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Abstract:

• In finance, insurance and statistical quality control, among many other areas of appli-
cation, a typical requirement is to estimate the value-at-risk (VaR) at a small level q,
i.e. a high quantile of probability 1− q, a value, high enough, so that the chance of an
exceedance of that value is equal to q, small. The semi-parametric estimation of high
quantiles depends strongly on the estimation of the extreme value index (EVI), the
primary parameter of extreme events. And most semi-parametric VaR-estimators do
not enjoy the adequate behaviour, in the sense that they do not suffer the appropriate
linear shift in the presence of linear transformations of the data. Recently, and for
heavy tails, i.e. for a positive EVI, new VaR-estimators were introduced with such a
behaviour, the so-called PORT VaR-estimators, with PORT standing for peaks over a
random threshold. Regarding EVI-estimation, new classes of PORT-EVI estimators,
based on a powerful generalization of the Hill EVI-estimator related to adequate mean-
of-order-p (MOp) EVI-estimators, were even more recently introduced. In this article,
also for heavy tails, we introduce a new class of PORT-MOp VaR-estimators with the
above mentioned behaviour, using the PORT-MOp class of EVI-estimators. Under
convenient but soft restrictions on the underlying model, these estimators are consis-
tent and asymptotically normal. The behaviour of the PORT-MOp VaR-estimators
is studied for finite samples through Monte-Carlo simulation experiments.
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1. INTRODUCTION AND SCOPE OF THE ARTICLE

In the field of extreme value theory (EVT) it is usually said that a cumulative
distribution function (CDF) F has a heavy right-tail whenever the right tail
function, given by F := 1−F , is a regularly varying function with a negative index
of regular variation α = −1/ξ, i.e. for every x > 0, limt→∞ F (tx)/F (t) = x−1/ξ,
ξ > 0. Then we are in the domain of attraction for maxima of an extreme value
(EV) CDF,

(1.1) EVξ(x) = exp(−(1 + ξx)−1/ξ), x > −1/ξ, ξ > 0,

and we write F ∈ DM(EVξ>0). More generally, we can have ξ ∈ R, i.e. the
CDF EVξ(x) = exp

(
− (1 + ξx)−1/ξ

)
, 1 + ξx > 0, if ξ 6= 0, and by continuity

the so-called Gumbel CDF, EV0(x) = exp(− exp(−x)), x ∈ R, for ξ = 0. The
parameter ξ is the extreme value index (EVI), one of the primary parameters in
probabilistic and statistical EVT.

In a context of heavy tails, and with the notation U(t) := F←(1 − 1/t),
t ≥ 1, F←(y) := inf{x : F (x) ≥ y} the generalized inverse function of the under-
lying model F , the positive EVI appears, for every x > 0, as the limiting value,
as t→∞, of the quotient (lnU(tx)− lnU(t))/ lnx (de Haan, 1970). Indeed, with
the usual notation Ra for the class of regularly varying functions with an index
of regular variation a, we can further say that

(1.2) F ∈ D+
M := DM(EVξ>0) ⇐⇒ F = 1− F ∈ R−1/ξ ⇐⇒ U ∈ Rξ,

with the first necessary and sufficient condition given in Gnedenko (1943) and
the second one in de Haan (1984). Heavy-tailed distributions have recently been
accepted as realistic models for various phenomena in the most diverse areas of
application, among which we mention bibliometrics, biometry, economics, ecol-
ogy, finance, insurance, and statistical quality control.

For small values of a level q, and as usual in the area of statistical EVT, we
want to extrapolate beyond the sample, estimating the value-at-risk (VaR) at a
level q, denoted by VaRq, or equivalently, a high quantile χ1−q, i.e. a value such
that F (χ1−q) = 1− q, i.e.

(1.3) VaRq ≡ χ1−q := U(1/q), q = qn → 0, as n→∞.

We further often assume that nqn → K as n→∞, K ∈ [0, 1], and base inference
on the k + 1 upper order statistics (OSs). As usual in semi-parametric estima-
tion of parameters of extreme events, we shall assume that k is an intermediate
sequence of integers in [1, n[, i.e.

(1.4) k = kn →∞ and k/n→ 0, as n→∞.

To derive the asymptotic non-degenerate behaviour of estimators of parameters
of extreme events under a semi-parametric framework, it is further convenient to
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assume a bit more than the first-order condition, U ∈ Rξ, provided in (1.2). A
common condition for heavy tails, also assumed now, is the second-order condition
that guarantees that

(1.5) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=

{ xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,

being ρ (≤ 0). Note that the limit function in (1.5) is necessarily of the given
form and |A| ∈ Rρ (Geluk and de Haan, 1987). Sometimes, for sake of simplicity
and for technical reasons, we assume to be working in a sub-class of Hall-Welsh
class of models (Hall and Welsh, 1985), where there exist ξ > 0, ρ < 0, C > 0
and β 6= 0, such that, as t→∞,

(1.6) U(t) = C tξ
(

1 +A(t)
(
1 + o(1)

)
/ρ
)
, with A(t) = ξβtρ.

The parameters β and ρ are the so-called generalized scale and shape second-
order parameters, respectively. Typical heavy-tailed models, like the EVξ>0 in
(1.1) (ρ = −ξ), the Fréchet CDF, Φα(x) = exp(−x−α), x ≥ 0, α > 0 (ξ = 1/α,
ρ = −1), the Generalized Pareto, GPξ>0(x) = 1+ln EVξ(x), x ≥ 0 (ρ = −ξ), and
the well-known Student-tν (ξ = 1/ν, ρ = −2/ν) belong to such a class. Then, the
second-order condition in equation (1.5) holds, with A(t) = ξβtρ, β 6= 0, ρ < 0,
as given in (1.6). Further details on these semi-parametric frameworks can be
seen in Beirlant et al. (2004), de Haan and Ferreira (2006) and Fraga Alves et al.
(2007), among others. Semi-parametric statistical choice tests of F ∈ D+

M can
be seen in Fraga Alves and Gomes (1996) and Dietrich et al. (2002), also among
others.

Under the validity of condition (1.6), and using the notation a(t) ∼ b(t) if
and only if limt→∞ a(t)/b(t) = 1, we can guarantee that U(t) ∼ Ctξ, as t → ∞,
and from (1.3), we have

VaRq = U(1/q) ∼ Cq−ξ, as q → 0.

An obvious estimator of VaRq is thus Ĉq−ξ̂, with Ĉ and ξ̂ any consistent estima-
tors of C and ξ, respectively. Given a sample Xn := (X1, . . . , Xn), let us denote
(X1:n ≤ · · · ≤ Xn:n) the set of associated ascending OSs. A common estimator of
C, proposed in Hall (1982), is

Ĉ ≡ Ck,n,ξ̂ := Xn−k:n(k/n)ξ̂

and

(1.7) Qk,q,ξ̂ = Ĉ q−ξ̂ = Xn−k:n
(
k/(nq)

)ξ̂
is the straightforward VaR-estimator at the level q (Weissman, 1978). In classical
approaches, we often consider for ξ̂ the Hill (H) estimator (Hill, 1975), the average
of the log-excesses, i.e.

(1.8) Hk ≡ Hk(Xn) :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) .
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But the Hill EVI-estimator is the logarithm of the geometric mean (or mean of
order 0) of

(1.9) Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n.

It is thus sensible to consider the mean-of-order-p (MOp) of Uik, 1 ≤ i ≤ k, as
done in Brilhante et al. (2013), for p ≥ 0, and in Gomes and Caeiro (2014) for
any p ∈ R. See also, Paulauskas and Vaičiulis (2013, 2015), Beran et al. (2014),
Gomes et al. (2015a, 2016a) and Caeiro et al. (2016a). We then more generally
get the class of MOp EVI-estimators,

(1.10) Hk(p) = Hk(p; Xn) :=


1
p

(
1− k/

k∑
i=1

Upik

)
, if p < 1/ξ, p 6= 0,

Hk, if p = 0,

with Hk(0) ≡ Hk, given in (1.8), and Uik given in (1.9), 1 ≤ i ≤ k < n. Associated
PORT MOp VaR-estimators are thus a sensible generalization of the Weissman-
Hill VaR-estimators.

The MOp EVI-estimators, in (1.10), depend now on this tuning parameter
p ∈ R, are highly flexible, but, as often desirable, they are not location-invariant,
depending strongly on possible shifts in the underlying data model. Also, most
of the semi-parametric VaR-estimators in the literature, like the ones in Beirlant
et al. (2008), Caeiro and Gomes (2008), the MOp VaR-estimators in Gomes et al.
(2015b), as well as in other papers on semi-parametric quantile estimation prior
to 2008 (see also, the functional equation in (1.7), Beirlant et al., 2004, and de
Haan and Ferreira, 2006), do not enjoy the adequate behaviour in the presence
of linear transformations of the data, a behaviour related to the fact that for any
high-quantile, VaRq, we have

(1.11) VaRq(λ+ δX) = λ+ δVaRq(X)

for any model X, real λ and positive δ. Recently, and for ξ > 0, Araújo Santos et
al. (2006) provided VaR-estimators with the linear property in (1.11), based on
a sample of excesses over a random threshold Xns:n, ns := bnsc + 1, 0 ≤ s < 1,
where bxc denotes the integer part of x, being s possibly null only when the
underlying parent has a finite left endpoint (see Gomes et al., 2008b, for further
details on this subject). Those VaR-estimators are based on the sample of size
n(s) = n− ns, defined by

(1.12) X(s)
n :=

(
Xn:n −Xns:n, . . . , Xns+1:n −Xns:n

)
.

Such estimators were named PORT-VaR estimators, with PORT standing for
peaks over a random threshold, and were based on the PORT-Hill, Hk(X

(s)
n ),

k < n− ns, with Hk(Xn) provided in (1.8). Now, we further suggest for an
adequate VaR-estimation, the use of the PORT-MOp EVI-estimators,

(1.13) Hk(p, s) := Hk

(
p; X(s)

n

)
, k < n− ns,

introduced and studied both theoretically and for finite samples in Gomes et al.

(2016c), with Hk(p; Xn) and X
(s)
n respectively provided in (1.10) and (1.12). Such

PORT-MOp VaR-estimators are given by
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(1.14) V̂aRq(k; p, s) := (Xn−k:n −Xns:n)

(
k

nq

)Hk(p,s)

+Xns:n.

Under convenient restrictions on the underlying model, this class of VaR-estimators
is consistent and asymptotically normal for adequate k, with k + 1 the number
of upper OSs used in the semi-parametric estimation of VaRq.

In Section 2 of this paper, and following closely Henriques-Rodrigues and
Gomes (2009) and Gomes et al. (2016c), we present a few introductory technical
details and asymptotic results associated with the PORT methodology. A few
comments on the asymptotic behaviour of the PORT-classes of VaR-estimators
under study will be provided in Section 3. In Section 4, through the use of Monte-
Carlo simulation techniques, we shall exhibit the performance of the PORT-MOp

VaR-estimators in (1.14), comparatively to the classical Weissman-Hill, MOp and
a PORT version of the most simple reduced-bias (RB) VaR-estimators in Gomes
and Pestana (2007). In Section 5, we refer possible methods for the adaptive
choice of the tuning parameters (k, p, s), either based on the bootstrap or on
heuristic methodologies, and provide some concluding remarks.

2. A FEW TECHNICAL DETAILS ASSOCIATED WITH THE
PORT METHODOLOGY

First note that if there is a shift λ ∈ R in the model, i.e. if the CDF
F (x) = Fλ(x) = F0(x− λ), the EVI does not change with λ. Indeed, if a shift λ
is induced in data associated with a random variable (RV) X, i.e. if we consider
Y = X + λ, Uλ(t) ≡ UY (t) = UX (t) + λ. Consequently, and due to the fact that
F ∈ DM(EVξ) if and only if there exists a function a(·) such that

U(tx)− U(t)

a(t)
−→
t→∞

(xξ − 1)/ξ (de Haan, 1984),

the EVI, ξ, does not depend on any shift λ, i.e., Uλ ∈ Rξ. However, the same
does not happen to the second-order parameters. Indeed, condition (1.5) can be
rewritten as

(2.1) lim
t→∞

lnUλ(tx)− lnUλ(t)− ξ lnx

Aλ(t)
=
xρλ − 1

ρλ
,

for all x > 0, with |Aλ| ∈ Rρλ , and for λ 6= 0,

ρλ =

{
ρ0 if ρ0 > −ξ,
−ξ if ρ0 ≤ −ξ.

Furthermore, and again for λ 6= 0, the function Aλ(t) in (2.1) can be chosen as

(2.2) Aλ(t) :=


− ξ λ
U0(t)

if ρ0 < −ξ,

A0(t)− ξ λ
U0(t)

if ρ0 = −ξ,

A0(t) if ρ0 > −ξ.
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In Hall-Welsh class of models, in (1.6), we can thus consider the parameterization
Aλ(t) = ξβλt

ρλ . Further details on the influence of such a shift in
(
β0, ρ0, A0(·)

)
and on the estimation of generalized shape and scale second-order parameters
can be found in Henriques-Rodrigues et al. (2014, 2015).

2.1. Asymptotic behaviour of the PORT EVI-estimators

In this section we present, under the validity of the second-order condition
in (1.5), the asymptotic distributional representations of the PORT-MOp EVI-
estimators, Hk(p, s), in (1.13). Generalizing the results of Theorem 2.1 in Araújo
Santos et al. (2006), and on the basis of the asymptotic behaviour of the MOp

EVI-estimators derived in Brilhante et al. (2013), Gomes et al. (2016c), proved
the following theorem:

Theorem 2.1 (Gomes et al., 2016c). If the second order condition (1.5)
holds, k = kn is an intermediate sequence of positive integers, i.e. (1.4) holds, for
any real s, 0 ≤ s < 1, with χs := F←(s), finite, we have for Hk(p, s), in (1.13),
an asymptotic distributional representation of the type,

(2.3) Hk(p, s)
d
= ξ +

σ
H(p)

P
H(p)
k√
k

+

(
b
H(p)

A0(n/k) +
c
H(p)

χs

U0(n/k)

)
(1 + op(1)),

where P
H(p)
k is a sequence of asymptotically standard normal RVs,

(2.4) σ
H(p)

:=
ξ(1− pξ)√

1− 2pξ
, b

H(p)
:=

1− pξ
1− pξ − ρ

, c
H(p)

:=
ξ(1− pξ)

1− (p− 1)ξ
.

3. ASYMPTOTIC BEHAVIOUR OF PORT VAR–ESTIMATORS

Assuming that we are working with data from Fλ(x) = F0(x − λ), i.e. an
underlying model with location parameter λ ∈ R, we first present the following
result on the asymptotic behaviour of intermediate OSs, proved in Ferreira et al.
(2003).

Proposition 3.1 (Ferreira et al., 2003). Under the second-order frame-
work in (2.1) and for intermediate sequences of positive integers k, i.e. if (1.4)
holds,

Xn−k:n
d
= Uλ(n/k)

(
1 +

ξ Bk√
k

+ op

( 1√
k

)
+ op(Aλ(n/k))

)
with Uλ(t) = λ + U0(t), Aλ(t) given in (2.2), and where Bk is asymptotically
standard normal. Moreover, for i < j, Cov(Bi, Bj) =

√
i j (1− j/n)/(j − 1).
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Straightforward generalizations of Theorem 3.1 in Araújo Santos et al.
(2006) and Theorem 4.1 in Henriques-Rodrigues and Gomes (2009), enable us
to state the following theorem.

Theorem 3.1. Let us assume that the second-order condition in (2.1)
holds, with Aλ(t) = ξβλt

ρλ , that k is an intermediate sequence of integers, i.e.
(1.4) holds, and that ln(nq)/

√
k → 0, as n → ∞, with q = qn given in (1.3).

Let us further use the notation rn := k/(nq), assuming that nq = o(
√
k) so

that rn → ∞. Then, for any real s, 0 ≤ s < 1, χs = F←(s), finite, and the
PORT-quantile estimator in (1.14),

(3.1)

√
k

ln rn

(
V̂aRq(k; p, s)

VaRq
− 1

)
d
= σ

H(p)
P

H(p)
k

+
√
k
(
b
H(p)

A0(n/k) + c
H(p) χs/U0(n/k)

)
(1 + op(1)),

with
(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and where P

H(p)
k is asymptotically standard

normal.

Proof: The PORT-quantile estimator in (1.14) can be written as

V̂aRq(k; p, s) := Xn−k:n

{(
1− Xns:n

Xn−k:n

)
rHk(p,s)n +

Xns:n

Xn−k:n

}
,

with rn = k/(nq). Therefore,

V̂aRq(k; p, s)−VaRq = Xn−k:n

{(
1− Xns:n

Xn−k:n

)
rHk(p,s)n +

Xns:n

Xn−k:n
− VaRq

Xn−k:n

}
.

The use of the delta method enables us to write

rHk(p,s)n
d
= rξn

(
1 + ln rn

(
Hk(p, s)− ξ

)(
1 + op(1)

))
.

Since VaRq = Uλ(1/q) = Uλ (nrn/k), we can write

VaRq

Xn−k:n
=
Uλ (nrn/k)

Uλ (n/k)
× Uλ (n/k)

Xn−k:n
=: A×B.

Using the results in Proposition 3.1 and the first-order Taylor series approxima-
tion for (1 + x)−1, as x→ 0, we get

B =
Uλ (n/k)

Xn−k:n

d
=

(
1 +

ξBk√
k

+ o (Aλ (n/k))

)−1
d
= 1− ξBk√

k
+ o (Aλ (n/k)) .

The second order condition in (1.5), and the first-order Taylor series approxima-
tion for exp(x), again as x→ 0, enable us to get

A =
Uλ (nrn/k)

Uλ (n/k)

d
= rξn exp

(
Aλ (n/k)

rρλn − 1

ρλ

)
d
= rξn

(
1− Aλ (n/k)

ρλ
+ op(Aλ (n/k))

)
.
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Consequently,

A×B d
= rξn

(
1− ξBk√

k
− Aλ (n/k)

ρλ
(1 + op (1))

)
.

Therefore, as Xns:n/Xn−k:n = op(1) and using again the result in Proposition 3.1,
we can write

V̂aRq(k; p, s)−VaRq = VaRq

(
V̂aRq

VaRq
− 1

)
d
= VaRq

(
ln rn

(
Hk(p, s)− ξ

)
+
ξBk√
k

+
Aλ(n/k)

ρλ

)
(1 + op(1))

d
= ln rnVaRq

(
Hk(p, s)− ξ

)
(1 + op(1)),

and from (2.3), the result in (3.1) follows.

Corollary 3.1. Under the conditions of Theorem 3.1, with N (µ, σ2)
denoting a normal RV with mean value µ and variance σ2,

(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and P

H(p)
k an asymptotically standard normal RV, the following

results hold:

• For values of ξ + ρ0 < 0 and χs 6= 0,
√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
c
H(p)

χs
U0(n/k)

)
(1+op(1)).

If
√
k/U0(n/k)→ λU finite, then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λU cH(p)

χs, σ
2
H(p)

).

• For values of ξ + ρ0 > 0 or ξ + ρ0 ≤ 0 and χs = 0,

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
b
H(p)

A0(n/k)
)

(1+op(1)).

If
√
kA0(n/k)→ λA finite, then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λAbH(p)

, σ2
H(p)

).

• For values of ξ + ρ0 = 0 and χs 6= 0,

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
b
H(p)

A0(n/k) + c
H(p)

χs
U0(n/k)

)
(1 + op(1)).
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If
√
k/U0(n/k) → λU and

√
kA0(n/k) → λA , with λU and λA both finite,

then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λU cH(p)

χs + λAbH(p)
, σ2

H(p)
).

4. A MONTE-CARLO SIMULATION STUDY

Monte-Carlo multi-sample simulation experiments, of size 5000× 20, have
been implemented for the classes of MOp and PORT-MOp VaR-estimators asso-
ciated with p = p` = 2`/(5ξ), ` = 0, 1, 2. Apart from the MOp and PORT-MOp

VaR-estimators, we have further considered in the VaR-estimator in (1.7), the
replacement of the estimator ξ̂(k) by one of the most simple classes of corrected-
Hill (CH) EVI-estimators, the one in Caeiro et al.(2005). Such a class is defined
as

(4.1) CH(k) ≡ CH(k; β̂, ρ̂) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
.

The estimators in (4.1) can be second-order minimum-variance reduced-bias
(MVRB) EVI-estimators, for adequate levels k and an adequate external esti-
mation of the vector of second-order parameters, (β, ρ), introduced in (1.6), i.e.
the use of CH(k) can enable us to eliminate the dominant component of bias
of the Hill estimator, H(k), keeping its asymptotic variance. Indeed, from the
results in Caeiro et al. (2005), we know that it is possible to adequately estimate
the second-order parameters β and ρ, so that we get

√
k (CH(k)− ξ) d

= N
(
0, ξ2

)
+ op

(√
k(n/k)ρ

)
,

i.e. CH(k) overpasses H(k) for all k. Overviews on reduced-bias estimation can
be found in Chapter 6 of Reiss and Thomas, 2007, Gomes et al. (2008a), Beirlant
et al. (2012) and Gomes and Guillou (2015). For the estimation of the vector of
second-order parameters (β, ρ), and just as in the aforementioned review articles,
we propose an algorithm of the type of the ones presented in Gomes and Pestana
(2007), where the authors used the β-estimator in Gomes and Martins (2002)
and the simplest ρ-estimator in Fraga Alves et al. (2003), both computed at a
level k1 = bn0.999c. More recent estimators of β can be found in Caeiro and
Gomes (2006), Gomes et al. (2010) and Henriques-Rodrigues et al. (2015). For
alternative estimation of ρ, not later than 2014, see Gomes and Guillou (2015).
See also, Caeiro and Gomes (2014, 2015b) and Henriques-Rodrigues et al. (2014).

It is well-known that the PORT methodology works efficiently only when
the left endpoint of the underlying parent is negative, and q = 0 does not work
when the left endpoint is infinite, like happens with the Student model (see Araújo
Santos et al., 2006, Gomes et al., 2008b, 2011, 2016c, Caeiro et al., 2016b, for
further details related to the topic of PORT estimation). Consequently, only
models with this characteristic have been considered, the EVξ, in (1.1) and the
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Student-tν , with a probability density function

f(x; ν) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(
1 + x2/ν

)−(ν+1)/2
, x ∈ R.

The values s = 0 (for the EVξ parents), the value of s associated with the
best performance of the PORT methodology for these models, and s = 0.1 (for
the Student parents) were the ones used for illustration of the results. Sample
sizes from n = 100(100)500 and n = 1000(1000)5000 were simulated from the
aforementioned underlying models, for different values of ξ.

4.1. Mean values and mean square error patterns as k-functionals

For each value of n and for each of the aforementioned models, we have
first simulated, on the basis of the initial 5000 runs, the mean value (E) and the
root mean square error (RMSE) of the scale normalized VaR-estimators, i.e. the
Var-estimators over VaRq, as functions of k. For the EVI-estimation, apart from
Hp, in (1.10), p = 0

(
H0 ≡ H

)
and p = p` = 2`/(5ξ), ` = 1 (for which asymptotic

normality holds), and ` = 2 (where only consistency was proved), and the MVRB
(CH) EVI-estimators, in (4.1), we have also included their PORT versions, for
the above mentioned values of s, using the notation •|s, where • refers to the
acronymous of the EVI-estimator.

The results are illustrated in Figure 1, for samples of size n = 1000 from an
EVξ underlying parent, with ξ = 0.1 and s = 0. In this case, and for all k, there
is a clear reduction in RMSE, as well as in bias, with the obtention of estimates
closer to the target value ξ, particularly when we consider the PORT-version
associated with Hp1 . Further note that, at optimal levels, in the sense of minimal
RMSE, even the Hp2 beat the PORT-MVRB VaR-estimators.

Similar patterns were obtained for all other simulated models.

4.2. Mean values at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.1. We there present,
for different sample sizes n, the simulated mean values at optimal levels (levels
where RMSEs are minima as functions of k) of some of the normalized VaR-
estimators, under consideration in this study. Information on 95% confidence
intervals are also given. Among the estimators considered, and distinguishing 3
regions, a first one with (H, CH, Hp1), a second one with the associated PORT
versions, (H|0, CH|0, Hp1 |0), and a third one with (Hp2 , Hp2 |0), the one providing
the smallest squared bias is written in bold whenever there is an out-performance
of the behaviour achieved in the previous regions.
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Figure 1: Mean values (left) and RMSEs (right) of the normalized H, CH,
and Hp, p = p` = 2`/(5ξ), ` = 1, 2 VaR-estimators for q = 1/n,
together with their PORT versions, associated with s = 0 and
generally denoted •|0, for EV0.1 underlying parents and sample
size n = 1000

Table 1: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying EV0.1 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.089± 0.0048 1.073± 0.0042 1.061± 0.0031 1.058± 0.0030 1.053± 0.0018

CH 0.905± 0.0081 0.930± 0.0049 0.983± 0.0073 1.056± 0.0035 1.052± 0.0025

Hp1 0.885± 0.0014 0.901± 0.0056 0.910± 0.0029 0.915± 0.0022 0.918± 0.0006

H|0 1.078± 0.0037 1.069± 0.0033 1.063± 0.0037 1.060± 0.0032 1.057± 0.0027

CH|0 0.922± 0.0036 0.945± 0.0038 1.025± 0.0006 1.116± 0.0005 1.060± 0.0021

Hp1 |0 0.887± 0.0037 0.898± 0.0031 0.893± 0.0009 0.915± 0.0005 0.998± 0.0002

Hp2 0.865± 0.0014 0.889± 0.0012 0.912± 0.0006 0.924± 0.0008 0.926± 0.0065

Hp2 |0 0.889± 0.0014 0.909± 0.0012 0.920± 0.0070 0.926± 0.0050 0.928± 0.0006

Tables 2, 3 and 4 are similar to Table 1, but respectively associated with
EV0.25, Student-t4 and t2 underlying parents.

Table 2: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying EV0.25 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.143± 0.0068 1.125± 0.0070 1.108± 0.0048 1.106± 0.0052 1.094± 0.0034

CH 0.848± 0.0092 0.874± 0.0041 0.925± 0.0027 1.036± 0.0041 1.094± 0.0036

Hp1 0.862± 0.0023 0.912± 0.0014 0.993± 0.0013 1.083± 0.0038 1.049± 0.0014

H|0 1.133± 0.0059 1.109± 0.0052 1.104± 0.0047 1.101± 0.0048 1.088± 0.0012

CH|0 0.878± 0.0004 0.906± 0.0031 0.941± 0.0020 0.965± 0.0018 1.063± 0.0004

Hp1 |0 0.983± 0.0017 1.060± 0.0022 1.048± 0.0021 1.055± 0.0022 1.064± 0.0017

Hp2 0.854± 0.0046 0.848± 0.0014 0.868± 0.0043 0.869± 0.0035 0.881± 0.0024

Hp2 |0 0.848± 0.0050 0.859± 0.0034 0.867± 0.0025 0.872± 0.0023 0.851± 0.0009

Note that contrarily to what happens with the non-PORT and PORT EVI-
estimation, where the values associated with p2 are better than the ones associ-
ated with p1, things work the other way round for the VaR-estimation.
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Table 3: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying Student t4 par-
ents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.114± 0.0056 1.099± 0.0043 1.089± 0.0037 1.085± 0.0037 1.077± 0.0037

CH 0.903± 0.0292 0.903± 0.0053 0.922± 0.0030 0.978± 0.0028 1.056± 0.0015

Hp1 0.932± 0.0014 1.009± 0.0019 1.035± 0.0023 1.032± 0.0019 1.054± 0.0017

H |0.1 1.095± 0.0063 1.081± 0.0027 1.070± 0.0027 1.061± 0.0020 1.035± 0.0015

CH |0.1 0.890± 0.0030 0.950± 0.0031 0.980± 0.0020 0.990± 0.0012 0.998± 0.0006

Hp1 |0.1 1.056± 0.0027 1.055± 0.0023 1.057± 0.0019 1.056± 0.0023 1.041± 0.0012

Hp2 |0.1 0.876± 0.0011 0.904± 0.0008 0.953± 0.0005 0.982± 0.0005 0.998± 0.0002

Hp2 0.875± 0.0062 0.882± 0.0029 0.886± 0.0022 0.889± 0.0020 0.877± 0.0005

Table 4: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying Student t2 par-
ents (ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.236± 0.0090 1.198± 0.0107 1.168± 0.0043 1.145± 0.0038 1.106± 0.0038

CH 1.115± 0.1919 0.809± 0.0072 0.825± 0.0053 0.848± 0.0030 0.848± 0.0043

Hp1 1.094± 0.0073 1.082± 0.0048 1.084± 0.0031 1.080± 0.0040 1.062± 0.0021

H |0.1 1.163± 0.0056 1.121± 0.0048 1.077± 0.0030 1.049± 0.0027 1.007± 0.0021

CH |0.1 0.793± 0.0053 0.813± 0.0048 0.828± 0.0036 0.840± 0.0038 0.864± 0.0028

Hp1 |0.1 1.098± 0.0058 1.087± 0.0034 1.072± 0.0033 1.051± 0.0023 1.010± 0.0017

Hp2 |0.1 0.836± 0.0014 0.868± 0.0013 0.915± 0.0008 0.949± 0.0007 1.065± 0.0004

Hp2 0.803± 0.0036 0.796± 0.0026 0.795± 0.0012 0.813± 0.0008 0.873± 0.0005

4.3. RMSEs and relative efficiency indicators at optimal levels

We have further computed the Weissman-Hill VaR-estimator, i.e. the VaR-
estimator Qk,q,ξ̂, in (1.7), with ξ̂ replaced by the H EVI-estimator, in (1.8), at
the simulated optimal k in the sense of minimum RMSE. Such an estimator is
denoted by Q00. For any of the VaR-estimators under study, generally denoted
Q(k), we have also computed Q0, the estimator Q(k) computed at the simulated
value of k0|Q := arg mink RMSE

(
Q(k)

)
. The simulated indicators are

(4.2) REFFQ|0 :=
RMSE (Q00)

RMSE (Q0)
.

Remark 4.1. Note that, as usual, an indicator higher than one means
that the estimator has a better performance than the Weissman-Hill
VaR-estimator. Consequently, the higher the indicators in (4.2) are, the bet-
ter the associated VaR-estimators perform, comparatively to Q00.

Again as an illustration of the obtained results, we present Tables 5–8.
In the first row, we provide RMSE0, the RMSE of Q00, so that we can easily
recover the RMSE of all other estimators. The following rows provide the REFF-
indicators for the different VaR-estimators under study. A similar mark (bold) is
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Table 5: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.1 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.329± 0.1224 0.273± 0.1209 0.225± 0.1059 0.200± 0.0754 0.157± 0.0324

CH 1.287± 0.0154 1.323± 0.0147 1.252± 0.0123 1.202± 0.0083 1.073± 0.0041

Hp1 1.566± 0.0174 1.505± 0.0129 1.460± 0.0103 1.440± 0.0093 1.545± 0.0113

H|0 1.132± 0.0093 1.121± 0.0060 1.118± 0.0049 1.122± 0.0049 1.136± 0.0057

CH|0 1.659± 0.0196 1.833± 0.0179 1.548± 0.0202 1.373± 0.0110 1.202± 0.0077

Hp1 |0 1.695± 0.0190 1.626± 0.0149 1.614± 0.0128 1.874± 0.0160 4.988± 0.0340

Hp2 1.450± 0.0177 1.379± 0.0117 1.316± 0.0084 1.279± 0.0086 1.189± 0.0063

Hp2 |0 1.529± 0.0184 1.440± 0.0113 1.359± 0.0082 1.323± 0.0097 1.240± 0.0066

Table 6: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.25 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.469± 0.1207 0.394± 0.1350 0.329± 0.1453 0.294± 0.1498 0.231± 0.1538

CH 1.393± 0.0144 1.431± 0.0155 1.681± 0.0215 1.908± 0.0257 1.197± 0.0045

Hp1 2.132± 0.0218 2.522± 0.0233 3.802± 0.0333 3.866± 0.0248 3.108± 0.0229

H|0 1.178± 0.0081 1.174± 0.0101 1.185± 0.0053 1.206± 0.0060 1.245± 0.0043

CH|0 1.837± 0.0164 1.907± 0.0206 2.215± 0.0222 2.678± 0.0251 2.681± 0.0180

Hp1 |0 3.527± 0.0300 2.754± 0.0221 1.703± 0.0135 1.584± 0.0128 1.443± 0.0102

Hp2 1.771± 0.0148 1.658± 0.0154 1.540± 0.0118 1.464± 0.0118 1.283± 0.095

Hp2 |0 1.896± 0.0176 1.757± 0.0162 1.614± 0.0144 1.526± 0.0131 1.338± 0.0110

Table 7: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student t4 parents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.378± 0.1445 0.320± 0.1507 0.270± 0.1556 0.240± 0.1572 0.185± 0.1554

CH 1.217± 0.1176 1.310± 0.0129 1.480± 0.0134 1.881± 0.0114 1.531± 0.0095

Hp1 2.143± 0.0187 2.483± 0.0209 1.821± 0.0148 1.422± 0.0100 1.151± 0.0088

H |0.1 1.243± 0.0105 1.273± 0.0081 1.359± 0.0066 1.457± 0.0064 1.808± 0.0069

CH |0.1 1.773± 0.0160 2.038± 0.0181 2.599± 0.0252 3.082± 0.0198 4.431± 0.0269

Hp1 |0.1 1.640± 0.0119 1.516± 0.0138 1.463± 0.0161 1.477± 0.0206 1.664± 0.0240

Hp2 1.713± 0.0167 1.631± 0.0152 1.518± 0.0122 1.427± 0.0066 1.270± 0.0069

Hp2 |0.1 2.080± 0.0205 2.288± 0.0238 3.045± 0.0248 4.026± 0.0291 6.345± 0.0502

Table 8: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student t2 parents (ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.675± 0.1735 0.559± 0.1793 0.449± 0.1804 0.379± 0.1789 0.255± 0.1684

CH 0.684± 0.3593 1.359± 0.0145 1.388± 0.0099 1.371± 0.0080 1.449± 0.0343

Hp1 1.728± 0.0148 1.468± 0.0116 1.308± 0.0085 1.240± 0.0047 1.209± 0.0510

H |0.1 1.318± 0.0097 1.382± 0.0099 1.532± 0.0117 1.667± 0.0079 2.110± 0.0132

CH |0.1 1.969± 0.0160 1.786± 0.0150 1.573± 0.0103 1.419± 0.0091 1.123± 0.0065

Hp1 |0.1 1.609± 0.0149 1.516± 0.0116 1.560± 0.0109 1.647± 0.0072 2.037± 0.0108

Hp2 2.271± 0.0214 1.992± 0.0179 1.766± 0.0126 1.665± 0.0151 1.691± 0.0124

Hp2 |0.1 2.810± 0.0276 2.821± 0.0287 3.116± 0.0227 3.547± 0.0280 2.848± 0.0169

used for the highest REFF indicator, again considering the aforementioned three
regions and q = 1/n.
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For a better visualization of the results presented in some of the tables
above, we further present Figure 2, associated with an EV0.1 underlying parent.
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal lev-
els of the different normalized VaR-estimators under study,
for q = 1/n, an underlying EV0.1 parent and sample sizes
n = 100(100)500 and 500(500)5000

5. CONCLUSIONS

The new PORT-MOp VaR-estimators, defined in (1.14), generalize the
Weissman-Hill PORT-quantile estimator studied in Araújo Santos et al. (2006).
Consequently, both asymptotically and for finite sample sizes, we were expecting
a much better behaviour of the new PORT-MOp VaR-estimator. The gain in
efficiency of the PORT-MOp VaR-estimators is, in most cases, greater than the
one obtained with the MVRB and PORT-MVRB VaR-estimators. The simulated
mean values of the normalized PORT-MOp VaR-estimators are always better, for
moderate to large values of n, in the Student-tν parents. For the EVξ-parents,
we have different behaviours accordingly to the size of the sample but there is a
general out-performance of the PORT-MOp VaR-estimators. And indeed, for an
adequate choice of k, p and s, the PORT-MOp VaR–estimators are able to out-
perform the MVRB and even the PORT-MVRB VaR-estimators, in most cases.
The choice of (k, p, s) can be done through heuristic sample-path stability algo-
rithms, like the ones in Gomes et al. (2013) or through a bootstrap algorithm of
the type of the ones presented in Caeiro and Gomes (2015a) and in Gomes et al.
(2016b), where R-scripts are provided.
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