

success and failure should be interchanged.
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The problem of finding the shortest confidence interval may be written as

the problem of finding γ1 which minimizes

d(γ1; n, x, y) = G−1(γ + γ1; n, x+1, y) − G−1(γ1; n, x, y)

for given y ∈ [0, 1], n and x.

Theorem 2.1. For x ≥ 2 and for all y ∈ (0, 1) there exists a two-sided

shortest confidence interval.

Proof: We have to show that for x ≥ 2 and for all y ∈ (0, 1) there exists

0 < γ1 < 1 − γ such that d(γ1; n, x, y) is minimal. The derivative of d(γ1; n, x, y)

with respect to γ1 equals

∂d(γ1; n, x, y)

∂γ1
=

1

LHS (γ1; n, x, y)
−

1

RHS (γ1; n, x, y)

where

LHS (γ1; n, x, y) =
(

1 − G−1
(

γ + γ1; n, x+1, y
)

)n−x−1
G−1

(

γ + γ1; n, x+1, y
)x+1

·

(

1 − y

G−1(γ + γ1; n, x + 1, y)B(x + 1, n − x)

+
y

(

1 − G−1(γ + γ1; n, x + 1, y)
)

B(x + 2, n − x − 1)

)

and

RHS (γ1; n, x, y) =
(

1 − G−1(γ1; n, x, y)
)n−x

G−1(γ1; n, x, y)x

·

(

1 − y

G−1(γ1; n, x, y)B(x, n − x + 1)

+
y

(

1 − G−1(γ1; n, x, y)
)

B(x + 1, n − x)

)

.

Because

G−1(0; n, x, y) = 0 and G−1(1; n, x, y) = 1 ,

for 2 ≤ x ≤ n/2 we have:

if γ1 → 0 then LHS (γ1; n, x, y) > 0 and RHS (γ1; n, x, y) → 0+ ,

if γ1 → 1 − γ then LHS (γ1; n, x, y) → 0+ and RHS (γ1; n, x, y) > 0 .

Therefore, the equation

(∗)
∂d(γ1; n, x, y)

∂γ1
= 0

has a solution.
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It is easy to see that LHS (·; n, x, y) and RHS (·; n, x, y) are unimodal and

concave on the interval (0, 1 − γ). Hence, the solution of (∗) is unique. Let γ∗
1

denote the solution. Because ∂d(γ1;n,x,y)
∂γ1

< 0 for γ1 < γ∗
1 and ∂d(γ1;n,x,y)

∂γ1
> 0 for

γ1 > γ∗
1 , we have d(γ∗

1 ; n, x, y) = inf
{

d(γ1; n, x, y) : 0 < γ1 < 1 − γ
}

.

Theorem 2.2. For x = 1 there exists y∗ ∈ (0, 1) such that if Y < y∗ then

the shortest confidence interval is one-sided, and it is two-sided otherwise.

Proof: For x = 1 we have

∂d(γ1; n, 1, y)

∂γ1
=

1

LHS (γ1; n, 1, y)
−

1

RHS (γ1; n, 1, y)

where

LHS (γ1; n, 1, y) =
(

1 − G−1
(

γ + γ1; n, 2, y
)

)n−2
G−1

(

γ + γ1; n, 2, y
)2

·

(

1 − y

G−1(γ + γ1; n, 2, y)B(2, n − 2)

+
y

(

1 − G−1(γ + γ1; n, 2, y)
)

B(3, n − 2)

)

=
1

2
(n−1)n

(

1−G−1(γ + γ1; n, 2, y)
)n−3

G−1(γ + γ1; n, 2, y)

·
(

2
(

1−G−1(γ + γ1; n, 2, y)
)

+ y
(

n G−1(γ + γ1; n, 2, y) − 2
)

)

and

RHS (γ1; n, 1, y) =
(

1 − G−1(γ1; n, 1, y)
)n−1

G−1(γ1; n, 1, y)

·

(

1 − y

G−1(γ1; n, 1, y)B(1, n)

+
y

(

1 − G−1(γ1; n, 1, y)
)

B(2, n − 1)

)

= n
(

1 − G−1(γ1; n, 1, y)
)n−2

·
(

1 − G−1(γ1; n, 1, y) + y
(

n G−1(γ1; n, 1, y) − 1
)

)

.

It can be seen that if γ1 → 0, then

LHS (γ1; n, 1, y) →

(

1 − G−1(γ; n, 2, y)
)n−3

G−1(γ; n, 2, y)

B(2, n − 1)

·
(

2
(

1 − G−1(γ; n, 2, y)
)

+ y
(

n G−1(γ; n, 2, y) − 2
)

)

,

RHS (γ1; n, 1, y) → (1 − y)n .

If γ1 → 1 − γ, then

LHS (γ1; n, 1, y) → 0+ ,

RHS (γ1; n, 1, y) > 0 .
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Because LHS (0; n, 1, 0) < RHS (0; n, 1, 0) and LHS (0; n, 1, 1) > RHS (0; n, 1, 1),

there exists y∗ such that LHS (0; n, 1, y∗) = RHS (0; n, 1, y∗). So, for y < y∗ the

shortest confidence interval is one-sided, and it is two-sided otherwise.

The value of y∗ may be found numerically as a solution of

LHS (0; n, 1, y∗) = RHS (0; n, 1, y∗) .

In Table 2 the values of y∗ for different n and confidence levels γ are given.

Table 2: Values of y∗.

n γ = 0.9 γ = 0.95 γ = 0.99 γ = 0.999

10 0.783163 0.870995 0.964326 0.994792

20 0.828155 0.904080 0.976758 0.997138

30 0.840388 0.912599 0.979647 0.997620

40 0.846076 0.916491 0.980924 0.997825

50 0.849360 0.918718 0.981643 0.997937

60 0.851499 0.920160 0.982104 0.998009

70 0.853002 0.921170 0.982424 0.998058

80 0.854117 0.921917 0.982660 0.998094

90 0.854976 0.922491 0.982840 0.998121

100 0.855658 0.922947 0.982983 0.998143

150 0.857680 0.924294 0.983403 0.998206

200 0.858678 0.924955 0.983608 0.998237

300 0.859666 0.925610 0.983810 0.998267

400 0.860156 0.925934 0.983910 0.998281

500 0.860449 0.926128 0.983969 0.998290

600 0.860644 0.926257 0.984009 0.998296

700 0.860784 0.926349 0.984037 0.998300

800 0.860888 0.926418 0.984058 0.998303

900 0.860969 0.926471 0.984075 0.998306

1000 0.861034 0.926514 0.984088 0.998308

The above considerations may be summarized as follows. Observe a r.v. X

distributed as Bin(n, θ) and draw Y distributed as U(0, 1). If X > n/2 then

consider X ′ = n−X. Calculate y∗, the solution of the equation LHS (y∗; 0, n, 1) =

RHS (y∗; 0, n, 1).

If X + Y ≤ 1 + y∗ then the confidence interval is of the form
(

0; G−1(γ; n, X + 1, Y )
)

.

If X +Y ≥ 1+y∗ then find γ∗
1 which minimizes d(γ1; n, x, y). Then the confidence

interval takes on the form
(

G−1(γ∗
1 ; n, X, Y ); G−1(γ + γ∗

1 ; n, X + 1, Y )
)

.
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If X > n/2 is observed then the shortest confidence interval has the form







(

1 − G−1(γ; n, X ′ + 1, Y ); 1
)

if X ′+Y ≤1+y∗ ,
(

1 − G−1(γ + γ∗
1 ; n, X ′ + 1, Y ); 1 − G−1(γ∗

1 ; n, X ′, Y )
)

otherwise .

Theorem 2.3. Pθ{θL ≤ θ ≤ θU} ≥ γ for θ ∈ (0, 1), and P0.5{θL ≤ 0.5 ≤

θU} = γ.

Proof: Let θ ∈ (0,1) be given. Let xu, yu and γu be such that θ = G−1(γ + γu;

n, xu, yu). Similarly, let xd, yd and γd be such that θ = G−1(γd; n, xd + 1, yd).

Of course, xd < xu and γd ≤ γu. So

Pθ{θL ≤ θ ≤ θU} = Pθ{xd + yd ≤ X + Y ≤ xu + yu} = γ + γu − γd ≥ γ .

If θ = 0.5 then, by symmetry, xu = n − xd, yu = 1 − yd and γu = γd. Hence

P0.5{θL ≤ 0.5 ≤ θU} = γ.

The confidence level of the randomized shortest confidence interval for n =

20 and γ = 0.95 is shown in Figure 2.

Figure 2: The confidence level of the randomized shortest
confidence interval: n = 20, γ = 0.95.

In Clopper and Pearson’s times, calculating quantiles of a beta distribu-

tion was numerically complicated. Nowadays, it is very easy with the aid of
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computer software, so using the shortest confidence interval is recommended (a

short Mathematica program is given in the Appendix). To avoid problems with

wrong inference due to the confidence level, one should use randomized shortest

confidence intervals. Of course, the generated value y of a U(0, 1) r.v. must be

attached to the final report. So results now are given by three numbers: number

of trials, number of successes and the value y.

3. AN EXAMPLE

Consider an experiment consisting of n = 20 Bernoulli trials in which x = 3

successes were observed. Let γ = 0.95. The standard Clopper–Pearson confidence

interval
(

F−1(3, 18; 0.025); F−1(4, 17; 0.975)
)

takes on the form

(0.0321, 0.3789) .

The length of the standard Clopper–Pearson confidence interval equals 0.3468.

To calculate the randomized shortest confidence interval one has to draw a

value y of the auxiliary variable Y and then calculate the ends of the confidence

interval on the basis of x + y. The uniform random number generator gives

y = 0.0102162 and the randomized shortest confidence interval takes on the form

(0.0184, 0.2898) .

The length of that confidence interval is 0.2714. Note that the length of the

proposed confidence interval equals 78% of the length of the standard confidence

interval.

The final report may look as follows:

n = 20 , x = 3 , y = 0.0102162 , γ = 0.95 , θ ∈ (0.0184, 0.2898) .

In practical applications it is important to have conclusions as precise as

possible. Hence the use of the randomized shortest confidence intervals is recom-

mended, especially for small sample sizes. Those intervals are very easy to obtain

with the aid of the standard computer software (see Appendix).
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APPENDIX

Below we give a short Mathematica program for calculating γ∗
1 and the

ends of the randomized shortest confidence interval. Of course, one can also use

other mathematical or statistical packages (in a similar way) to find the values

of γ∗
1 .

In[1]:= << Statistics’ContinuousDistributions’

n=.; x=.; y=.; q=.;

Bet[a_,b_,x_]=CDF[BetaDistribution[a, b], x];

G[θ_,n_,x_,y_]=(1-y)*If[x==0,0,Bet[x,n-x+1,θ]]+y*If[x==n,0,Bet[x+1,n-x,θ]];

(*definition of the confidence interval*)

Lower[p_,n_,x_,y_]:=If[x<=1+Ystar,0,θ/.FindRoot[G[θ,n,x,y]==p,{θ,0.001,0.999}];

Upper[p_,n_,x_,y_]:=If[x>=n-1-Ystar,1,θ/.FindRoot[G[θ,n,x,y]==p,{θ,0.001,0.999}];

Length[p_,n_,x_,y_,γ_]:=Upper[γ+p,n,x+1,y]-Lower[p,n,x,y];

In[2]:= n=20;(*input n*)

x=7;(*input x (≤n/2)*)

q=0.95 ;(*input confidence level*)

y=RandomReal[];

(*calculate Y star*)

eps=10^(-10); al=0; ar=1;

While[ar-al>eps,{

aa=(ar+al)/2;

Dol=θ/.FindRoot[G[θ,n,2,aa]==q, {θ, 0.001, 0.999}];

LHS=(1-Dol)^(n-3)*Dol*(2*(1-Dol)+aa*(n*Dol-2))/Beta[2,n-1];

RHS=(1-aa)*n;

If[LHS>RHS,ar=aa,al=aa];}]

Ystar=aa;

(*calculate ends of the shortest confidence interval*)

pp=If[x+y<=1+Ystar,0,

p/.FindMinimum[Length[p,n,x,y,q],{p,0,1-q }][[2]]] (*probability γ1*)

Left=Lower[pp,n,x,y] (*left end*)

Right=Upper[q+pp,n,x,y] (*right end*)

y (*drawn U(0,1) r.v.*)
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