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Abstract:

• In this paper we explore some mechanisms for constructing bivariate and multivari-
ate beta and Kumaraswamy distributions. Specifically, we focus our attention on
the Arnold-Ng (2011) eight parameter bivariate beta model. Several models in the
literature are identified as special cases of this distribution including the Jones-Olkin-
Liu-Libby-Novick bivariate beta model, and certain Kotz and Nadarajah bivariate
beta models among others. The utility of such models in constructing bivariate Ku-
maraswamy models is investigated. Structural properties of such derived models are
studied. Parameter estimation for the models is also discussed. For illustrative pur-
poses, a real life data set is considered to exhibit the applicability of these models in
comparison with rival bivariate beta and Kumaraswamy models.
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1. INTRODUCTION

Kumaraswamy (1980) introduced a two parameter absolutely continuous
distribution which compares extremely favorably, in terms of simplicity, with the
beta distribution. The Kumaraswamy distribution (hereafter the K distribution)
on the interval (0, 1), has its probability density function (pdf) and its cdf with
two shape parameters δ > 0 and β > 0 defined by

(1.1) f(x) = δβxδ−1(1− xδ)β−1I(0 < x < 1) and F (x) = 1− (1− xδ)β .

If a random variable X has (1.1) as its density then we will write X ∼ K(δ, β).

The density function in (1.1) has similar properties to those of the beta
distribution. The Kumaraswamy pdf is unimodal, uniantimodal, increasing, de-
creasing or constant depending (similar to the beta distribution) on the values of
the parameters. The construction of bivariate Kumaraswamy distributions has
received limited attention.

Barreto-Souza and Lemonte (2013) introduced a bivariate Kumaraswamy distri-
bution related to a Marshall-Olkin survival copula. They discussed some struc-
tural properties of their bivariate Kumaraswamy distribution, including a detailed
discussion of estimation of the model parameters. Recently Arnold and Ghosh
(2016) discussed some different strategies for constructing legitimate bivariate
Kumaraswamy models via conditional specification, conditional survival function
specification and via a copula based approach. In this paper, we consider several
specialized approaches to the problem of constructing bivariate K distributions
based on sub-models of the Arnold-Ng 8-parameter bivariate beta distribution.
Included is discussion of the Jones-Olkin-Liu-Libby-Novick bivariate beta distri-
bution and two Kotz and Nadarajah (2007) bivariate beta models.

To carry out this program, we make use of the observation that a Ku-
maraswamy distribution is a special case of the generalized beta distribution
which is that of a positive power of a beta random variable.

In this paper we will make repeated use of the fact that a Kumaraswamy
variable can be viewed as a power of a beta variable. Thus,

if Y ∼ Beta(1, β), then for δ > 0, X = Y 1/δ ∼ K(δ, β).

Our proposed flexible families of bivariate Kumaraswamy distributions will be ob-
tained by applying such marginal power transformations to suitable bivariate beta
models. It will be convenient to begin with a careful discussion of the 8-parameter
bivariate beta distribution introduced by Arnold and Ng (2011), together with
its related sub-models and possible higher dimensional extensions. Note that in
Arnold and Ghosh (2016), use was made of the simpler 5- parameter Arnold-Ng
model in an analogous program for developing bivariate Kumaraswamy models.
The present paper thus represents a natural extension of some of the results in
that earlier paper.
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We will begin with a detailed discussion of the 8-parameter Arnold-Ng
model with marginals of the second kind beta type. The corresponding models
with classical (first kind) beta marginals are then obtained via simple marginal
transformations, using the observation that

if U ∼ Beta(2)(α, β) then (1 + U−1)−1 ∼ Beta(α, β).

With suitable parametric restrictions, corresponding bivariate Kumaraswamy
models are then readily derived.

The remainder of this article is organized as follows: In section 2, as men-
tioned above, we review the Arnold-Ng (2011) eight parameter bivariate second
kind beta model. We consider the many sub-models that are obtained via para-
metric restrictions, and we discuss higher dimensional versions of this model. In
section 3, we discuss the parallel models with marginals that are of the first or
classical beta kind. In Section 4, we briefly consider the construction of bivariate
generalized beta distributions. In Section 5, the useful concepts of reciproca-
tion closure and closure under reflection about the point 1/2 are reviewed. Sec-
tion 6 deals with a catalog of bivariate Kumaraswamy distributions obtained via
marginal power transformations applied to certain bivariate beta variables. In
section 7, we revisit the concept of reflection about 1/2. Section 8 includes some
discussion of possible parameter estimation strategies for the models. Section 9
includes an illustrative application in which one of the bivariate Kumaraswamy
models is compared with some competing models when fitted to a particular data
set. Some concluding remarks are contained in Section 10.

2. BIVARIATE SECOND KIND BETA DISTRIBUTIONS

A random variable X is said to have a second kind beta distribution with
positive parameters α1 and α2, if its density is of the form

fX(x) =
1

B(α1, α2)

xα1−1

(1 + x)α1+α2
I(x > 0)

and, in such a case, we write X ∼ B(2)(α1, α2).

In our subsequent discussion we make considerable use of the observation
that if V1, V2 are independent gamma distributed random variables with Vi ∼
Γ(αi, 1), i = 1, 2, then X = V1/V2 ∼ B(2)(α1, α2).

The construction of the Arnold-Ng (2011) 8-parameter bivariate second
kind beta distribution begins with 8 independent gamma distributed random
variables, U1, U2, U3, U4, U5, U6, U7, U8 with Ui ∼ Γ(αi, 1), i = 1, 2, ..., 8. The
random vector (V1, V2) is then defined by

(2.1) V1 =
U1 + U5 + U7

U3 + U6 + U8
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and

(2.2) V2 =
U2 + U5 + U8

U4 + U6 + U7
.

Utilizing the fact that sums of independent gamma variables with the same scale
parameter again are gamma distributed, we see that

V1 ∼ B(2)(α1 + α5 + α7, α3 + α6 + α8)

and
V2 ∼ B(2)(α2 + α5 + α8, α4 + α6 + α7).

This 8-parameter model is the most general bivariate second kind beta model
that can be constructed via ratios of sums of independent gamma variables. Some
indication of how it was developed will be useful for envisioning how to construct
higher dimensional versions. There are four places in which a gamma distributed
variable can appear in (2.1)-(2.2). They are: in the numerator of (2.1), in the
denominator of (2.1), in the numerator of (2.2) and in the denominator of (2.2).
A random variable U might appear only once in the two ratios. This is the case
for U1, U2, U3 and U4, each of which appears in a different one of the four available
places. A random variable U might appear in two of the available four places, but
to retain the independence of the numerator from its corresponding denominator
in a given ratio, the same U cannot appear in both. There are four different ways
in which a variable U can appear in two places as illustrated by U5, U6, U7, and U8.
Thus U5 appears in both numerators, U6 appears in both denominators, etc.. A
random variable U cannot appear in more two of the four places without violating
the required independence of numerators from their corresponding denominators.
This thus results in the appearance of the 8 Ui’s in the general model (2.1)-(2.2).
The addition of any more gamma distributed U ’s to the model in any one or two
places will not yield a more general model since they could be combined with
already present gamma variables to keep the dimension of the parameter vector
at the value 8.

The three dimensional version of this construction will involve 26 Ui’s. This
number can be verified by noting that a trivariate model (V1, V2, V3) expressed as
ratios of independent linear combinations of independent gamma variables (with
unit scale parameter), will involve 6 places where a particular U can appear,
three numerators and three denominators. But a particular U cannot appear
in both the numerator and denominator of any of the three Vi’s. There will be
6 U ’s which appear in one of the 6 possible places. These will be denoted by
U1, U2, ..., U6. There will be 12 U ’s that appear in exactly two of the 6 possible
positions, denoted by U7, U8, ..., U18. Finally there are 8 U ’s that appear in 3
places, namely U19, U20, ..., U26. No U can appear in more than 3 places without
violating the requirement that numerators must be independent of their corre-
sponding denominators.

Thus, there are a total of 26 parameters in the model where Ui, i =
1, 2, ..., 26 are independent variables with Ui ∼ Γ(αi, 1) for each i. The model
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can then be expressed in the following, somewhat daunting, form.

V1 =
U1 + U7 + U8 + U9 + U10 + U19 + U20 + U21 + U22

U4 + U11 + U12 + U13 + U14 + U23 + U24 + U25 + U26
,

V2 =
U2 + U7 + U11 + U15 + U16 + U19 + U20 + U23 + U24

U5 + U9 + U13 + U17 + U18 + U21 + U22 + U25 + U26
,

and

V3 =
U3 + U8 + U12 + U15 + U17 + U19 + U21 + U23 + U25

U6 + U10 + U14 + U16 + U18 + U20 + U22 + U24 + U26
.

The pattern for the dimensions of parameter spaces of the multivariate
models becomes clear. The univariate model involves 2 U ’s, i.e., 31 − 1. The
bivariate model involves 8 U ’s, i.e., 32 − 1. The trivariate case involves 26 U ’s,
i.e., 33 − 1., and so on. The general four dimensional model has 80 parameters!
The enormous number of parameters involved in the completely general 3 and 4
dimensional models (i.e., 26 and 80) will compel us to consider simplified sub-
models, of somewhat restricted flexibility, obtained by setting some of the α’s
equal to 0. This may well be desirable, even in the bivariate case. The full array
of sub-models of the 8 parameter model (2.1)-(2.2) can be enumerated as follows.

There is, to begin with, the full 8-parameter model in which all of the αi’s
are positive. We can label the various sub-models by listing the subscripts of
the αi’s which remain in the sub-model, i.e., which have not been set equal to 0.
Thus B(2)(1, 2, 3, 4, 5.6, 7, 8) denotes the full model, while for example B(2)(1, 5, 6)
denotes the model in which only α1, α5 and α6 have not been set equal to 0. Note
that the list of subscripts of the αi’s that are set equal to zero cannot include
any of the four triples (1, 5, 7), (3, 6, 8), (2, 5, 8) or (4, 6, 7) in order to retain the
second kind beta form for the marginal distributions. Thus, the list of permissible
sub-models includes:

•
(

8
1

)

= 8 models in which just one of the αi’s has been set equal to 0,

•
(

8
2

)

= 28 models in which exactly two of the αi’s have been set equal to 0,

•
(

8
3

)

−4 = 52 permissible models in which exactly three of the αi’s have been
set equal to 0,

•
(

8
4

)

−20 = 50 permissible models in which exactly four of the αi’s have been
set equal to 0,

•
(

8
5

)

−36 = 20 permissible models in which exactly five of the αi’s have been
set equal to 0,

•
(

8
6

)

− 26 = 2 permissible models in which exactly six of the αi’s have been

set equal to 0. Of these models, BB(2)(5, 6) has V1 = V2, while BB(2)(7, 8)
has V1 = 1/V2, so that they are of little interest.
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In all there are 161 models which might be considered, of which 159 are non
trivial. As we shall see in the next section, several of the corresponding bivariate
beta of the first kind models (but not many) have received detailed coverage in
the literature. It should be noted that very few of these models have available
analytic expressions for the corresponding joint density. Typically those models
with more than 3 parameters will not have tractable joint densities.

Returning to the general 8-parameter model (2.1)-(2.2), we may readily
write down the moments of the Vi’s since they have second kind beta distributions.
Thus, for any integer j less than α3 + α6 + α8, we have

E(V j
1 ) = E[(U1 + U5 + U7)

j ]E[(U3 + U6 + U8)
−j ]

=
Γ(α1 + α5 + α7 + j)

Γ(α1 + α5 + α7)

Γ(α3 + α6 + α8 − j)

Γ(α3 + α6 + α8)
,

and similarly, for any integer k < α4 + α6 + α7,

E(V k
2 ) =

Γ(α2 + α5 + α8 + k)

Γ(α2 + α5 + α8)

Γ(α4 + α6 + α7 − k)

Γ(α4 + α6 + α7)
.

Expressions for the variances are then readily written down. However mixed
moments are more difficult to deal with. For example, we have

E(V1V2) = E

[(

U1 + U5 + U7

U3 + U6 + U8

)(

U2 + U5 + U8

U4 + U6 + U7

)]

which appears to be difficult to evaluate analytically, unless most of the αi’s are
equal to 0. Thus, analytic expressions for the covariance between V1 and V2 will
be usually unavailable. Nevertheless, the covariance and any mixed moments of
the form E(V ℓ

1 V
m
2 ) can be readily approximated by repeated simulation of the

Ui’s, thanks to the strong law of large numbers.

3. BIVARIATE BETA DISTRIBUTIONS (OF THE FIRST, OR
CLASSICAL, KIND)

If U ∼ B(2)(α1, α2), i.e., if U =d W1/W2 where the Wi’s are independent
with Wi ∼ Γ(αi, 1), i = 1, 2, then the random variable V = (1 − U−1)−1 has a
(classical) beta distribution or beta distribution of the first kind, and we denote
this by V ∼ B(α1, α2). Here, V can be represented in the form

V =
W1

W1 +W2
.

Application of such a transformation to the marginals of the model (2.1)-
(2.2) yields a parallel 8-parameter bivariate (classical) beta distribution with the
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following structure

(3.1) W1 =
U1 + U5 + U7

(U1 + U5 + U7) + (U3 + U6 + U8)

and

(3.2) W2 =
U2 + U5 + U8

(U2 + U5 + U8) + (U4 + U6 + U7)
,

where the Ui’s are independent gamma distributed random variables with
Ui ∼ Γ(αi, 1), i = 1, 2, ..., 8. In this case we write

(W1,W2) ∼ BB(1, 2, 3, 4, 5, 6, 7, 8),

indicating that all 8 of the Ui’s are involved in the distribution. This is the 8-
parameter bivariate beta distribution introduced in Section 6.1 of Arnold and
Ng (2011). As was the case for the bivariate beta of the second kind distribu-
tion discussed in Section 2, it will often be of interest to consider sub-models
in which some of the αi’s are set equal to zero, so that the corresponding Ui’s
do not appear in the expressions (2.1) and (2.2). Thus for example the model
BB(1, 2, 6, 7, 8) may be recognized as the 5-parameter bivariate beta model dis-
cussed extensively in Arnold and Ng (2011), while the simpler 3-parameter models
BB(1, 2, 6), BB(3, 5, 6), BB(4, 5, 6) and BB(6, 7, 8) have also appeared in the
literature, as has the 4-parameter model BB(5, 6, 7, 8).

The BB(6, 7, 8) model is recognizable as a Dirichlet distribution, the
BB(1, 2, 6) model is identifiable as the Libby-Novak (1982)-Jones (2002)-Olkin-
Liu (2003) model, the BB(3, 5, 6) and BB(4, 5, 6) models are the same as the
first two models discussed in Nadarajah and Kotz (2005), and the BB(5, 6, 7, 8)
has been discussed by Olkin and Trikalinos (2015). Finally we mention that the
BB(1,2,3,4,5,6) model was introduced by Magnussen (2004). Of course, not all
bivariate beta models can be viewed as sub-models of (3.1)-(3.2). For example
the third model in Nadarajah and Kotz (2005) (which is defined in terms of three
independent beta variables) is not of this form, nor are the various copula based
models obtained by marginally transforming quite arbitrary bivariate distribu-
tions to obtain beta marginals. Moreover some bivariate beta models, such as
for example the one in Nadarajah (2007) only have beta marginals in special
sub-cases.

In this setting also, there are 161 models which might be considered, of
which 159 are non trivial. It, once more, should be noted that very few of these
models have available analytic expressions for the corresponding joint density.
Typically those models with more than 3 parameters will not have tractable joint
densities.

Returning to the general 8-parameter model (3.1)-(3.2), we may readily
write down the moments of the Wi’s since they have (classical) beta distributions.
Thus, for example, the means and variances are given by

E(W1) =
α1 + α5 + α7

α1 + α5 + α7 + α3 + α6 + α8
,
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E(W2) =
α2 + α5 + α8

α2 + α5 + α8 + α4 + α6 + α7
,

var(W1) =
(α1 + α5 + α7)(α3 + α6 + α8)

(α1 + α5 + α7 + α3 + α6 + α8)2(α1 + α5 + α7 + α3 + α6 + α8 + 1)
,

and

var(W2) =
(α2 + α5 + α8)(α4 + α6 + α7)

(α2 + α5 + α8 + α4 + α6 + α7)2(α2 + α5 + α8 + α4 + α6 + α7 + 1)
.

Although expressions for the variances are readily written down, mixed
moments are more difficult to deal with. For example, we have

E(W1W2) = E

[(

U1 + U5 + U7

U1 + U5 + U7 + U3 + U6 + U8

)(

U2 + U5 + U8

U2 + U5 + U8 + U4 + U6 + U7

)]

which will be difficult to evaluate analytically, unless most of the αi’s are equal to
0. Thus, analytic expressions for the covariance between W1 and W2 will be usu-
ally unavailable. As was the case for the second kind beta models, this covariance
and any mixed moments of the form E(W ℓ

1W
m
2 ) can be readily approximated by

repeated simulation of the Ui’s, using the strong law of large numbers.

4. RECIPROCATION AND REFLECTION ABOUT 1/2

If X ∼ B(α1, α2) then it follows readily that 1 − X ∼ B(α2, α1).
Similarly, if X ∼ B(2)(α1, α2) then 1/X ∼ B(2)(α2, α1). In words, the fam-
ily of beta distributions is closed under reflection about the point 1/2, and
the family of second kind beta distributions is closed under reciprocation. If
one of these transformations is applied to one of the coordinates of a bivariate
beta random variable, a new bivariate beta random variable will be obtained,
but with a modified dependence structure. Thus if (W1,W2) has a bivariate
beta distribution with positive correlation, then (W1, 1 − W2) will again have
a bivariate beta distribution, but now it will have negative correlation (since
cov(W1, 1 − W2) = cov(W1,−W2) = −cov(W1,W2)). Similarly, if (W1,W2) has
a bivariate second kind beta distribution, then (W1, 1/W2) will again have a bi-
variate second kind beta distribution, but typically with correlation opposite in
sign to that of (W1,W2).

The BB(2)(α1, α2, α3, α4, α5, α6, α7, α8) family of distributions is closed un-
der marginal reciprocation and, likewise, the BB(α1, α2, α3, α4, α5, α6, α7, α8)
family of distributions is closed under marginal reflection about 0. Specifically
we have:

If (W1,W2) ∼ BB(2)(α1, α2, α3, α4, α5, α6, α7, α8), then

• (W1, 1/W2) ∼ BB(2)(α1, α4, α3, α2, α7, α8, α5, α6),
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• (1/W1,W2) ∼ BB(2)(α3, α2, α1, α4, α8, α7, α6, α5),

and

• (1/W1, 1/W2) ∼ BB(2)(α3, α4, α1, α2, α6, α5, α8, α7).

In a parallel fashion, if (W1,W2) ∼ BB(α1, α2, α3, α4, α5, α6, α7, α8), then

• (W1, 1−W2) ∼ BB(α1, α4, α3, α2, α7, α8, α5, α6),

• (1−W1,W2) ∼ BB(α3, α2, α1, α4, α8, α7, α6, α5),

and

• (1−W1, 1−W2) ∼ BB(α3, α4, α1, α2, α6, α5, α8, α7).

See Singapurwalla et al. (2016) for further discussion of bivariate beta mod-
els related by marginal reflection about 1/2.

5. BIVARIATE GENERALIZED BETA MODELS

If X ∼ B(α1, α2) then for γ > 0, W = X1/γ is said to have a generalized
beta distribution, written

W ∼ GB(α1, α2, γ).

Similarly, if X ∼ B(2)(α1, α2) then for γ > 0, W = X1/γ is said to have a
generalized second kind beta distribution, written

W ∼ GB(2)(α1, α2, γ).

Analogous generalizations of our bivariate beta models are defined as follows.

If (V1, V2) ∼ BB(α1, α2, α3, α4, α5, α6, α7, α8) and if W1 = V
1/γ1
1 and W2 =

V
1/γ2
1 then (W1,W2) has a bivariate generalized beta distribution and we write

(W1,W2) ∼ GBB(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).

Analogously, if (V1, V2) ∼ BB(2)(α1, α2, α3, α4, α5, α6, α7, α8) and if W1 = V
1/γ1
1

and W2 = V
1/γ2
1 then (W1,W2) has a bivariate generalized second kind beta

distribution and we write

(W1,W2) ∼ GBB(2)(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).
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Additional flexibility for the bivariate generalized second kind beta distri-
bution can be achieved by introducing location, scale and rotation parameters.
Thus for µ ∈ (−∞,∞)2 and a 2 × 2 matrix A, we will define (using column
vectors)

Z = µ+AW

where W ∼ GBB(2)(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).

6. BIVARIATE KUMARASWAMY MODELS

If X ∼ B(1, β) and Y = X1/γ , then Y is said to have a Kumaraswamy
(1980) distribution, and we write Y ∼ K(γ, β). This distribution is a special
case of the generalized beta distribution, but it has one attractive feature. Unlike
other generalized beta distributions, the Kumaraswamy distribution has a simple
analytic expression available for its distribution function. Thus, if Y ∼ K(γ, β)
then

FY (y) = 1− (1− yγ)βI(0 < y < 1).

As a consequence, the Kumaraswamy distribution has emerged as a serious com-
petitor to the beta distribution for modeling data taking values in the unit inter-
val. In Arnold and Ghosh (2016), several bivariate Kumaraswamy distributions
were discussed in some detail. In this Section we will focus on bivariate Ku-
maraswamy distributions that can be constructed by marginal power transfor-
mations applied to the 8-parameter Arnold-Ng bivariate beta model (3.1)-(3.2),
incorporating the needed parametric restrictions to ensure that the marginal dis-
tributions of the bivariate beta model have their first parameters equal to 1.

Thus we begin with (V1, V2) having the distribution of the form (3.1)-(3.2),
but with the following constraints on the α parameters.

(6.1) α1 + α5 + α7 = 1

and

(6.2) α2 + α5 + α8 = 1,

to ensure that V1 ∼ B(1, α3 + α6 + α8) and V2 ∼ B(1, α4 + α6 + α7).

We then define
(W1,W2) = (V

1/δ1
1 , V

1/δ2
2 ),

for positive parameters δ1 and δ2, to obtain a bivariate Kumaraswamy model,
and we write

(W1,W2) ∼ BK(α1, α2, α3, α4, α5, α6, α7, α8; δ1, δ2).

This appears to be a 10-parameter model but, because of the two parametric
restrictions (6.1)-(6.2), the parameter space is actually of dimension 8. The pa-
rameters of the model, α3, α4, α5, α6, α7, α8; δ1 and δ2, are constrained as follows:
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• δ1, δ2 > 0,

• α3, α4, α6 ∈ [0,∞),

• α7, α8 ∈ [0, 1],

• 0 ≤ α5 ≤ min {1− α7, 1− α8},

while α1 = 1− α5 − α7 and α2 = 1− α5 − α8.

As was the case for the bivariate beta and the bivariate second kind beta
models discussed in Sections 2 and 3, simplified and more manageable sub-models
can be identified by setting some of the α parameters equal to 0. Below we
consider in some detail some of these simplified models.

6.1. The Dirichlet bivariate Kumaraswamy model

For this model, we set α1 = α2 = α3 = α4 = α5 = 0 and, in order to
satisfy (6.1)-(6.2), we set α7 = α8 = 1, while α6 ∈ (0,∞). This results in a three
parameter bivariate Kumaraswamy distribution of the form

W1 =

(

U7

U6 + U7 + U8

)1/δ1

,

W2 =

(

U8

U6 + U7 + U8

)1/δ2

,

where δ1, δ2 > 0 and U7, U8 are i.i.d. Γ(1, 1) variables, while U6 ∼ Γ(α6, 1) is
independent of U7 and U8.

Since there is only one α parameter remaining in the model, we may drop
the subscript “6” and write

W ∼ Dirichlet-BK(α, δ1, δ2).

The corresponding joint density is of the form

fW (w) = α(α+1)δ1δ2w
δ1−1
1 wδ2−1

2 (1−wδ1
1 −wδ2

2 )α−1 I(w1, w2 > 0, wδ1
1 +wδ2

2 < 1)

The marginal densities are, by construction, of the Kumaraswamy type. Thus

fW1(w1) = (α+ 1)δ1w
δ1−1
1

(

1− wδ1
1

)α
I(0 < w1 < 1).

and
fW2(w2) = (α+ 1)δ2w

δ2−1
2

(

1− wδ2
2

)α
I(0 < w2 < 1).
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The corresponding conditional densities correspond to scaled Kumaraswamy dis-
tributions. Thus, the conditional density of W2 given W1 = w1 will be

fW2|W1
(w2|w1) = αδ2

(

1− wδ1
1 − wδ2

2

)α−1

(

1− wδ1
1

)α

=
αδ2

(

1− wδ1
1

)



1−
wδ2
2

(

1− wδ1
1

)





α−1

I(0 < w2 < (1− wδ1
1 )1/δ2).

An analogous expression is available for the conditional density of W1 given W2 =
w2.

Using known results for the Beta and the Dirichlet distribution, we may
verify that

E(W γ1
1 ) =

Γ(1 + γ1δ
−1
1 )Γ(2 + α)

Γ(2 + α+ γ1δ
−1
1 )

,

E(W γ2
2 ) =

Γ(1 + γ2δ
−1
2 )Γ(2 + α)

Γ(2 + α+ γ2δ
−1
2 )

,

and

E(W γ1
1 W γ2

2 ) =
Γ(2 + α)Γ(1 + γ1δ

−1
1 )Γ(1 + γ2δ

−1
2 )

Γ(α+ 2 + γ1δ
−1
1 + γ2δ

−1
2 )

,

from which one can obtain the covariance and correlation (which, for this model,
are necessarily non-positive).

By differentiating log fW (w) it is possible to locate the mode of this joint
density. It will be located at the point (w∗

1, w
∗
2) where

w∗
1 =

{

δ2(α− 1)

(αδ2 − 1)(αδ1 − 1) + (1− δ2)

}1/δ1

.

and

w∗
2 =

{

δ1(α− 1)

(αδ2 − 1)(αδ1 − 1) + (1− δ1)

}1/δ2

,

provided that this point is an interior point of the support set, i.e., provided that

w∗
1, w

∗
2 > 0, and w∗δ1

1 + w∗δ2
2 < 1.

In other cases, the mode will occur on the boundary of the support set.

It must be remarked that the restrictive nature of the support of this bi-
variate Kumaraswamy model will limit its potential for applications.
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6.2. The Libby-Novick-Jones-Olkin-Liu bivariate Kumaraswamy model

For this model, we set α3 = α4 = α5 = α7 = α8 = 0 and, in order to
satisfy (6.1)-(6.2), we set α1 = α2 = 1, while α6 ∈ (0,∞). This results in a three
parameter bivariate Kumaraswamy distribution of the form

(6.3) W1 =

(

U1

U1 + U6

)1/δ1

,

(6.4) W2 =

(

U2

U2 + U6

)1/δ2

,

where δ1, δ2 > 0 and U1, U2 are i.i.d. Γ(1, 1) variables, while U6 ∼ Γ(α6, 1) is
independent of U1 and U2.

Since there is only one α parameter remaining in the model, here too we
may drop the subscript “6” and write

W ∼ LNJOL-BK(α, δ1, δ2).

The corresponding joint density is of the form

(6.5) fW (w) = α(α+ 1)δ1δ2w
δ1−1

1 wδ2−1

2

(1− wδ1
1 )α(1− wδ2

2 )α

(1− wδ1
1 wδ2

2 )α+2
I(0 < w1, w2 < 1).

Since the Wi’s can be represented as powers of Beta random variables we can
easily get the following expressions for their moments.

E(W γi
i ) =

αΓ(γiδi + 1)

Γ(γiδi + α+ 1)
, i = 1, 2.

A simple expression for E(W1W2) is not available, although it is possible to
provide a series expansion for it, and hence for the covariance. As Olkin and Liu
(2003) noted in the bivariate beta case (with the δi’s equal to one) it is possible
to verify a strong version of positive dependence for this model. For two points
(w1, w2), (w

′
1, w

′
2) (with w1 < w′

1, w2 < w′
2) it is readily verified that

fW1,W2(w1, w2)fW1,W2(w
′
1, w

′
2)

fW1,W2(w1, w′
2)fW1,W2(w

′
1, w2)

≥ 1,

so the joint density is positive likelihood ratio dependent. Consequently the
correlation is always positive in this model.

6.3. The Nadarajah-Kotz bivariate Kumaraswamy model of the first
kind

For this model, we set α1 = α2 = α4 = α7 = α8 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 = 1, while α3, α6 ∈ (0,∞). This results in a four parameter
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bivariate Kumaraswamy distribution of the form

W1 =

(

U5

U3 + U5 + U6

)1/δ1

,

W2 =

(

U5

U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1),
U3 ∼ Γ(α3, 1) and U6 ∼ Γ(α6, 1). In this case we write

W ∼ NK(1)-BK(α3, α6, δ1, δ2).

The corresponding joint density is of the form

fW (w) = α6δ1δ2
(wδ2

2 − wδ1
1 )α3−1(1− wδ2

2 )α6−1

w1−δ1
1 w

δ2(α3+α6−1)+1
2 B(α6 + 1, α3)

I(0 < wδ1
1 < wδ2

2 < 1) .

Because of the structure of the NK(1) bivariate beta model, it is possible to
obtain expressions for arbitrary mixed moments as follows. For arbitrary τ1, τ2 >
0, we have

E(W τ1
1 W τ2

2 ) = E

(

(

U5

U3 + U5 + U6

)τ1/δ1 ( U5

U5 + U6

)τ2/δ2
)

= E

(

(

U5

U5 + U6

U5 + U6

U3 + U5 + U6

)τ1/δ1 ( U5

U5 + U6

)τ2/δ2
)

,

where U5/(U5+U6) and (U5+U6)/(U3+U5+U6) are independent beta distributed
random variables. Thus

E(W γ1
1 W γ2

2 ) = E

(

(

U5

U5 + U6

)(γ1/δ1)+(γ2/δ2)
)

E

(

(

U5 + U6

U3 + U5 + U6

)γ1/δ1
)

=
B(1 + (γ1/δ1) + (γ2/δ2), α6)

B(1, α6)

B(1 + α6 + (γ1/δ1), α3)

B(1 + α6, α3)
.

From this we may obtain the following expression for the covariance in this model

Cov(W1,W2) = E(W1W2)− E(W1)E(W2)

=

(

B(1 + 1/δ1 + 1/δ2, α6)

B(1, α6)

)(

B(1 + 1/δ1 + α6, α3)

B(1 + α6, α3)

)

−

(

B(1 + 1/δ1, α3 + α6)

B(1, α3 + α6)

)(

B(1 + 1/δ2, α6)

B(1, α6)

)

.

In the special case in which δ1 = δ2 = 1, it is possible to verify that this
covariance is always non-negative. For other values of the δ’s, negative covariance
is possible. Sufficient conditions for negative covariance (and hence, correlation)
are that

1

δ2
> max(α6, δ1), α6 > α3 and α3 + α6 >

1

δ1
> (α6 − 1).
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By differentiating log fW (w) it is possible to locate the mode of this joint density.
It will be located at the point (w∗

1, w
∗
2) where

w∗δ1
1 =

w∗δ2
2 (δ1 − 1)

(α3δ1 − 1)

and

w∗
2 =







(−1− α6δ2) +
(−1+δ1)
(α3δ1−1)(1 + (−1 + α3 + α6)δ2)

(1 + δ2)−
(1+α3δ2)(−1+δ1)

(α3δ1−1)







1/δ2

,

provided that this point is an interior point of the support set, i.e., provided that

0 < w∗δ1
1 < w∗δ2

2 < 1.

In other cases, the mode will occur on the boundary of the support set.

In this case too, unless δ1 = δ2, the restrictive nature of the support of this
bivariate Kumaraswamy model will limit its potential for applications.

6.4. The Nadarajah-Kotz bivariate Kumaraswamy model of the sec-
ond kind

For this model, we set α1 = α2 = α3 = α7 = α8 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 = 1, while α3, α6 ∈ (0,∞). This results in a four parameter
bivariate Kumaraswamy distribution of the form

W1 =

(

U5

U5 + U6

)1/δ1

,

W2 =

(

U5

U4 + U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1),
U4 ∼ Γ(α4, 1) and U6 ∼ Γ(α6, 1). However, this can be recognized as a re-
parameterized version of the NK(1)BK distribution, with the subscripts of the
Wi’s interchanged. It is thus not necessary to list expressions for the joint density,
moments, etc., since that material can easily be gleaned from Section 6.3.

6.5. The Olkin-Trikalinos bivariate Kumaraswamy model

For this model, we set α1 = α2 = α3 = α4 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 ∈ (0, 1), while α7 = α8 = 1 − α5 and α6 ∈ (0,∞). This
results in a four parameter bivariate Kumaraswamy distribution of the form

W1 =

(

U5 + U7

U5 + U6 + U7 + U8

)1/δ1

,
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W2 =

(

U5 + U8

U5 + U6 + U7 + U8

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(αi, 1), i = 5, 6, 7, 8. In this case we write

W ∼ OT -BK(α5, α6, δ1, δ2).

In this case also, an analytic expression for the joint density is not available, but
we can make the following observations about this joint distribution.

Marginal moments are of course Kumaraswamy moments and thus are read-
ily written down. Mixed moments are more troublesome, except in the case when
δ1 = δ2 = 1 in which case we reduce to an Olkin-Trikalinos model and the Wi’s
can be represented as sums of coordinates of a three dimensional Dirichlet vari-
able. For example, in this case as observed by Olkin and Trikalinos, a simple
expression for the covariance can be obtained in the following form

(6.6) cov(W1,W2) =
(α5α6 − α7α8)

(α5 + α6 + α7 + α8)(α5 + α6 + α7 + α8 + 1)
,

when δ1 = δ2 = 1,

Recall that our model is:

(W1,W2) =

(

(

U5 + U7

U5 + U6 + U7 + U8

)1/δ1

,

(

U5 + U8

U5 + U6 + U7 + U8

)1/δ2
)

where the Uj ’s are independent with

U5 ∼ Γ(α5, 1) , α5 ∈ (0, 1), U6 ∼ Γ(α6, 1) , α6 ∈ (0,∞)

and
U7 ∼ Γ(1− α5, 1), U8 ∼ Γ(1− α5, 1).

To study moments of this distribution, consider the following three dimen-
sional Dirichlet model, which has four positive parameters:

(Y1, Y2, Y3) =

(

U5

U5 + U6 + U7 + U8
,

U7

U5 + U6 + U7 + U8
,

U8

U5 + U6 + U7 + U8

)

with a Dirichlet(α5, 1−α5, 1−α5, α6) distribution. So we have available expres-
sions for

E(Y1), E(Y2), E(Y3), E(Y 2
1 ), E(Y 2

2 ), E(Y 2
3 ), E(Y1Y2), E(Y1Y3), E(Y2Y3)

and indeed for

E(Y τ1
1 ), E(Y τ2

2 ), E(Y τ3
3 ), E(Y τ1

1 Y τ2
2 ), E(Y τ1

1 Y τ3
3 ), E(Y τ2

2 Y τ3
3 )
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and for
E(Y τ1

1 Y τ2
2 Y1Y

τ3
3 ).

But note that
(W1,W2) =

(

(Y1 + Y2)
1/δ1 , (Y1 + Y3)

1/δ2
)

.

In general only a series expansion for E(W ν1
1 W ν2

2 ) will be available. However, in
the unlikely case in which ν1/δ1 = k1, a positive integer and ν2/δ2 = k2 is also a
positive integer then we can write:

E(W ν1
1 W ν2

2 ) = E
(

(Y1 + Y2)
ν1/δ1 (Y1 + Y3)

ν2/δ2
)

= E
(

(Y1 + Y2)
k1 (Y1 + Y3)

k2
)

=

k1
∑

ℓ1=0

k2
∑

ℓ2=0

(

k1
ℓ1

)(

k2
ℓ2

)

E(Y ℓ1+ℓ2
1 Y k1−ℓ1

2 Y k2−ℓ2
3 ),

which is then computable. In particular, if δ1 = δ2 = 1, we get

E(W1W2) = E[(Y1 + Y2) (Y1 + Y3)] = E(Y 2
1 ) + E(Y1Y2) + E(Y1Y3) + E(Y2Y3)

which is easy to evaluate and then subtracting E(W1)E(W2) we eventually re-
confirm the result in (6.6).

cov(W1,W2) =
(α5α6 − α7α8)

(α5 + α6 + α7 + α8)(α5 + α6 + α7 + α8 + 1)

=
[α5α6 − (1− α5)

2]

(α6 − α5 + 2)(α6 − α5 + 3)

where we have imposed the constraints α7 = α8 = 1− α5.

When δ1 = δ2 = 1, the model encompasses a full range of values for its
covariance and correlation. In particular we have

• The OT-BK model with δ1 = δ2 = 1, will exhibit positive correlation if
α6 ≥ α5 + 2, and α5 > 1/4.

• The OT-BK model with δ1 = δ2 = 1, will exhibit negative correlation if
α6 ≤ α5 − 3, and α5 < 1/4.

More specifically, with δ1 = δ2 = 1,

• When α5 = 0, Cov(W1,W2) = − 1
(α6+2)(α6+3) < 0, for any choice of α6 ∈

(0,∞).

• When α5 = 1, Cov(W1,W2) = α6
(α6+1)(α6+2) > 0, for any choice of α6 ∈

(0,∞).

In cases in which the δ’s are not both equal to 1, the covariances and
correlations will have to be evaluated numerically in order to determine when
they are positive and when negative.
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6.6. The Ghosh bivariate Kumaraswamy model

For this model, suggested by I. Ghosh, we set α5 = α7 = α8 = 0 and, in
order to satisfy (6.1)-(6.2), we set α1 = α2 = 1, while α3, α4, α6 ∈ (0,∞). This
results in a five parameter bivariate Kumaraswamy distribution of the form

W1 =

(

U1

U1 + U3 + U6

)1/δ1

,

W2 =

(

U2

U2 + U4 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U1, U2 ∼
Γ(1, 1) and Ui ∼ Γ(αi, 1), i = 3, 4, 6. In this case we write

W ∼ G-BK(α3, α4, α6, δ1, δ2).

In this case also, an analytic expression for the joint density is not available.

6.7. The Magnussen Kumaraswamy model

Magnussen (2004) described a bivariate beta distribution which can be
identified as a special case of the Arnold-Ng(8) bivariate beta model, obtained
by setting α7 = α8 = 0. It is thus of the form:

(

U1 + U5

U1 + U3 + U5 + U6
,

U2 + U5

U2 + U4 + U5 + U6

)

.

In order to satisfy (6.1)-(6.2), we must have α1 + α5 = 1 and α2 + α5 = 1,
while α3, α4, α6 ∈ (0,∞). This results in a six parameter bivariate Kumaraswamy
distribution of the form

W1 =

(

U1 + U5

U1 + U3 + U5 + U6

)1/δ1

,

W2 =

(

U2 + U5

U2 + U4 + U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(α5, 1)
where α5 ∈ [0, 1], Ui ∼ Γ(1− α5, 1), i = 1, 2 and Ui ∼ Γ(αi, 1), αi ∈ (0,∞), i =
3, 4, 6. In this case we write

W ∼ M -BK(α3, α4, α5, α6, δ1, δ2).



242 Barry C. Arnold and Indranil Ghosh

7. VARIATIONS, USING REFLECTION ABOUT 1/2

It is possible to construct other bivariate Kumaraswamy models by apply-
ing one or two marginal reflections about the point 1/2 to the bivariate beta
model, before imposing the necessary parameter constraints and the marginal
power transformations. For example the model (6.3)-(6.4), was derived by first
considering a bivariate beta model of the form

(V1, V2) =

(

U1

U1 + U6
,

U2

U2 + U6

)

.

Instead, we can consider starting with the doubly reflected model, (1−V1, 1−V2),
i.e.,

(

U6

U1 + U6
,

U6

U2 + U6

)

.

However, note that, according to our notation of Section 4, U1 is playing the role
of a gamma variable usually denoted by U3, U2 is playing the role of a variable
usually denoted by U4, and U6 would be better labeled U5. Thus we eventually
arrive at the following four parameter bivariate Kumaraswamy model

W1 =

(

U5

U3 + U5

)1/δ1

, W2 =

(

U5

U4 + U5

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1)
and Ui ∼ Γ(αi, 1), i = 3, 4. If, instead we only reflect V2 about 1/2, we eventually
arrive at the model,

W1 =

(

U1

U1 + U8

)1/δ1

, W2 =

(

U8

U4 + U8

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(1, 1) i = 1, 8 and U4 ∼ Γ(α4, 1).

Finally, if we only reflect V1 about 1/2, we eventually arrive at the model,

W1 =

(

U7

U3 + U7

)1/δ1

, W2 =

(

U2

U2 + U7

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(1, 1), i = 2, 7 and U3 ∼ Γ(α3, 1).

This approach can be applied to each of the bivariate models discussed in this
section to obtain three related but distinct models in each case. Recall that such
modifications of the models may be useful since reflection of one of the coordinates
in the model about 1/2 will typically change the sign of the correlations in the
original model.
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8. PARAMETER ESTIMATION

The reader will have noticed that many of the models discussed in this paper
do not have available analytic expressions for their joint densities. In addition,
in many cases, it is difficult to identify functions of (W1,W2), say g(W1,W2) for
which E(g(W1,W2)) can be evaluated as a tractable function of the parameters
of the model. We do have well behaved marginal distributions with available
densities and moments, since the coordinate variables have Beta, second kind
Beta, generalized Beta or Kumaraswamy distributions. Exceptions to this rule
are the Libby-Novick-Jones-Olkin-Liu models for which, at least, the joint density
is available, though mixed moments are only available in series form. Having
observed this, we recognize that the old standby’s maximum likelihood and the
method of moments will require some modification if they are to be used to
provide estimates of the model parameters. The same can be said for Bayesian
estimation since it, also, typically utilizes a likelihood function. Arnold and Ng
(2011) described a hybrid estimation strategy for parameter estimation in a 5-
parameter sub-model of the BB(1,2,3,4,5,6,7,8) model, namely the BB(1,2,6,7,8)
model. Unfortunately, their approach will not work for the associated bivariate
Kumaraswamy model. In addition, an approximate Bayesian analysis of the
BB(1,2,6,7,8) model was presented in Crackel (2015).

However, all is not lost because, without exception, all of the models dis-
cussed in this paper are easy to simulate. This means that, for given values
of the parameters, highly accurate approximate values of moments, mixed mo-
ments, values of the joint distribution function and values of the joint moment
generating function can be obtained. Admittedly, this will result in computer
intensive estimation strategies, but it will allow selection among the sub-models
for the one best adapted to a given data set. More details on these approximate
estimation strategies will be the subject of a subsequent report.

9. A DATA SET

To illustrate the applicability of the bivariate beta and Kumaraswamy mod-
els developed in this paper, we consider the following data from the official web-
site of the United Nations Development Program which can be found at
(datalink: http://hdr.undp.org/en/composite/trends.) It consists of data on the
Human Development Index (HDI)and is provided by the United Nations Devel-
opment Program (UNDP). Specifically, we look at the 49 countries which are
labeled as having very high HDI values for two specific years, the years 2010
and 2014. The reason of choosing these two particular time periods is that 2010
is right after the global financial turmoil (which started during the year 2008)
which affected the entire economic sphere and related development and 2014 is
the period where most of the countries in Europe were getting out of a recession.
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Thus, it is quite interesting to see the change in the HDI values among countries
over this period of 4 years.

We consider the following: Let X denote the HDI value for these 49 coun-
tries for the year 2010 and Y be the same for the year 2014. Noticeably, all the
data points are within the range (0, 1), thereby a reasonable approach will be to
fit bivariate distributions on the unit square, [0, 1]2. At this point we argue that
(X,Y ) can be modeled well by the bivariate Kumaraswamy and beta distributions
developed and discussed in this paper.

1. Model I: The Libby- Novick-Jones-Olkin-Liu bivariate Kumaraswamy dis-
tribution. This absolutely continuous distribution has the following density
(repeating (6.5)

fW (w) = α(α+ 1)δ1δ2w
δ1−1

1 wδ2−1

2

(1− wδ1
1 )α(1− wδ2

2 )α

(1− wδ1
1 wδ2

2 )α+2
I(0 < w1, w2 < 1).

2. Model II: The bivariate generalized beta distribution of the first kind [Equa-
tion (20) of Sarabia et al. (2014)], with density

f(x, y) =
a1a2

B(p1, p2, q)

xa1p1−1ya2p2−1 (1− xa1)p2+q−1 (1− ya2)p1+q−1

(1− xa1ya2)−(p1+p2+q)
,

for 0 < (x, y) < 1, where B(p1, p2, q) is the normalizing constant.

3. Model III: The Nadarajah (2007) bivariate generalized beta distribution
given by

f(x, y) =
Cxα−1yβ−1 (1− x)γ−α−1 (1− y)γ−β−1

(1− xyδ)γ
,

for 0 < x < 1, 0 < y < 1, γ > α > 0, γ > β > 0 and 0 ≤ δ < 1 where C is
the normalizing constant given by

1

C
=

Γ(α)Γ(β)Γ(γ − α)Γ(γ − β)

Γ2(γ)
2F1 (α, β; γ; δ) .

4. Model IV: Olkin & Liu (2003) bivariate beta distribution given by

f(x, y) =
1

B(α0, α1, α2)

xα1−1yα2−1 (1− x)α0+α2−1 (1− y)α0+α1−1

(1− xy)α0+α1+α2
,

for 0 < (x, y) < 1, where B(α0, α1, α2) =
Γ(α0)Γ(α1)Γ(α2)
Γ(α0+α1+α2)

.

The other bivariate beta Kumaraswamy models, are not considered in this appli-
cation because either they do not have a closed form expression for the density,
or if they have one, their support set does not match the range of points in the
data set.
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• The NK- bivariate Kumaraswamy model is not appropriate since it has
support 0 < w1 < w2 < 1 (if we were willing to accept the constraint
δ1 = δ2). If the δ′ s are unequal then the support set is unusual and it is
difficult to envision a data set for which such a model will be appropriate.

• For the Dirichlet- bivariate Kumaraswamy model, the situation is similar.

To check the goodness of fit of all four statistical models, a χ2 goodness-of-fit
statistic is used and is computed using the computational package Mathematica.
The MLEs are computed using the Nmaximize technique.

Table 1. Parameter estimates for HDI data set.

Model Model I Model II Model III Model IV
Parameter Estimates α̂ = 3.5287(0.3335) â1 = 0.692(0.0894) α̂ = 1.798(0.1142) α̂0 = 4.016(0.6436)

δ̂1 = 1.1845(0.9723) â2 = 1.362(2.246) β̂ = 1.834(0.2794) α̂1 = 3.7649(2.1873)

δ̂2 = 3.2424(0.1065) p̂1 = 3.016(0.9852) γ̂ = 4.038(0.3677) α̂2 = 6.172(0.5837)

p̂2 = 0.782(5.681) δ̂ = 0.587(1.2468)
q̂ = 1.2218(0.3678)

Log likelihood -168.45 -205.38 -217.63 -196.39

χ2 goodness p-value 0.6132 0.4821 0.4593 0.5041

For this particular data set, it appears that the best model, of the four that
were considered, is the Libby- Novick-Jones-Olkin-Liu bivariate Kumaraswamy
model.

10. AN ALTERNATIVE APPROACH USING COPULAS

The bivariate Kumaraswamy models discussed in this paper are constructed
by focusing on bivariate beta random variables with the first parameter of each
marginal beta distribution equal to one. An alternative approach, still using the
Arnold-Ng bivariate model, is available.

Many researchers make use of what are called copula based bivariate mod-
els. For such models, one begins with a copula, a bivariate distribution with
Uniform(0, 1) marginals, and makes marginal transformations to obtain a bi-
variate model with desired marginal distributions. The dependence structure of
the resulting model is thus “inherited” from that of the particular copula used in
the construction. Typically, one parameter families of copulas are used to build
models in this way. More flexible models can be expected if multiparameter
families of copulas are used.

A copula based bivariate Kumaraswamy model will be of the form

(10.1) (X1, X2) = (
[

1− (1− Y1)
1/δ1
]1/γ1

,
[

1− (1− Y2)
1/δ2
]1/γ2

),

where (Y1, Y2) has the desired copula as its distribution (with Uniform(01)
marginals).
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In (10.1) each Xi has ben obtained from the corresponding Yi by transform-
ing using a Kumaraswamy quantile function, to obtain Kumaraswamy marginals.

Looking baback at the Arnold-Ng bivariate beta model (3.1)-(3.2), it is
evident that it contains many distributions with Uniform(0, 1) marginals since
a Uniform(0, 1) can be identified as a Beta(1, 1) distribution. In fact the Arnold-
Ng model contains a four parameter family of such distributions, i.e., of copulas.
The subfamily of of the Arnold-Ng distributions that correspond to copulas is
obtained by setting

α1 + α5 + α7 = 1,(10.2)

α2 + α5 + α8 = 1,(10.3)

α3 + α6 + α8 = 1,(10.4)

α4 + α6 + α7 = 1.(10.5)

In addition, recall that all αi’s are non-negative. The resulting four dimensional
parameter space may be described as follows:

α5 ∈ [0, 1], α6 ∈ [0, 1], 0 ≤ α7 ≤ 1−max {α5, α6}, 0 ≤ α8 ≤ 1−max {α5, α6}.

The remaining αi’s, i = 1, 2, 3, 4, are then determined by equations (10.2)-(10.5).

Such models will be referred to as Arnold-Ng (henceforth AN) copulas.

In a separate report, Arnold and Ghosh (2016) investigate the use of this
multiparameter family of copulas in the construction of eight parameter bivari-
ate Kumaraswamy models. The enhanced flexibility of a four parameter cop-
ula model, when compared with typical one parameter families, makes such an
approach an attractive alternative. See Arnold and Ghosh (2016) for detailed
discussion of all submodels (with one, two or three parameters) of the AN four
parameter copula family. These can be used to construct (using (10.1)) five, six
and seven parameter bivariate Kumaraswamy distributions.

11. CONCLUDING REMARKS

In this paper we consider several different strategies for constructing bi-
variate beta (and also bivariate generalized beta) distributions as well as several
types of bivariate Kumaraswamy distributions using the gamma based method-
ology for construction of bivariate beta models as suggested by Arnold and Ng
(2011). It has been observed that for most of the constructed bivariate beta
models, a corresponding closed form expression for the joint density is unavail-
able. Our proposed bivariate beta models are significantly different than those
discussed and studied in detail in Sarabia et al. (2014).

However, one can readily simulate data from those models using an ap-
propriate algorithm. We have also constructed various bivariate Kumaraswamy
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models starting from a 8 parameter bivariate Kumaraswamy models by setting
the first parameter for the associated beta random variables to 1 and then mak-
ing a positive power transformation. During the discussion, we have considered
some structural properties of the resultant models, such as moments, dependence
structure, etc.

However, in many applications it might be desirable to first test the hy-
pothesis H : δ1 = δ2 = 1, using perhaps a generalized likelihood ratio test,
before settling on the use of a bivariate Kumaraswamy model as opposed to a
bivariate beta or generalized beta model. A preliminary visual inspection of the
sample marginals might be a useful first step. Bivariate beta and bivariate Ku-
maraswamy) distributions could play a useful role in modeling dependent risks
(in a typical financial setting) where the individual risks are transformed to be
bounded on the interval [0, 1].

Estimation of the model parameters (especially, for those models without
a closed form of the density) using an approximate Bayesian approach as well as
using an appropriate method of moments strategy (using marginal, joint and/or
conditional moments) is currently under investigation and, as noted in Section 8,
will be reported elsewhere.

Bivariate Kumaraswamy distributions might be considered as models in
certain bivariate reliability contexts. Howver, the absence of corresponding den-
sity functions will typically not allow one to identify bivariate failure rate func-
tions and other distributional features of interest in reliability. Numerical eval-
uations or simulation based approximations will be needed in almost all cases.
One case in which a density exists is the Libby- Novick-Jones-Olkin-Liu bivariate
Kumaraswamy distribution, displayed in (6.5). In this case, for example, it is
possible to obtain a rather complicated series expansion for the reliability quan-
tity P (W1 < W2). See Appendix B. Expressions for other reliability features can
be expected to be equally or more complicated and, even as in this simple case,
will be of doubtful utility.

APPENDIX A

In Figure 1 we provide contour plots for some specific choices of the parameters α
and δj for j = 1, 2 for some representative 3 parameter BK models. The following
choices are made for each of these selected representative 3 parameter BK models:

• Choice 1 (c1): α = 1.2, δ1 = 0.5, δ2 = 0.5.

• Choice 2 (c2): α = 1.8, δ1 = 1.3, δ2 = 0.9.
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Figure 1: Contour plots for representative BK models.

APPENDIX B

The joint density of the LNJOLBK distribution is of the form

fW (w) = α(α+ 1)δ1δ2w
δ1−1
1 wδ2−1

2

(1− wδ1
1 )α(1− wδ2

2 )α

(1− wδ1
1 wδ2

2 )α+2
I(0 < w1, w2 < 1).

In this case,

R = P (W1 < W2) =

∫ 1

0

∫ 1

w1

f(w1, w2)dw2dw1.
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First, let us consider the integral

I1 =

∫ 1

w1

δ2w
δ2−1
2

(1− wδ2
2 )α

(1− wδ1
1 wδ2

2 )α+2
dw2

=

∫ 1

w
δ2
1

(1− t)α
(

1− twδ1
1

)−(α+2)
dt, on substitutiont = wδ1

1

=
∞
∑

k=0

wkδ1
1

(

α+ 2 + k − 1

k

)∫ 1

w
δ2
1

tk (1− t)α dt

using the expansion

(1− z)−m =
∞
∑

k=0

(

m+ k − 1

k

)

zk.

Next, consider the integral on I1
∫ 1

w
δ2
1

tk (1− t)α dt = B(k + 1, α− 1)−
(

wδ1
1

)k+1
∞
∑

n=0

(1− α)(n)w
nδ1
1

n!(k + n)
,

using the series expansion of the incomplete Beta function

B(z, a, b) =

∫ z

0
ua−1(1− u)b−1du = za

∞
∑

n=0

(1− b)(n)z
n

n!(a+ n)
,

where T(n) is the descending factorial.

Hence, the expression I1 reduces to

I1 =
∞
∑

k=0

(

α+2+k−1

k

)

B(k+1, α−1)wkδ1+δ2
1 −

∞
∑

k=0

∞
∑

n=0

w
(2k+n+1)δ1
1 (1−α)(n)

n!(k+n)
.

Therefore, the expression of R, the reliability parameter for this bivariate
KW model can be expressed in the form

R =

∫ 1

0
α(α+ 1)δ1w

δ1−1
1

(

1− wδ1
1

)α
I1dw1

= α(α+ 1)

[

∞
∑

k=0

(

α+ 2 + k − 1

k

)

B(k + 1, α− 1)δ1

∫ 1

0
w

δ1(1+k)+δ2−1
1

×
(

1− wδ1
1

)α
dw1

−
∞
∑

k=0

∞
∑

n=0

(1− α)(n)

n!(k + n)
δ1

∫ 1

0
w

δ1(2+2k+n)−1
1

(

1− wδ1
1

)α
dw1

]

= α(α+ 1)

[

∞
∑

k=0

(

α+ 2 + k − 1

k

)

B(k + 1, α− 1)B(kδ1 + δ2 + 1, α+ 1)

−
∞
∑

k=0

∞
∑

n=0

a

n!(k + n)
B(2k + n+ 2, α+ 1)

]

,

provided α > 1.
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