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Abstract:
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278 M.L. Esqúıvel, G.R. Guerreiro and J.M. Fernandes



Open Markov Chain Scheme Models 279

1. INTRODUCTION

An usual application of a Markov chain model considers a closed popula-
tion with each member being assigned a certain class at each date; the random
transition of each element among the classes is governed by the transition proba-
bilities. In the homogeneous case - the transition probabilities do not depend on
the date at which the transitions occur - and, in the case where there are both
transient and recurrent states in the Markov chain, the main emphasis is on the
asymptotic behavior. Under that perspective, the transient type events do not
matter on long run distributions. In a more realistic model, the population un-
der scrutiny may be changing by the persistent arrival of new members and the
events related to the so called “transient” states acquire new significance, as they
may persist in time, as the inflow of new elements in the population continues
indefinitely.

The consideration of Markov models with a population inflow, the so called
open Markov models, may be set to start , according to [2], with a work by Gani
(see [9]) and was much developed in subsequent years, as perfectly shown in the
references mentioned in Bartholomew’s work [2, p. 80]. Previously, [24] have
obtained a mathematical model to predict distributions of staff and analyse long
term impacts on patterns of recruitment and promotions. The case of Poisson
recruitment in discrete time open Markov chain model was first dealt in [15],
where expressions for the first and second moments of the classes probability
distributions were obtained.

There has been remarkable work on the extension of discrete to continuous
time Markov and semi-Markov models, such as the developments obtained in
[18], [11], [12] and [13]. An important set of contributions to this theme has been
detailed in [22] and, in particular, we would like to highlight the works [23], [21],
[20], [14] and [16].

The motivation for the present work lays mainly in extending the previ-
ous results in the characterization of stable populations lead by discrete time
Markov chain transitions: for instance, already in [7] the asymptotic behavior of
the classes subpopulation averages is obtained in the case of an exponential input
process and a detailed study of stability in terms of relative proportions among
classes is also presented; in [14] the asymptotic behavior is described when the
Poisson input parameter satisfies general regularity conditions. Having in mind
the study not only of the expected values but also of the laws of the subpopula-
tions in the classes, in [4] we considered a sequence of Poisson inflows and studied
the probability distributions of the subpopulation classes relying on the fact that,
by the randomized sampling principle (see [8, p. 268]), the subpopulations are
Poisson distributed and independent of each other.

In this work, we consider that the inflow of new population elements is mo-
deled by a time series - to wit, a second order stationary process or stationary with
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deterministic trend - and we study possible descriptions of the subpopulations,
in particular in the transient states, as time flows.

Section 2 introduces the model and some preliminary results and notations
that we be the basis of our developments. Section 3 contains the main results
obtained in this paper which allowed us to perform an application to credit con-
sumption in Section 4.

2. OPEN MARKOV CHAIN SCHEME MODEL

2.1. The model

Consider a population model driven by a Markov chain defined by a se-
quence of initial distributions given, for n ≥ 1, by (qn)t = (qn1 , q

n
2 , . . . , q

n
r?) and a

transition matrix P = [pij ], 1 ≤ i, j ≤ r? . After the first transition, supposing
that the initial distribution is performed according to (q1)t at date n = 1, the
new value of the proportion of the population, for instance, in state 1, is the
proportion of those which stay in state 1 plus the proportion of those who come
to state 1 from states 2 to r?. That is:

p11q
1
1 + p21q

1
2 + · · ·+ pr1q

1
r? =

r?∑
i=1

pi1q
1
i

and so, the new values of the proportions in all states, after one transition, can be
recovered from Pᵀq = (qᵀP)ᵀ and, after n transitions, by (P(n))ᵀq = (qᵀP(n))ᵀ,
with P(0) = I, P(1) = P and, by induction, P(n+1) = P ◦P(n). Let us stress, as
a notation convention, that all vectors are column vectors.

Now suppose that we want to account for the evolution of the expected
number of elements in each class supposing that, at each date k ∈ {1, . . . , n}, a
random number Xk of new elements enters the population. Just after the second
cohort enters the population, a first transition occurs in the first cohort driven by
the Markov chain law and so on and so forth. Table 1 summarizes this accounting
process. Remark that at each step k we distribute multinomially the new random
arrivals Xk according to the probability vector qk and the elements in each class
are redistributed according to the Markov chain transition matrix P.

Table 1: Accounting of n Markov cohorts each with an initial distribution
Date 1 2 . . . n− 1 n

1 E[X1](q1)ᵀ E[X1](q1)ᵀP . . . E[X1](q1)ᵀP(n−2) E[X1](q1)ᵀP(n−1)

2 – E[X2](q2)ᵀ . . . E[X2](q2)ᵀP(n−3) E[X2](q2)ᵀP(n−2)

. . . . . . . . . . . . . . . . . .
n – – – – E[Xn](qn)ᵀ
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At date n, if we suppose that each new set of customers, a cohort, evolves
independently from any one of the already existing sets of customers but, ac-
cordingly to the same Markov chain model, we may recover the total expected
number of elements in each class at date n by computing the sum:

Yn =

n∑
k=1

E[Xk](q
k)ᵀ P(n−k) .(2.1)

Each vector component corresponds precisely to the expected number of ele-
ments in each class. This formula - for a constant initial distribution, i.e., qk ≡ q
- is well known; see, for a deduction using conditional expectations, [2, p. 52:
(3.2)]. In this paper, in order to further study the properties of (Yn)n≥1, given the
properties of a stochastic process X = (Xk)k≥1, we will randomize formula (2.1)
by considering, instead, for n ≥ 1:

(2.2) Yn =
n∑
k=1

Xk(q
k)ᵀ P(n−k) .

Despite the fact that the expressions in (2.1) and (2.2) share the same expected
value, i.e, Yn = E[Yn], there is no obvious way to study the probability distribu-
tion of the number of elements in each of the population classes, except in the
case where the (Xk)k≥1 new elements are Poisson distributed or independent (see
[4]). However, this is not the case for a typical ARMA time series.

Ideally, the most fruitful approach comes from knowing the joint distri-
bution of the entrances (Xk)k≥1 and of the Markov chain. As this is not the
case here, we will call the stochastic process (Yn)n≥1 an open Markov chain
scheme model for the time evolution of the number of elements in each class 1.

For the case of a non-homogeneous Markov chain, the denomination non-
homogeneous Markov system was used, in the context of this work, for the first
time in [20], according to [19].

We note that some preliminary results on this problem have already been
developed in [6].

2.2. Preliminary results and notations

We will introduce now the notions and main results, allowing to give mean-
ing to the Cramer spectral representation theorem (see [3], [17] or [1]).

In the following, let (Ω,A,P) be a probability space. The torus
T = {z ∈ C : |z| = 1} is identified with [−π,+π[ by the map λ 7→ eiλ.

1Observe that
∑r?
j=1

∑r?
i=1 pijq

j
i =

∑r?
i=1

(∑r?
j=1 pij

)
qi = 1, if, for instance, the initial distri-

bution does not depend on j; the same being true for the powers of the transition matrix.
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Definition 2.1. A centered uncorrelated random field (CURF) Z
on T is a map from B(T), the Borel subsets of T, into L2((Ω,A,P), (C,B(C)), the
Lebesgue space of (classes) of square integrable random variables taking values
in the complex numbers C, such that:

1. Z is centered: ∀A ∈ B(T) , E [Z(A)] = 0 .

2. The images of disjoint Borel sets are uncorrelated, i.e.: ∀A,B ∈ B(T) :

A ∩B = ∅ ⇒
(
E
[
Z(A) · Z(B)

]
= 0 and Z(A ∪B) = Z(A) + Z(B)

)
3. Z is mean-square upper continuous:

∀(An)n≥1 : An ↓ ∅ ⇒ lim
n→+∞

Z(An) =L2 0 .

The following result characterizes the structure of a CURF by means of
bounded positive measure defined over the Borel sets of the torus.

Theorem 2.1. A map from B(T) into the centered random variables
of the Lebesgue space L2((Ω,A,P), (C,B(C)) is a centered uncorrelated random
field (CURF) if and only if there exists a bounded positive measure µ, named the
basis of Z such that:

∀A,B ∈ B(T) , E
[
Z(A) · Z(B)

]
= µ(A ∩B) .

The next result gives sense to the stochastic integral naturally associated
to a CURF by means of an isometry between Hilbert spaces of square integrable
functions.

Theorem 2.2 (CURF stochastic integral). Let Z be a CURF on T with
basis µ. There exists an unique isometry Z̃ from L2((T,B(T), µ)) into
L2(((Ω,A,P), (C,B(C))) such that for all A ∈ B(T), Z̃(1IA) = Z(A). We have
that:

1. Z̃ is a centered isometry

∀f ∈ L2((T,B(T), µ)) , E
[
Z̃(f)

]
= 0 .

2. The image of Z̃ is the closure of the vector space spanned by the random
variables obtained from Z, that is:

Z̃
(
L2((T,B(T), µ))

)
= V({Z(A) : A ∈ B(T)} .
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Remark 2.1. For each f ∈ L2((T,B(T), µ)) we denote the isometry Z̃
as a stochastic integral as follows:

Z̃(f) =

∫
[−π,+π[

f(λ)dZ(λ).

Remark 2.2. Moreover, we stress the important result that all the cen-
tered isometries between the L2 spaces mentioned above are generated by a
CURF.

Covariances of stochastic processes are nonnegative-definite functions and
these, in turn, are represented by positive bounded measures on the torus.

Definition 2.2. A function γ from Z into C is nonnegative-definite
if and only if γ(n) = γ(−n), for n ∈ Z and

∀r ≥ 1, ∀z1, . . . , zr ∈ C, ∀n1, . . . , nr ∈ Z,
r∑

i,j=1

zizjγ(ni − nj) ≥ 0 .

Theorem 2.3 (Bochner-Herglotz). A necessary and sufficient condition
for a function γ to be nonnegative-definite is that there exists a positive bounded
measure on T, which is unique, such that:

∀n ∈ Z, γ(n) =

∫
[−π,+π[

eiλndµ(λ) .

Definition 2.3. A stochastic process X = (Xn)n∈Z is second order
stationary if and only if:

1. All random variables are square integrable, that is:

∀n ∈ Z E
[
|Xn|2

]
< +∞ .

2. Both the mean and the covariance functions (sequences) of the process,
given, for all n,m ∈ Z, respectively, by M(n) := E [Xn] and Γ(m,n) :=

E
[
(Xm − E [Xm]) (Xn − E [Xn])

]
, are invariant by time translations, and

so:
∀m,m ∈ Z , M(n) = M ∈ R and Γ(n,m) = γ(m− n) ,

for some function γ defined on Z.

Remark 2.3. We may verify that γ is a nonnegative-definite function as
defined in Definition 2.2, thus justifying the application of the Bochner-Herglotz
theorem to obtain a representation of a second order stationary process.
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Example 2.1 (White noise). A process W = (Wn)n∈Z is a white noise
if the random variables are centered, square integrable and, moreover, uncorre-
lated, that is, if:

∀n,m ∈ Z : n 6= m⇒ Γ(n,m) = 0 .

An example of white noise is given by a sequence of independent centered random
variables with common variance.

Example 2.2 (ARMA process). A process X = (Xn)n∈Z is an ARMA(p,q)
process if there exists a white noise W = (Wn)n∈Z and two complex sequences
a1, a2, . . . ap and b1, b2, . . . bq such that

(2.3)

p∑
k=0

akXn−k =

q∑
l=0

blWn−l.

Formula (2.3) is called a canonical ARMA relation (see [1, p. 80]) if the
polynomials P (z) =

∑p
k=0 akz

k and Q(z) =
∑q

l=0 blz
l have no common factor, P

has all his roots with modulus strictly greater than 1, Q has all his roots with
modulus greater or equal than 1 and P (0) = Q(0) = 1. It is a remarkable result
(see [1, p. 81]), that will prove useful in the following, that, if a stochastic process
X satisfies a canonical ARMA relation with a white noise W then, this white noise
is unique and it is named the innovation of X.

We now obtain the representation of a second order stationary stochastic
process by the positive bounded measure associated to its covariance.

Definition 2.4 (Spectral measure). Let X = (Xn)n∈Z be a second order
stationary process. The spectral measure of X is the unique positive bounded
measure µX on T representing the covariance of the process that is, such that,

∀m,n ∈ Z, Γ(m,n) = γ(m− n) =

∫
[−π,+π[

eiλ(m−n)dµX(λ) .

In vue of future application the particular case of real valued processes
deserves special mention.

Remark 2.4. In the case that X is real valued then the spectral measure
µX on T is invariant by the symmetry φ defined on T by φ(z) = z for all z ∈ T.

Remark 2.5. If the spectral measure µX is absolutely continuous with
respect to the Lebesgue measure on the torus then, by Radon-Nikodym theorem,
µX admits a density fX with respect to the Lebesgue measure and we call this
density the spectral density of X.
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Example 2.3 (White noise). A white noise W = (Wn)n∈Z with the ran-
dom variables having common variance σ2 has a spectral density given by:

fW(λ) =
σ2

2π
.

Example 2.4 (ARMA process). The spectral density fX corresponding
to the canonical ARMA relation in Example 2.2 is given, using the same notations,
by:

fX(λ) =
σ2

2π

∣∣∣∣Q(e−iλ)

P (e−iλ)

∣∣∣∣2 .

We now state the theorem allowing to represent second order stationary
stochastic process as a CURF.

Theorem 2.4 (Cramer theorem). Let X = (Xn)n∈Z be a second order
stationary process with spectral measure µX. Then, there exists an unique CURF
ZX on T with basis µX such that:

∀n ∈ Z, Xn =

∫
[−π,+π[

eiλndZX(λ) .

We will need the following observation clarifying the structure of the Cramer
representation of a time inverted process.

Remark 2.6 (Time inversion). Let µφ be the image of µ by the sym-
metry φ. As the map f 7→ f ◦φ is an isometry from L2(µφ) onto L2(µ), then the
map

f 7→
∫

[−π,+π[
f ◦ φ(λ)dZX(λ)

is also an isometry from L2(µφ) into L2(Ω). Now, by Remark 2.2 above, there

exists an unique CURF ZφX with basis µφ, the symmetric CURF of ZX, such
that for all f ∈ L2(µφ):

(2.4)

∫
[−π,+π[

f(λ)dZφX(λ) =

∫
[−π,+π[

f ◦ φ(λ)dZX(λ) .

As a consequence, X← = (X−n)n∈Z, the time inversion of X, has a spectral
representation given by:

X−n =

∫
[−π,+π[

e−iλndZX(λ) =

∫
[−π,+π[

eiλndZφX(λ) .

We will now introduce a special class of processes that will prove useful in
the following results.
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Definition 2.5 (Evanescent process). A centered stochastic X = (Xn)n∈Z
process is called an evanescent process at time +∞ iff:

lim
n→+∞

E
[
|Xn|2

]
= 0 .

Remark 2.7. Any linear combination of centered evanescent processes
at time +∞ is a centered evanescent process at time +∞.

3. SECOND ORDER FEDS OF A MARKOV CHAIN SCHEME

In this section we considere a Markov chain scheme fed by a stochastic
process. Let P be the transition matrix of the Markov chain. We will suppose
that the transition matrix may be written in the following form:

(3.1) P =

[
T S1

0 R

]
,

where T is the t?× t? transition matrix between transient states, S1 the t?×(r?−
t?) matrix of one step transitions between the transient and the recurrent states
and R the (r?− t?)× (r?− t?) transition matrix between the recurrent states. A
straitghforward computation shows that:

P(n) =

[
T(n) Sn

0 R(n)

]
, n > 1

with Sn = Sn−1R + T(n−1)S1 =
∑n−1

i=0 T(i)S1R
(n−1−i).

We now write the successive cohorts vectors of classifications for new ar-
riving elements, at time period k, as

(3.2) (qk)ᵀ =
[
(tk)ᵀ

∣∣∣(rk)ᵀ] ,

with (tk)ᵀ the vector of the initial classification probabilities for the transient
states and (rk)ᵀ the vector of the initial classification probabilities for the recur-
rent states. Using (3.1) and (3.2), formula (2.2) may be written as
(3.3)

Yn =
[
Y1
n | Y2

n

]
=

[
n∑
k=1

Xk(t
k)ᵀT(n−k)

∣∣∣∣∣
n∑
k=1

Xk

(
(tk)ᵀSn−k + (rk)ᵀR(n−k)

)]
.

Formula (3.3) allow us to estimate the number of elements in each subpop-
ulation (transient or recurrent). However, for the reasons pointed in the intro-
duction and for technical reasons that will become apparent in the following, we
will consider only the transient states part of the transition matrix.
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At first, we will suppose that the feeding process is stationary. The main
result will be the following:

Theorem 3.1. Consider an open Markov chain scheme model, with a
diagonizable matrix P, written as in (3.1), and a constant vector of initial clas-
sification probabilities (qk)ᵀ ≡ (q)ᵀ, defined as in (3.2).

If the open Markov chain scheme model is fed by a real valued ARMA
process then the population in each of the transient states may be described as
a sum of an ARMA processes with an evanescent process.

Proof: Suppose that X = (Xk)k∈Z is a second order stationary time
series. Recall that by the Cramer representation theorem (see [1, p. 51]) also
stated above, we have that, for all k ∈ Z,

Xk =

∫
[−π,+π[

eiλkdZX(λ) ,

with ZX the spectral field of X, the unique CURF associated to X (see [1, p. 38]
for a definition). Reporting this representation in the Markov chain scheme given
by formula (2.2) we get that

(3.4) Yn =
n∑
k=1

(∫
[−π,+π[

eiλkdZX(λ)

)
(qk)ᵀ P(n−k) .

Considering that the transition matrix of the transient states T is diago-
nalizable, it may be written as:

T =

t?∑
j=1

ηjαjβ
ᵀ
j ,

with (ηj)j∈{1,...,t?} the eigenvalues, (αj)j∈{1,...,t?} the left eigenvectors and with
(βj)j∈{1,...,t?} the right eigenvectors of T (see [8] or [10]).We observe that j ∈
{1, . . . , t?} corresponds to a transient state if and only if | ηj |< 1. Considering
also that, for k ≥ 1, we have tk ≡ t, we will have, for n ≥ 1,

Y1
n =

t?∑
j=1

(∫
[−π,+π[

(
n∑
k=1

eiλk η
(n−k)
j

)
dZX(λ)

)
tᵀ αjβ

ᵀ
j =

=

t?∑
j=1

(∫
[−π,+π[

e−iλn
[

1− (eiλ ηj)
n+1

1− eiλ ηj

]
dZX(λ)

)
tᵀ αjβ

ᵀ
j .

(3.5)

We now define, for each j ∈ {1, . . . , s} and n ≥ 1, W j
n = W 1,j

n −W 2,j
n with

W 1,j
n :=

∫
[−π,+π[

e−iλn
[

1

1− eiληj

]
dZX(λ) , W 2,j

n :=

∫
[−π,+π[

[
eiλ ηn+1

j

1− eiληj

]
dZX(λ)
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and we observe that h1,j(λ) := 1
1−eiληj

and h2,j(λ) :=
eiλ ηn+1

j

1−eiληj
are both

L2([−π,+π]) functions due to |ηj | < 1. We will deal separately with these two
components.

Firstly, we show that W2,j = (W 2,j
n )n≥1 is an evanescent process at +∞,

according to Definition 2.5. In fact, with µX the spectral measure of X, we have
that:

E
[∣∣W 2,j

n

∣∣2] =

∫
[−π,+π[

∣∣∣∣∣ eiλ η
n+1
j

1− eiληj

∣∣∣∣∣
2

dµX(λ) ≤ |ηj |2n+2

|1− |ηj ||2
µX ([−π,+π[) ,

and so, as µX is bounded and |ηj | < 1, we have, with exponential rate given by
|ηj |2n+2,

lim
n→+∞

E
[∣∣W 2,j

n

∣∣2] = 0 .

In fact, due to the exponential convergence to zero of the second order moments,
the convergence of the process W2,j to zero is in the almost sure sense. Let
0 < ε < 1, then, as,

P
[∣∣W 2,j

n

∣∣ > |ηj |εn] ≤ E
[∣∣∣W 2,j

n

∣∣∣2]
|ηj |2εn

≤ |ηj |2n+2

|ηj |2εn |1− |ηj ||2
µX ([−π, π[) =

= |ηj |2n(1−ε) |ηj |2

|1− |ηj ||2
µX ([−π, π[) ,

we have that, for some constant c,

+∞∑
n=1

P
[∣∣W 2,j

n

∣∣ > |ηj |εn] < +∞∑
n=1

|ηj |2n(1−ε) < +∞ ,

with limn→+∞ |ηj |2n(1−ε) = 0, thus showing (see [3, p. 370]) the almost sure
convergence to zero at +∞ of the process W2,j .

Secondly, we have that W1,j = (W 1,j
n )n≥1 defines a second-order stationary

stochastic process obtained from X from time inversion (see Remark 2.6 above)
and via the filter given by h1,j see [1, p. 58]). In fact, by formula (2.4) we have

W 1,j
n =

∫
[−π,+π[

e−iλnh1,j(λ)dZX(λ) =

∫
[−π,+π[

eiλnh1,j(−λ)dZφX(λ) =

=

∫
[−π,+π[

eiλnh1,j(λ)dZφX(λ)

and so, considering the filter defined by h1,j and the second order stationary
process defined by the CURF ZφX, we prove the stated result.

We will now suppose that X is a real valued ARMA process. For real
processes, as stated in Remark 2.4, the spectral measure is invariant under φ
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and then, the spectral density is also invariant under φ. As the CURF ZφX has

basis µφX ≡ µX and fφX ≡ fX 2 then, we see that each W1,j the filtered process, is
also ARMA process, due to the fact that by multiplying the spectral density by∣∣h1,j

∣∣2 we only introduce roots strictly larger than 1 in the denominator and so,
by resorting to the form of the spectral density in the canonical ARMA relation
as stated in Examples 2.2 and 2.4, we still have an ARMA process. In fact, let
fW1,j be the spectral density of the process W1,j , obtained from X by filtering by
the square integrable function h1,j . We have that, with the notations being used,
(3.6)

fW1,j (λ) = fφX(λ)
∣∣h1,j(λ)

∣∣2 = fX(λ)
∣∣h1,j(λ)

∣∣2 =
σ2

2π

∣∣∣∣ Q(e−iλ)

P (e−iλ)(1− e−iληj)

∣∣∣∣2 .

The polynomial R(z) := P (z)(1− zηj) still has all its roots with modulus strictly
greater than one and still verifies R(0) = 1. If 1/ηj is not a root of Q then, the
representation of fW1,j still is a canonical ARMA relation. If Q admits (1− zηj)
as a factor then, writing Q(z) = S(z)(1− zηj) we have the represention

fW1,j (λ) =
σ2

2π

∣∣∣∣S(e−iλ)

P (e−iλ)

∣∣∣∣2 ,

with S having all its roots with modulus strictly greater than one, still verify-
ing S(0) = 1 and with P and S still not having any common roots. So, this
representation is still a canonical ARMA relation. We may so observe that Y is
asymptotically - due to the evanescent process - a linear combination of ARMA
processes.

We are now going to show that any linear combination of the Wi,j still is
an ARMA process. That results from the fact that the innovation noise of each
Wi,j coincides with the innovation noise of X (see [3, p. 210], for the general
idea).

Let the spectral density of the process X be written according to the canon-
ical ARMA representation as,

fX(λ) =
σ2

2π

∣∣∣∣Q(e−iλ)

P (e−iλ)

∣∣∣∣2 .
As the process W1,j = (W 1,j

n )n≥1 admits the spectral representation given by

W 1,j
n =

∫
[−π,+π[

eiλnh1,j(λ)dZφX(λ) ,

this process has a density that may be written according the canonical ARMA
representation as

fW1,j (λ) =
σ2

2π

∣∣∣∣Q1,j(e−iλ)

P 1,j(e−iλ)

∣∣∣∣2
2If the spectral density of an ARMA process is a rational function with real functions the

the AR and MA polynomials may be chosen with real coefficients (see [1, p. 77]).
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with Q1,j and P 1,j such that, either

Q(e−iλ) = Q1,j(e−iλ)
(

1− e−iληj
)

and P 1,j(e−iλ) = P (e−iλ)

or
Q1,j(e−iλ) = Q(e−iλ) and P 1,j(e−iλ) = P (e−iλ)(1− e−iλ) .

We observe that as dµX(λ) = fX(λ)dLeb(λ), then we have that

µX

({
Q1,j(e−iλ) = 0

})
= µX

({
Q(e−iλ) = 0

})
= 0 .

Now, let εj be the innovation noise of W1,j . We then have:

dµεj (λ) =
1

fW1,j (λ)
1I{Q1,j(e−iλ)6=0}(λ)dµW1,j (λ) =

=
1

fW1,j (λ)
1I{Q1,j(e−iλ)6=0}(λ)

∣∣h1,j(λ)
∣∣2 dµX(λ) =

= 1I{Q(e−iλ) 6=0}(λ)dLeb(λ) =
1

fX(λ)
1I{Q(e−iλ)6=0}(λ)dµX(λ) .

We are now going to show that εj is the innovation noise of X, that is, for m < n,

E
[
Xmε

j
n

]
= 0, and so the innovation noise of W1,j does not depend on j. For

that we use the spectral representation of both processes, and so, considering any
function ψ such that

|ψ(λ)|2 =
1

fX(λ)
1I{Q(e−iλ)6=0}(λ) ,

we have, using the isometry property of the stochastic integral and the Cauchy
theorem,

E

(∫
[−π,+π[

eiλmdZX(λ)

)
·

(∫
[−π,+π[

eiλndZεj (λ)

)
= E

(∫
[−π,+π[

eiλmdZX(λ)

)
·

(∫
[−π,+π[

eiλnψ(λ)dZX(λ)

)
=

∫
[−π,+π[

eiλ(m−n)ψ(λ)dµX(λ)

=

∫
[−π,+π[

eiλ(m−n)

√
2π

σ

(
P (e−iλ)

Q(e−iλ)

)
σ2

2π

Q(e−iλ)

P (e−iλ)

(
Q(e−iλ)

P (e−iλ)

)
1I{Q(e−iλ)6=0}dLeb(λ)

=
σ√
2π

∫
[−π,+π[

e−iλ(n−m)Q(e−iλ)

P (e−iλ)
dLeb(λ)

=
σi√
2π

∫
T
zn−(m+1)Q(z)

P (z)
dz = 0 .

Let ε = (εk)k∈Z be the common innovation noise of all the processes W1,j . We
then have (see [1, p. 81]) that for each j and some (square) integrable sequence
(cjk)k≥0 we may write,

W1,j
n =

∑
k≥0

cjkεn−k ,
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and so for αj , αl ∈ C, as
(
αjc

j
k + αlc

l
k

)
k≥0

is a (square) integrable sequence,

αjW1,j
n + αlW1,l

n =
∑
k≥0

(
αjc

j
k + αlc

l
k

)
εn−k ,

and αjW1,j + αlW1,l is an ARMA process.

We now deal with the case of some non stationary processes which are
relevant for the applications.

Theorem 3.2. Under the same conditions of Theorem 3.1, if the open
Markov chain scheme model is fed by a real valued ARIMA or SARMA process
then the population in each of the transient states may be described as a sum
of a deterministic trend plus a linear combination of ARMA processes plus an
evanescent process.

Proof: Let X = (Xn)n∈Z be an ARMA process. Let s, d ≥ 1 be integers
and consider the following functions defined, for i, j ∈ {0, 1, . . . , s−1} and α, β ∈
{0, 1, . . . , d− 1}, by:

Ui,α(x) = xα cos

(
2πi

s
x

)
and Vj,β(x) = xβ sin

(
2πj

s
x

)
.

Consider now the function given by linear combinations with complex coefficients
of the functions Ui,α and Vj,β as

P(s,d)(x) =
∑

0≤i≤s−1,0≤α≤d−1

ai,αUi,α(x) +
∑

0≤j≤s−1,0≤β≤d−1

bj,βVj,β(x) .

Then the process T = (Tn)n∈Z represented as

Tn = P(s,d)(n) +

n∑
j=0

γjXn−j ,

is an identifiable ARIMA or SARMA process for an appropriate choice of s, d
and the complex coefficients ai,α, bj,β and γj (see [1, p. 87, 89]). Moreover,
every identifiable ARIMA or SARMA process can be represented in that form.
Consider now an open Markov chain scheme fed by T. We have the obvious
decomposition:

Yn =
n∑
k=1

Tk(q
k)ᵀ P(n−k) =

=
n∑
k=1

P(s,d)(k)(qk)ᵀ P(n−k) +
n∑
k=1

 k∑
j=0

γjXk−j

 (qk)ᵀ P(n−k) =

=
n∑
k=1

P(s,d)(k)(qk)ᵀ P(n−k) +
n∑
j=0

γj

 n∑
k=j

Xk−j(q
k)ᵀ P(n−k)


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and so, as the right-hand term of the last sum is a linear combination of ARMA
processes the result follows.

Remark 3.1. Using the results in [4], we note that, at least on average,
the asymptotic behavior of the subpopulations can be described.

4. AN APPLICATION TO COMSUMPTION CREDIT

4.1. Real data

In this section we will present fittings of a second order processes to real
data of consumption credit portfolio from a Cape Verdean bank.

In this portfolio, we defined five risk classes, according to the number of
days in delay of the monthly reimbursements, as shown in Table 2, and an extra
class for the clients leaving the portfolio.

Table 2: Portfolio risk classes
Risk Class Number of days in delay

RC1 0 - 30
RC2 31-60
RC3 61-90
RC4 91-120
RC5 > 120
RC6 Leaving

In each month, each client is classified into the risk class that refers to his
number of days in delay of reimbursments. Only fully paid contracts are allowed
to move to risk class 6.

The transition matrix, estimated from portfolio data, is given by:

(4.1) P =


0.934735 0.026566 0 0 0 0.038698
0.518363 0.285733 0.195903 0 0 0
0.009076 0.372018 0.248963 0.369943 0 0

0 0.007835 0.335464 0.205361 0.450928 0
0 0 0 0 0 1



Naturally, each new client is initially placed in risk class 1, and so,

(qk)ᵀ ≡ (q)ᵀ = [ 1 0 0 0 0 0 ]

In previous works (see [4] and [5]), using this data and the related client in-
formation in the consumption credit database, we provided models for the spread
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to be applied to each client and related this to the global spread of the portfo-
lio, estimated using an open Markov chain model with the number of entrances
modeled by a sequence of Poisson laws. We recall that one of the motivations for
the present work is to develop a model with the entrances of new clients modeled
by a time series.

The data on the number of new monthly clients arriving to the portfolio
corresponds to a monthly sequence of 106 observations. The fitting was per-
formed using Wolfram Mathematica and, for illustration purposes, we adopted
two different approaches. In the first one, we fitted a time series directly to data.
In the second, we firstly fitted a sigmoid type function to data, as in [4], and
then, a time series to the residuals of the sigmoid fitting.

The results obtained for the first approach are illustrated in Table 3.

As shown in Table 3 the best model for the entrance data, under both the
AIC and the BIC criterias, is an ARIMA[0, 1, 1] model.

Table 3: Fitting the entrance data directly

For the second approach, we show, in Figure 1, on the left side graphic,
both the data and the fitted sigmoid type function and, in the right side graphic,
the correspondent residuals.

20 40 60 80 100

-200

-100

100

200

The residues after a fitting by a sigmoid type function

Figure 1: Fitting a sigmoid type function to data and to the residuals.

In Table 4 it is shown that the best model for the residuals of the fitting of
the entrance data by a sigmoid type function, under both the AIC and the BIC
criterias, is the SARMA[(1, 0), (1, 0)34] model.
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Table 4: Fitting the residues of a fitting by a sigmoid function

In Table 5 we present the results on the parameter estimation for both the
ARIMA and the SARMA processes.

Table 5: The ARIMA and SARMA parameter tables

ARIMA model

SARMA model

4.2. A simulation study

In this section we will compare, by means of a simulation study, two ways
of obtaining the distribution of the number of elements in each risk class. First,
we simulate 300 paths of the Markov chain model and compute the observed
proportions of elements in each one of the six classes. We will also simulate
the number of elements in each class according to the two models fitted in the
previous section. The results are presented in Tables 6 and 7. The results in
the first table show that the sub-population in class 5 is slightly larger in both
ARIMA and SARMA models, when compared with the direct simulation of the
Markov chain. As the class 5 population measures the most part of the risk of
the portfolio, both the ARIMA and SARMA models are conservative, but not
excessively.

Table 6: Proportions in each class by simulation of the Markov chain and
of the Markov chain scheme models ARIMA and SARMA
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

MARKOV 0.0366667 0.00333333 0.00333333 0.00333333 0.0266667 0.926667
ARIMA 0.106427 0.00594949 0.00328688 0.00362677 0.0305018 0.850208
SARMA 0.130596 0.00705139 0.00362903 0.00378776 0.0307309 0.824204

We also computed the relative proportions of elements in the population in
each one of the five transient classes. The results show a remarkable difference
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between the Markov chain simulation and the Markov chain scheme fed with the
sum of a sigmoid trend plus a SARMA process, thus showing the advantage of
an open model.

Table 7: Conditional proportions for the 5 transient classes - simulation
Class 1 Class 2 Class 3 Class 4 Class 5

MARKOV 0.5 0.0454545 0.0454545 0.0454545 0.363637
ARIMA 0.710498 0.0397184 0.021943 0.0242121 0.203628
SARMA 0.742888 0.0401113 0.0206435 0.0215464 0.17481

We simulated 300 paths for each of the two models fitted in section 4, to
wit, the ARIMA[0, 1, 1] and the SARMA[(1, 0), (1, 0)34]. We computed the mean
and the standard deviation for each classe and the correspondent one standard
deviation confidence interval. Despite the paths in the ARIMA[0, 1, 1] possibly
taking negative values we computed the corresponding number of elements in
each class. The results in Table 8 clearly show that the SARMA[(1, 0), (1, 0)34]
model, for the residuals of a sigmoid type function fitting, is much more adequate
to describe the evolution of the entrance of new clients in the credit portfolio.

Table 8: Data at date 106 and confidence intervals from models
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Data 5307 284 144 149 1203 32256
ARIMA [-1614,5904] [-81,321] [-36,168] [-33,179] [-248,1478] [-6164,40436]
SARMA [4669,5593] [255,299] [134,151] [142,156] [1158,1257] [31112,33654]

In Figure 2 we observe that the results given by the SARMA[(1, 0), (1, 0)34]
model are more meaningful. In fact, in the empirical distribution of the simulated
number of elements, negative numbers occur in both classes 1 and 5. 3

Figure 2: Simulated empirical distributions in classes 1 and 5.

3All Wolfram Mathematica 10 computational files used in this work are available at
http://ferrari.dmat.fct.unl.pt/personal/mle/pps/pm-mle2009a.html.
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